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Abstract 

We investigate some basic applications of Fractional Calculus (FC) to Newto-
nian mechanics. After a brief review of FC, we consider a possible generaliza-
tion of Newton’s second law of motion and apply it to the case of a body sub-
ject to a constant force. In our second application of FC to Newtonian gravity, 
we consider a generalized fractional gravitational potential and derive the re-
lated circular orbital velocities. This analysis might be used as a tool to model 
galactic rotation curves, in view of the dark matter problem. Both applications 
have a pedagogical value in connecting fractional calculus to standard me-
chanics and can be used as a starting point for a more advanced treatment of 
fractional mechanics.  
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1. Introduction 

Fractional Calculus (FC) is a natural generalization of calculus that studies the 
possibility of computing derivatives and integrals of any real (or complex) order 
[1] [2] [3], i.e., not just of standard integer orders, such as first-derivative, 
second-derivative, etc. 

The history of FC started in 1695 when l’Hôpital raised the question as to the 
meaning of taking a fractional derivative such as 1 2 1 2d dy x  and Leibniz rep-
lied [2]: “…This is an apparent paradox from which, one day, useful conse-
quences will be drawn.” 

Since then, eminent mathematicians such as Fourier, Abel, Liouville, Riemann, 
Weyl, Riesz, and many others contributed to the field, but until lately FC has 
played a negligible role in physics. However, in recent years, applications of FC 
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to physics have become more common [4] [5] in fields ranging from classical 
and quantum mechanics, nuclear physics, hadron spectroscopy, and up to 
quantum field theory. 

In theoretical physics we can now study the fractional equivalent of many 
standard physics equations [4]: frictional forces, harmonic oscillator, wave equa-
tions, Schrödinger and Dirac equations, and several others. In applied physics 
[5], FC methods can be used in the description of chaotic systems and random 
walk problems, in polymer material science, in biophysics, and other fields. 

In this paper, we will review elementary definitions and methods of fractional 
calculus and fractional differential equations. We will then apply these concepts 
to some basic problems in Newtonian mechanics, such as possible generaliza-
tions of Newton’s second law of motion and applications of FC to Newtonian 
gravity. 

2. Fractional Calculus: A Brief Review 

Unlike standard calculus, there is no unique definition of derivation and inte-
gration in FC. Historically, several different definitions were introduced and 
used (for complete details see, for example, Refs. [1] and [2]). All proposed defi-
nitions reduce to standard derivatives and integrals for integer orders n, but they 
might not be fully equivalent for non-integer orders of differ-integration1. 

To gain an intuitive perspective of fractional derivatives [4], we consider some 
elementary functions such as the exponential function ekx , trigonometric func-
tions ( )sin kx  or ( )cos kx , and simple powers kx , where k is some constant. It 
is easy to obtain recursive relations for derivatives of integer order n: 

d e e
d

n kx
n kx

n k
x

=                          (1) 
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n
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These relations can be easily generalized to real or imaginary order q, with 
appropriate gamma functions replacing the factorials when necessary: 
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1In FC derivation and integration are often treated and defined as a single operation—with the order 
q respectively taken as a positive or negative real number—hence the names differ integrals, differ 
integration, etc. Also, the name fractional calculus is actually a misnomer, since the order of differ 
integration can be any real (or complex) number. A better name for this field might be “Differ inte-
gration to an arbitrary order,” or similar. 
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with the first two functions restricted to 0k ≥  and the third one restricted to 
0x ≥ , to ensure the uniqueness of the above definitions. 

These three approaches to fractional derivation were introduced respectively 
by Liouville, Fourier, and Riemann and led to immediate generalizations for 
analytic functions expanded in series of exponential, trigonometric, or power 
functions. For example, the fractional derivative of a function ( )f x , according 
to Liouville, can be defined as 
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Applying instead the Riemann definition of fractional derivatives for power 
functions to the case of a constant C, we obtain: 

( )
( )

0dd ,
1d d

qq q

q q

CxC Cx
qx x

−

= =
Γ −

                   (9) 

i.e., the derivative of a constant is not equal to zero in FC, unless this condi-
tion is assumed as an additional postulate as in the so-called Caputo derivative 
[4]. 

More general definitions of fractional differ integrals exist in the literature, 
such as the Grünwald formula [1]: 
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∑      (10) 

which involves only evaluations of the function itself and can be used for both 
positive and negative values of q. Another general definition is the Riemann-Liouville 
fractional integral [1]: 

( ) ( ) ( ) ( ) ( )1d 1 d 0 ,
d

q x q
q a

f x y f y y q
qx a

− −= − <
Γ −−  

∫          (11) 

which can only be applied directly to fractional integration ( )0q < , but can be 
extended to fractional differentiation by combining it with integer-order deriva-
tives. It is beyond the scope of this paper to analyze these and other formulas of 
FC more thoroughly. Interested readers will find complete mathematical details 
in all the references cited in this section. 

