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Abstract 

By using Richardson extrapolation and fourth-order compact finite difference 
scheme on different scale grids, a sixth-order solution is computed on the 
coarse grid. Other three techniques are applied to obtain a sixth-order solu-
tion on the fine grid, and thus give out three kinds of Richardson extrapola-
tion-based sixth order compact computation methods. By carefully analyzing 
the truncation errors respectively on 2D Poisson equation, we compare the 
accuracy of these three sixth order methods theoretically. Numerical results 
for two test problems are discussed.  
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1. Introduction 

High order and high efficiency numerical computation for partial differential 
equations is very important in many scientific and engineering modeling 
problems. Compared to low order (second order) methods, high order methods 
can achieve satisfactory errors on much coarser grids and thus greatly curtail the 
computational cost [1]. Although the most extensively used methods to obtain 
high order accuracy are spectral methods [2] [3], these methods have some 
limitations. The most significant one is that the discretization of PDE by spectral 
methods leads to the solution of large systems of linear or non-linear equations 
involving full matrices [4]. In contrast, finite difference (and finite element) 
methods lead to systems with sparse matrices that can be handled by efficient 
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iterative methods to reduce the computation complexity and computation cost 
substantially [5]. Therefore, taking into account the computational efficiency, we 
focus on developing numerical algorithms based on high order finite difference 
methods here. Among various high order finite difference methods, high order 
compact (HOC) finite difference schemes are extremely noticeable. Compared 
to using straightforward central differences to obtain high order accuracy on a 
larger stencil which results the increase of bandwidth of the coefficient matrix 
and rises to a problem at the points close to the boundaries, the HOC schemes 
only use the center and adjacent points (i.e., a 9-points stencil is used in HOC 
schemes in 2D) which avoid extra special treatments for those points close to the 
boundaries and further improve computational efficiency. In the past two 
decades, HOC schemes have been well studied. Various fourth order compact 
(FOC) finite difference schemes have been developed for Poisson equations, 
convection-diffusion equations, and Navier-Stokes equations [6] [7] [8] [9]. 

Recently, there has been growing interest in developing sixth order compact 
finite difference schemes. By using Taylor series expansion, Soptz and Carey [10] 
developed a compact scheme which can achieve sixth order accuracy only when 
the derivatives of the source term can be determined analytically. Sutmann used 
Padé approximation discussed by Lele [11] on the Taylor expansion for the 
discretized Laplace operator to develop sixth order compact schemes [12]. 
Although the schemes need less grid points than the straightforward expansion 
approach, they are not fully compact since other grid points, since other grid 
points (besides the center and adjacent points) are involved.. Chu and Fan [13] 
proposed a three-point combined compact difference scheme, which can achieve 
sixth order accuracy for the inner grid points and fifth order accuracy for the 
boundary grid points. However, their scheme asks to compute the dependent 
variables and their derivatives together which results in a triple-tridiagonal 
system with high computational cost for solution. In addition, it has a stability 
problem that, for certain problems with a large meshsize, the computed solution 
may be oscillatory [14]. Although a finer meshsize may avoid numerical 
oscillations, the use of fine mesh is contradictory to the motivation of using 
higher order compact schemes. There are other sixth order finite difference 
schemes generated similarly [15] [16], but all of them share common weak 
points such as:  

1) derivatives of source term appeared in the right-hand side which require 
analytical forms or approximations for the derivatives with certain order 
accuracy;  

2) not complete compact schemes which may cause problems near to the 
boundaries;  

3) complicated resulting linear systems which increase the difficulty of 
choosing effective iterative solvers.  