3. Generalizing Newtonian Mechanics 

One-dimensional Newtonian mechanics for a point-particle of constant mass m 
is based upon Newton’s second law of motion, a second-order ordinary differen-
tial equation: 
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=                           (12) 

We can easily think of at least two possible ways of generalizing Newton’s 
second law using fractional calculus: 
 Change the order of the time derivative in the left-hand-side of Equation (12) 

to an arbitrary number q. This is motivated by current studies of FC applied 
to physics [4], where second-order classical wave equations, Schrödinger and 
Dirac equations, and several others are generalized to fractional order q. 

 Generalize the expression of the force F, or force field ( ),F x t , on the 
right-hand-side of Equation (12) to include differintegrals of arbitrary order 
q. This is also routinely done in applications of FC to physics [4], by selecting 
fractional generalizations of standard electromagnetic potentials, in order to 
analyze phenomena in nuclear physics, hadron spectroscopy, and other fields.  

In the next two sub-sections, we will consider examples of these possible ge-
neralizations. 

3.1. Constant Force Motion 

As our first example, we generalize Equation (12) by using derivatives of arbi-
trary (real) order q and by considering a constant force per unit mass 
f F m= :2 

( )d
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q
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mt

= =                      (13) 

The general solution of this (extraordinary) differential equation is [1]: 
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having used also Equation (9) for the fractional derivative of the constant force 
per unit mass f. The l constants of integration, 1 2, , , lc c c , can be determined 
from the l initial conditions: ( ) ( ) ( ) ( )1

0 0 0, , , lx t x t x t−′


.3 
For example, choosing for simplicity’s sake 0 1t = ,4 the constants of integra-

tion are determined by a set of linear equations in matrix form =Mc d , where 

 

 

2We note that, in order to ensure the dimensional correctness of Equation (13), we would need to 
redefine force so that its dimensions become qMLT − . Alternatively, if the customary dimensions of 
force are used, a constant time scale factor SCt  should be introduced in Equation (13): 

( ) 2 2d
d

q
q q

SC SCq

x t F t ft
t m

− −= = . We have adopted the former solution in the following. 

3Using non-integer derivatives in the initial conditions would greatly complicate the solution pro-
cedure, so we have avoided this unnecessary complication. 
4We prefer to avoid the customary choice of 0 0t = , since the solutions described in Eq. 14 can di-
verge for 0t → .  
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( )jc=c  is the vector of the integration constants, while the matrix ( )ijm=M  
and the vector ( )id=d  are obtained as follows: 
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              (16) 

If the initial conditions and the force per unit mass are simply set to unity, i.e., 
( ) ( ) ( )1 1 1 1x x x′ ′′= = = =

 and 1f = , our general solution in Equation (14), 
with the integration constants computed using Equations (15) and (16), can be 
easily plotted for different values of the order q, as shown in Figure 1. 

This figure illustrates the resulting position vs. time functions for the 
point-particle motion, subject to the generalized Newton’s law in Equation (13), 
with the order q ranging from 1 to 3 with fractional increments. The standard  

Newtonian solution, ( ) ( ) ( )2
0 0 0 0

1
2

x t a t t v t t x= − + − + , is obviously recovered  

for 2q =  (red-solid curve), for a motion with constant acceleration a F m= . 
Two other solutions for integer values of q are presented: the case for 1q =  
(blue-solid line) represents a simple motion with constant velocity v F m= : 
( ) ( )0 0x t v t t x= − + ; the 3q =  case (green-solid line) represents instead a mo-

tion with constant jerk5 j F m= : 

( ) ( ) ( ) ( )3 2
0 0 0 0 0 0

1 1
6 2

x t j t t a t t v t t x= − + − + − +  

In Figure 1, we also show (dashed and dotted curves) the position vs. time 
functions for some fractional values of the order q in Equation (13). These addi-
tional curves interpolate well between the integer-order functions described 
above, showing that “fractional mechanics” would simply yield solutions for the 
motion of the point-particle which are somewhat in-between the integer-order 
solutions. 

One can’t help but wonder what would the universe be like, if the fundamen-
tal Newtonian (second) law of motion were based on an order q different from 
the standard value of two: for 1q = , we would have a situation reminiscent of 
Aristotelian physics, where a constant applied force would only achieve a motion 
with constant velocity. For 3q = , the application of a constant force would 
yield a constant jerk (i.e., an acceleration changing at constant rate) resulting in 
a motion much more difficult to control. Fractional values of q would yield me-
chanical situations somewhat in-between those with integer q, but the resulting 
dynamics would possibly be lacking of the other cardinal principles of Newto-
nian mechanics, such as conservation laws or others. 

3.2. Gravitational Force 

Our second case of interest will be the generalization of Newton’s law of  

 

 

5The higher-order derivatives of the position vs. time function (beyond the second order) are usually 
called jerk (3rd order), snap or jounce (4th order), crackle (5th order), pop (6th order), etc. 
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Figure 1. Position vs. time functions for a point-particle subject to a constant force, using 
the generalized Newton’s law in Equation (13), with the order q ranging from 1 to 3, and 
with fractional increments. The standard Newtonian solution is recovered for q = 2 
(red-solid curve), for a motion with constant acceleration. The case for q = 1 (blue-solid 
line) represents a motion with constant velocity, while the q = 3 case (green-solid line) 
represents instead a motion with constant jerk. Other solutions (dashed and dotted 
curves), for some fractional values of the order q, are also shown in the figure. 
 
universal gravitation: 

( )2

2 2

d
ˆ,

d
gt GM r

mt r
= = −

Fr
                    (17) 

where G is the universal gravitational constant, M is the total mass of a (spheri-
cally symmetric) source centered at the origin of a coordinate system, r̂  and r 
are respectively the radial unit vector and the radial distance between the origin 
and a point-particle of mass m, subject to the gravitational attraction. 

In this case, we will modify the right-hand-side of Equation (17) by consider-
ing a generalized gravitational Riesz potential [4] RZV : 

( )
( )

( )
( )3 3

3dd ,RZ q q

G M GV
a as a a

ρ ′ ′
= − = −

′−
∫ ∫

r r
r

r r 
         (18) 

where s ′= −r r  is the distance between the infinitesimal source mass element 
( ) 3d dM ρ ′ ′= r r  and the position r  being considered. Due to the presence of 

the fractional order q, a “length scale” a is needed to ensure the dimensional 
correctness of Equation (18).6 

 

 

6This approach [4] is based on a 3D-generalization of the convolution integral:  

( ) ( ) ( ) ( )
3 3

3 3d dV w
ρ

ρ
′

′ ′ ′ ′= − =
′−∫ ∫

r
r r r r r r

r r 
, with a fractional weight function:  

( ) 1
qw ′− =
′−

r r
r r

. The resulting potential in Equation (18) is equivalent to a 3D-version of the 

Riesz fractional derivative, which corresponds to a linear combination of fractional Liouville inte-
grals. 
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For a spherical source of radius 0R  and uniform density 3
0 0

4 π
3

M Rρ  =  
 

, 

( ) ( ) 0 0
0 0

0

, for 0
0, for ,

r R
H R r

r R
ρ

ρ ρ
′≤ ≤

′ ′= − =  ′ >
r             (19) 

the integral in Equation (18) can be evaluated analytically for any (real) value of 
the fractional order q, inside and outside the source. In general, we have [4]: 
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 (20) 

for the inner and outer solutions. The special cases for 2,3, 4q =  can be ob-
tained by recomputing the integrals for these particular values of q, or by consi-
dering appropriate limits of ( )RZV r , from the previous equation, for 

2,3,4q → . For example, for 2q = , we obtain: 

( )
( )
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2 2 0
0 0 0

00
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π

2 ln , for .
RZ q
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  (21) 

Setting instead 1q =  in Equation (20), and using 3
0 0

4 π
3

M Rρ  =  
 

, we re-
cover the standard Newtonian potential: 

( ) ( )
( )2 2

0 03
0

Newtonian1

0

3 , for 0
2

, for ,
RZ q

GM R r r R
RV r V r

GM r R
r

=

− − ≤ ≤= = 
− >

      (22) 

which yields the universal law of gravitation in Equation (17), by using just the 
outer potential from the last equation. Another very simple case is the one for  

0q = , which yields a constant potential ( )
0RZ q

GMV r
a=

= − , for both inner and 

outer solutions. 
In Figure 2, we illustrate the shape of these generalized gravitational Riesz 

potentials following Equations (20)-(22), for different values of the fractional 
order q ranging from zero to two. The 1q =  case (red-solid curve) represents 
the standard Newtonian gravitational potential. All these plots were obtained by 
setting 0 1G M R a= = = =  for simplicity’s sake, therefore the vertical grid line 
at 1.0r =  in the figure denotes the boundary between the inner ( 00 r R≤ ≤ ) 
and the outer ( 0r R> ) potentials. As already mentioned above, the 0q =  case  

(blue-solid line) corresponds to a constant potential ( )
0RZ q

GMV r
a=

= − , while 

the 2q =  case (green-solid curve) is plotted using Equation (21). 