Another category of sixth order compact approximations is based on 
Richardson extrapolation which is a technique introduced by Lewis Fry 
Richardson in the early of 20th century [17]. In numerical analysis, Richardson 
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extrapolation is a sequence acceleration method used to improve the rate of 
convergence of a sequence and is also the basis of Romberg integration [18]. 
Although assumptions of smoothness and monotone truncation error 
convergence in the mesh spacing are involved, using Richardson extrapolation 
to get higher order accurate solutions is more convenient than developing direct 
discretizations [19]. We can avoid complicated stencils, wider bandwidth 
matrices, special considerations for near-boundary points, additional stability 
analysis, etc. In addition, highly efficient solvers for the resulting large sparse 
linear system can be easily applied in such sixth order methods. Further more, 
Richardson extrapolation does not require any knowledge of the underlying 
methodology except the order of accuracy, which guarantees the minimal 
intervention to the existing computational tools [20]. Sun et al. [21] first 
proposed to use Richardson extrapolation on two fourth order solutions of 
different grained grids to compute sixth order solutions on the fine grid. Then, 
Wang [22] developed a multiscale multigrid (MSMG) method as a very efficient 
solver to compute sixth order solutions for the 2D Poisson equation with 
Richardson extrapolation. Since the extrapolated sixth order solution is only 
generated on the coarse grid, the key issue of using Richardson extrapolation in 
the sixth order solution computation is how to obtain sixth order solutions on 
the fine grid. The most direct way is to inject sixth order coarse grid solution 
into the fine grid, which allows a subset of fine grid points to get sixth order 
solutions. Then, other strategies are required to compute sixth order solutions 
for the rest of the fine grid points and finally make the entire fine grid solution 
reach sixth order accuracy. At present, there are three such kind of strategies 
worthy of analysis and discussion. They are: 1) operator based interpolation; 2) 
multiple coarse grid computation; 3) complete Richardson extrapolation. 

In this paper, our goal is to analyze and compare these Richardson 
extrapolation-based sixth order methods in computational accuracy. Therefore, 
we first describe these three Richardson extrapolation-based sixth order methods 
in Section 2. Then, we give a detailed analysis on their truncation errors in 
Section 3. After that, we use numerical experiments to verify our theoretical 
analysis in Section 4. At last, the conclusion and comments are given in Section 5.  

2. Sixth Order Compact Approximations with Richardson  
Extrapolation  

Consider a 2D Poisson equation in the form of  

( ) ( ), , , ,xx yyu u f x y x y+ = ∈Ω                   (1) 

where Ω  is a rectangular domain with suitable boundary conditions defined 
on ∂Ω . The solution u and the forcing term ( ),f x y  are assumed to be 
sufficiently smooth and have necessary continuous partial derivatives. Ω  can 
be discretized with uniform meshsize h in the x and y coordinate directions. The 
mesh points are ( ),i jx y  with ix ih=  and jy jh= . 

Assume we have pth order accurate approximate solutions 2
,
h

i ju  and ,
h
i ju  on 
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the 2hΩ  grid and hΩ  grid. A (p + 2)th order accurate solution 2
,
h

i ju  on the 

2hΩ  grid can be obtained by the general Richardson extrapolation, which can 
be written as [18]  

2
2 ,2 ,2

,

2
.

2 1

p h h
i j i jh

i j p

u u
u

−
=

−
                        (2) 

To get a sixth order solution, FOC schemes are first used to compute fourth 
order accurate solutions 2

,
h

i ju  and ,
h
i ju  on the coarse grid 2hΩ  and fine grid 

hΩ , respectively. Then the Richardson extrapolation formula as  
2

2 ,2 ,2
,

16
15

h h
i j i jh

i j

u u
u

−
=                        (3) 

is used to compute the sixth order accurate solution 2
,
h

i ju  on the coarse grid 

2hΩ  [22]. 

2.1. Richardson Extrapolation with Operator Based Interpolation  

One method using Richardson extrapolation to compute a sixth order accurate 
solution on the fine grid is to use an operator based interpolation scheme, 
proposed by Wang and Zhang [22], which iteratively updates the fine grid points 
in a specific sequence until some convergence condition is satisfied. This process 
is an iterative refinement procedure and similar to basic iterative methods [5]. 
The operator based interpolation for the 2D Poisson Equation (1) has the 
formula as [22]  

( )
( )

, , 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

1 4
20

.

h h h h h
i j i j i j i j i j i j

h h h h
i j i j i j i j

u F u u u u

u u u u

+ − + −

+ + + − − + − −

= − − + + +

− + + + 



           (4) 

2.2. Richardson Extrapolation with Multiple Coarse Grid  
Computation  

The second Richardson extrapolation sixth order computation is to use multiple 
coarse grids. For a 2D problem, the fine grid can be coarsened into four coarse 
grids, each of which is composed of one subset of fine grid points from: (even, 
even) fine grid points, (even, odd) fine grid points, (odd, even) fine grid points, 
and (odd, odd) fine grid points. The sixth order solution for (even, even) fine 
grid points comes from Richardson extrapolation. Dai et al. [23] proposed a 
direct sixth order computation for other three groups of fine grid points based 
on multiple coarse grids. First, tridiagonal systems are built on the X-odd grid 
view, which is constructed by (even, even) fine grid points (marked in red) and 
(odd, even) fine grid points (marked in black) as Figure 1, for computing the 
sixth order solution of (odd, even) fine grid points. Then, tridiagonal systems are 
built on the Y-odd grid view, which is constructed by (even, even) fine grid 
points (marked in red) and (even, odd) fine grid points (marked in blue) as 
Figure 2, for computing the sixth order solution of (even, odd) fine grid points. 
At last, for the (odd, odd) fine grid points (marked in green) surrounded by 
other fine grid points with sixth order solutions (marked in red) as Figure 3,  
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Figure 1. Illustration of the MCG updating strategy in 2D. (a) X-odd grid view: (even, 
even) + (odd, even) coarse grid; (b) Y-odd grid view: (even, even) + (even, odd) coarse 
grid; (c) The fine grid after X-odd and Y-odd grid view computation. 
 

 
Figure 2. Illustration of the interpolation strategy in 2D. (a) Rotated grid interpolation 
scheme; (b) Standard grid interpolation scheme. 
 

 
Figure 3. Comparison of the error and CPU for the Problem 1. 

 
only one step of operator interpolation is needed to reach the sixth order 
solution. Computation details can be found in [23]. 

2.3. Completed Richardson Extrapolation 

The third approach of using Richardson extrapolation for computing sixth order 
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solutions is Completed Richardson extrapolation. Completed Richardson 
extrapolation was developed by Roache and Knupp [19] and once used to 
produce a fourth order accurate solution on the fine grid. It did not use the 
extrapolated fourth order solution but rather the correction between the second 
order solution and the fourth order solution in the interpolation process. 
Similarly, by using the correction between the fourth order solution and the 
extrapolated sixth order solution rather than the improved solution itself, we 
could compute a sixth order solution on the entire fine grid. 

Assume ,i ju∗  be the exact solution at node ( ),i j  on the fine grid. With the 
definition of fourth order accurate solution, we have  

( )4 6
, , , ,h

i j i j i ju u A h O h∗ = + +                      (5) 

where As are the coefficients of the leading error term. 
For the (even, even) fine grid points, we could directly inject extrapolated 

coarse grid solution to get sixth order solution. The correction between the 
fourth order solution and the extrapolated sixth order solution, say ,

h
i jc , can be 

used to approximate the leading error term 4
,i jA h . By using Equation (3), we 

can deduce  

( )4 2
, , , 2, 2

1 , even, even
15

h h h
i j i j i j i jA h c u u i j= = − = =           (6) 

Then, we could use the correction (6) to approximate corrections for other 
three subsets of fine grid points, and thus compute sixth order solutions for 
them. 

For the (odd, odd) fine grid points, the rotated grid interpolation, as Figure 
2(a), is used to approximate the coefficient A of the leading error term  

( ) ( )2
, 1, 1 1, 1 1, 1 1, 1

1 ; odd, odd.
4i j i j i j i j i jA A A A A O h i j+ + + − − + − −= + + + + = =     (7) 

is used to obtain the formula for sixth order solution computation as  

, , , , , ;h h h
i j i j i ju u c i odd j odd= + = =                   (8) 

where  

( ), 1, 1 1, 1 1, 1 1, 1
1 .
4

h h h h h
i j i j i j i j i jc c c c c+ + + − − + − −= + + +  

For the (odd, even) and (even, odd) fine grid points, the standard grid 
interpolation, as Figure 2(b), is used to approximate the coefficient A of the 
leading error term  

( ) ( )2
, 1, 1, , 1 , 1

1 ,
4

odd, even; even, odd.

i j i j i j i j i jA A A A A O h

i j i j

+ − + −= + + + +

= = = =
             (9) 

is used to obtain the formula for sixth order solution computation as  

, , , , odd, even; even, odd;h h h
i j i j i ju u c i j i j= + = = = =           (10) 

where 
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( ), 1, 1, , 1 , 1
1 .
4

h h h h h
i j i j i j i j i jc c c c c+ − + −= + + +  

3. Truncation Error Analysis 

In this section, we will give an analysis of truncation errors to compare the 
accuracy of three Richardson extrapolation-based sixth order methods described 
in Section 2. All of these methods need to use FOC schemes to get the fourth 
order solutions on fine and coarse grids. We first analyze the truncation error of 
the FOC schemes. For more general applications, we will derive the truncation 
error for the FOC scheme with unequal meshsizes [8]. 