An interesting consequence of these generalized gravitational potentials is the  
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Figure 2. The generalized gravitational Riesz potentials, following Equations (20)-(22), 
for different values of the fractional order q. The 1q =  case (red-solid curve) represents 
the standard Newtonian gravitational potential. We set 0 1G M R a= = = =  for simplic-
ity’s sake, thus the vertical grid line at 1.0r =  in the figure denotes the boundary be-
tween the inner ( 00 r R≤ ≤ ) and the outer ( 0r R> ) potentials. The 0q =  case 
(blue-solid line) corresponds to a constant potential, while the 2q =  case (green-solid 
curve) is plotted using Equation (21). Other potentials (dashed and dotted curves), for 
some fractional values of the order q, are also shown in the figure. 
 
analysis of the resulting orbital circular velocities, for the inner and outer solu-
tions. From the generalized gravitational potentials in Equation (20), we can eas-
ily obtain the related gravitational force per unit mass: 

( ) ( )
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         (23) 

from which we can obtain the orbital circular velocities: 

( )
( ) ( )d

.
d

RZ RZ
circ

r V r
v r r r

m r
= =

F
                 (24) 

Figure 3 shows the plots of these orbital circular velocities for the same values 
of the fractional order q used in Figure 2, and also by setting 0 1G M R a= = = =  
as done previously. The 1q =  case (red-solid curve) represents the standard  
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Figure 3. The orbital circular velocities, following Equations (23) and (24), for different 
values of the fractional order q. The 1q =  case (red-solid curve) represents the standard 
Newtonian situation. Again, we set 0 1G M R a= = = = , thus the vertical grid line at 

1.0r =  in the figure denotes the boundary between the inner ( 00 r R≤ ≤ ) and the outer 
( 0r R> ) velocities. The 0q =  case (blue-solid line) corresponds to a zero force situa-
tion, while the 2q =  case (green-solid curve) is plotted using Equations (21) and (24). 
Other solutions (dashed and dotted curves), for some fractional values of the order q, are 
also shown in the figure. 
 

Newtonian situation, with the circular velocity 3
0

~circ
GMv r r
R

=  for 00 r R≤ ≤ , 

and ~ 1circ
GMv r

r
=  for 0r R≥  (the vertical grid line at 1.0r =  in the 

figure represents the boundary between the inner and outer regions). 
The 0q =  case (blue-solid line) would not yield any circular velocity because 

it corresponds to a zero-force case. The 2q =  case (green-solid curve) is com-
puted using the special potential in Equation (21), while in all the other (frac-
tional) cases the velocity plots interpolate well between the integer cases outlined 
above. 

It is interesting to note that, for values of q decreasing from one toward zero, 
the rotational velocity curves in the outer ( 0r R≥ ) region show a definite “flat-
tening” effect, which becomes more pronounced for the lowest q values (for 
example, in the 0.25q =  case, blue-dotted curve). This consideration might be 
of some interest in relation with the well-established problem of dark matter in 
galaxies, as evidenced by the galactic rotation curves and their lack of Newtonian 
behavior in the outer regions. 

It is beyond the scope of this paper to perform any fitting of galactic rotational 
curves, by means of our fractional model of the Riesz gravitational potentials. 
However, it is interesting to note that the main feature of the observed galactic 
rotational curves, i.e., their conspicuous flatness at larger distances could be ac-
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tually recovered for values of the fractional order q close to zero. 
We also recall that one of the most popular alternative gravitational models, 

Modified Newtonian Dynamics (MOND) [6] [7], originated from a simple mod-
ification of Newton’s second law, to account for the observed properties of ga-
lactic motion. The MOND modification can be applied to either side of New-
ton’s second law [7]: by setting the force to be proportional to a certain function 
of the acceleration, or alternatively by changing the dependence of the gravita-
tional force on the distance. In this work we have shown that similar modifica-
tions to the dynamics of a body in motion can also be obtained by means of frac-
tional calculus. Also, given possible connections between fractional calculus and 
fractal geometry [8] [9] [10] [11] [12], a fractional approach to mechanics might 
be useful to analyze complex structures such as galaxies or similar. 

4. Conclusions 

In this work, we have applied fractional calculus to some elementary problems in 
standard Newtonian mechanics. The main goal was to show that FC can be used 
as a pedagogical tool, even in introductory physics courses, to gain more insight 
into basic concepts of physics, such as Newton’s laws of motion and universal 
gravitation. 

An intriguing consequence of FC, in connection with gravitational physics, is 
the possibility of applying fractional mechanics to the problem of galactic rota-
tion curves. We will leave to further studies to investigate in more detail a possi-
ble connection between fractional mechanics and the dark matter puzzle. 
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