Denote x∆  and y∆  to be the meshsizes in the x and y coordinate 
directions, respectively. The standard second order central difference operators 
are  

1, , 1, , 1 , , 12 2
, ,2 2

2 2
,i j i j i j i j i j i j

x i j y i j

u u u u u u
u u

x y
δ δ+ − + −− + − +

= =
∆ ∆

 

By using Taylor series, we have  

( )4 6 8

2 4 6
2 8

, ,
12 360 20160x i j xx x x x

x x xu u u u u O xδ
∆ ∆ ∆

= + + + + ∆         (11) 

and  

( )4 6 8

2 4 6
2 8

, .
12 360 20160y i j yy y y y

y y yu u u u u O yδ
∆ ∆ ∆

= + + + + ∆         (12) 

From Equations (11) and (12) we can discretize Equation (1) at the grid point 

,i jx  as  

( ) ( )
( ) ( )

4 4 6 6

8 8

2 2 2 2 4 4
, , ,

6 6 8

1 1
12 360

1 .
20160

x i j y i j i j x y x y

x y

u u f x u y u x u y u

x u y u O

δ δ+ = + ∆ + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆
   (13) 

By taking two times partial derivatives of x and y on both sides of Equation (1), 
respectively, we have  

4 ,xx yyxxx
u f u= −                        (14) 

and  

4 .xx xxyyy
u f u= −                        (15) 

Using central difference operators and Taylor series in Equations (14) and (15) 
gives  

( ) ( )

( )

4 4

6 4 2 4 4

6 2 2 4 2 6

2
2 2 2 2

, , 1 , , 12,

4 2 4
2

2

4 2 4
2 6

1 2
12

1
360 12 12

,
360 12 360

x i j x i j x i j x i jx xi j

x x y x y

x y x y x y

xu f u u u f
y

x x yf y u u
y

x y yy u u u O

δ δ δ δ+ −
∆

= − − + −
∆

  ∆ ∆ ∆
− − − ∆ +  ∆  

∆ ∆ ∆
− ∆ + + + ∆



      (16) 
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and  

( ) ( )

( )

4 4

6 2 4 4 4

2 6 4 2 6 2

2
2 2 2 2

, 1, , 1,2,

4 2 4
2

2

4 2 4
2 6

1 2
12

1
360 12 12

.
360 12 360

y i j y i j y i j y i jy yi j

y x y x y

x y x y x y

yu f u u u f
x

y y xf x u u
x

y x xx u u u O

δ δ δ δ+ −
∆

= − − + −
∆

  ∆ ∆ ∆
− − − ∆ +  ∆  

∆ ∆ ∆
− ∆ + + + ∆



     (17) 

By continuously taking partial derivatives of x on both sides of Equation (14), 
we get  

4 6 4 2x x x y
f u u= +                       (18) 

6 8 6 2 .
x x x y

f u u= +                       (19) 

Similarly, by continuously taking partial derivatives of y on both sides of 
Equation (15), we get  

4 6 2 4y y x y
f u u= +                       (20) 

6 8 2 6 .
y y x y

f u u= +                       (21) 

Substituting Equations (18) and (19) in Equation (16) gives  

( ) ( )

( )

4 6 2 4

4 4 8 2 6

2 2
2 2 2 2

, , 1 , , 12,

2 2 4 4
6

1 2
12 12

.
144 360 360

x i j x i j x i j x i jx x x yi j

x y x x y

x yu f u u u u u
y

x y x yu u u O

δ δ δ δ+ −
∆ ∆

= − − + − +
∆

∆ ∆ ∆ ∆
+ − + + ∆

  (22) 

And, substituting Equations (20) and (21) in Equation (17) gives  

( ) ( )

( )

4 6 4 2

4 4 8 6 2

2 2
2 2 2 2

, 1, , 1,2,

2 2 4 4
6

1 2
12 12

.
144 360 360

y i j y i j y i j y i jy y x yi j

x y y x y

y xu f u u u u u
x

x y y xu u u O

δ δ δ δ+ −
∆ ∆

= − − + − +
∆

∆ ∆ ∆ ∆
+ − + + ∆

  (23) 

Then, we use Equations (22) and (23) to replace the 4x
u  and 4y

u  terms in 
Equation (13) as  

( )

( )

( )

( ) ( ) ( )

2 2 2 2 2 2
, , , , ,

2
2 2 2

, 1 , , 12

2
2 2 2

1, , 1,2

8
4 6, ,

1
12

1 2
12

2

,

x i j y i j i j x i j y i j

x i j x i j x i j

y i j y i j y i j

i j i j

u u f x f y f

x u u u
y

y u u u
x

O

δ δ δ δ

δ δ δ

δ δ δ

τ τ

+ −

+ −

+ = + ∆ + ∆

 ∆
− − + ∆

∆
+ − + ∆ 

+ + + ∆

       (24) 

where 

( ) ( ) ( )4 2 2 4 6 6
2 2 4 4

4 ,

1 1 ,
144 240i j x y x y x y

u u x y u x u yτ = + ∆ ∆ − ∆ + ∆  
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( ) ( ) ( )
( )

4 4 2 6 6 2

8 8

4 2 2 4 2 4 4 2
6 ,

6 6

1 1
1728 4320

11 .
60480

i j x y x y x y

x y

x y x y u x y u x y u

x u y u

τ = ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆

− ∆ + ∆
 

Let us use the second order central difference operators in Equation (24), 

multiply 26 x∆  on both sides, and denote the mesh aspect ratio x
y

λ
∆

=
∆

, we can 

get a general FOC scheme like the one presented in [8] as  

( ) ( )
( )

( )

1 1, 1 1, 1 1, 1 1, 1 2 , 1 , 1

3 1, 1, 4 ,

2

, 1, 1, , 1 , 18 ,
2

i j i j i j i j i j i j

i j i j i j

i j i j i j i j i j

m u u u u m u u

m u u m u

x f f f f f

+ + + − − + − − + −

+ −

+ − + −

+ + + + +

+ + −

∆
= + + + +

       (25) 

where the coefficients are  

( ) ( )2 2 2 2
1 2 3 41 2, 5 1, 5 , 10 1 .m m m mλ λ λ λ= + = − = − = +  

The fourth order truncation error of the FOC scheme (25) is  

( ) 6

4 2 2 4 6
4

4 2 4

1 1 .
4024

y
x y x y x

u
u u u xτ

λ λ

   = + − + ∆      
            (26) 

And, the sixth order truncation error of the FOC scheme (25) is  

2 6 6 2 8

4 4 8
6

6 2 4 4 2 6

1 1 1 1 11 .
288 720 10080

x y x y y
x y x

u u u
u u xτ

λ λ λ λ λ

          = + + + − + ∆            
  (27) 

In a special case with x y h∆ = ∆ = , the FOC scheme has the form as  

( )

( )
1, 1 1, 1 1, 1 1, 1 , 1 , 1 1, 1, ,

2

, 1, 1, , 1 , 1

4 20

8 .
2

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j

u u u u u u u u u

h f f f f f

+ + + − − + − − + − + −

+ − + −

+ + + + + + + −

= + + + +
  (28) 

The fourth order and sixth order truncation errors of the FOC scheme (28) 
are  

( ) ( )4 2 2 4 6 6
4

FOC4
1 1 ,
24 40x y x y x y

u u u u hτ  = + − + 
 

            (29) 

( ) ( )4 4 2 6 6 2 8 8
6

FOC6
1 1 11 .

144 720 10080x y x y x y x y
u u u u u hτ  = + + − + 

 
      (30) 

Now we can take a look at the truncation error after applying Richardson 
extrapolation. From the definition of the fourth order accurate solutions on the 
fine and coarse grids, we have  

4
FOC4 FOC6 ,h hu u τ τ∗ = + +                      (31) 

4
2 2 FOC4 FOC616 64 .h hu u τ τ∗ = + +                    (32) 

Using the Richardson extrapolation Formula (3) gives  

6
2 2 FOC6

16 .
5h hu u τ∗ = −                       (33) 
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Thus, the sixth order truncation error after applying Richardson extrapolation 
has the form as  

Extrapo FOC6
16 .
5

τ τ= −                        (34) 

For all Richardson extrapolation-based sixth order compact approximations, 
the truncation error of (even, even) fine grid points is Extrapoτ  because the 
corresponding sixth order solution is injected from the extrapolated solution of 
the standard coarse grid. For other three subsets of fine grid points, three 
computational strategies (operator based interpolation, multiple coarse grid 
computation, and completed Richardson extrapolation) could be used to obtain 
sixth order solutions. In the following part, the truncation error analysis for 
these methods are given respectively. 

3.1. Truncation Error of Operator Based Interpolation 

The operator based interpolation scheme is from the 9-point FOC scheme (28), 
which can be iteratively used to approach sixth order solutions for (odd, odd), 
(odd, even) and (even, odd) fine grid points. It generates a sixth order error in 
the form as  

( ) ( )4 2 2 4 6 6
2 6

FOC4
1 1 .
24 40op x y x y x y

h u u u u hτ τ  = = + − + 
 

         (35) 

The operator based interpolation Equation (4) can be written as  

( )
( )

, ,

, 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

1 4
20

.

i j i j op

i j i j i j i j i j

i j i j i j i j op

u u

F u u u u

u u u u

τ

τ

∗

+ − + −

+ + + − − + − −

= +

= − − + + +

− + + + +



           (36) 

For any linear equation Au F= , there is a corresponding residual equation 
Ae r= , where e is the error and r is the residual. According to Equation (36), we 

could get the operator based interpolation on error as  

( )
( )

,

, 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

0

1 4
20

.

i j op

i j i j i j i j i j

i j i j i j i j op

e

r e e e e

e e e e

τ

τ

+ − + −

+ + + − − + − −

= +

= − − + + +

− + + + +



            (37) 

When the iterative process of using operator based interpolation converges, 
the residual r tends to 0. Then Equation (37) becomes to  

( )
( )

1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

10 4
20

.

i j i j i j i j

i j i j i j i j op

e e e e

e e e e τ

+ − + −

+ + + − − + − −

= + + +

+ + + + +

            (38) 

At this time, the main component of the error is the truncation error. 
Assume the truncation errors on (odd, odd), (odd, even) and (even, odd) fine 

grid points as opα , opβ  and opγ , respectively. A system of equations on the 
truncation error for three subsets of fine grid points is generated from Equation 
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(38) as  

( ) ( )
( ) ( )
( ) ( )

Extrapo

Extrapo Extrapo

Extrapo Extrapo

4 4 4 20 , odd, odd;

4 4 4 20 , odd, even;

4 4 4 20 , even, odd.

op op op op op op

op op op op op

op op op op op

i j

i j

i j

τ β β β β α τ

β τ τ α α β τ

γ α α τ τ γ τ

 × + × + + × + − = − = =
 × + × + + × + − = − = =


× + × + + × + − = − = =

 

(39) 

From Equation (39), we get  

Extrapo

Extrapo

Extrapo

1 , odd, odd;
6
7 , odd, even;
48
7 , even, odd.
48

op op

op op

op op

i j

i j

i j

α τ τ

β τ τ

γ τ τ

 = + = =

 = + = =



= + = =


              (40) 

3.2. Truncation Error of Multiple Coarse Grid Computation 

After applying Richardson extrapolation to get sixth order solutions for (even, 
even) fine grid points, in the multiple coarse grid computation, X-odd grid view 
and Y-odd grid view are constructed to compute sixth order solutions for (odd, 
even) and (even, odd) fine grid points, respectively [23]. The X-odd grid view 
composed by (even, even) and (odd, even) indexed fine grid points is a view of 
unequal meshsize grid with meshsizes h and 2h in the x and y coordinate 
directions, respectively. The Y-odd grid view composed by (even, even) and 
(even, odd) indexed fine grid points is a view of unequal meshsize grid with 
meshsizes 2h and h in the x and y coordinate directions, respectively. The sixth 
order computations on the X-odd grid view and the Y-odd grid view by using 
tridiagonal solvers lead to sixth order truncation errors -oddxτ  and -oddyτ , 
respectively. By using the general fourth order truncation error Equation (26) 
and setting corresponding mesh aspect ratio λ , we have explicit forms of 

-oddxτ  and -oddyτ  as  

( ) ( )4 2 2 4 6 6
6

-odd -odd
1 1 14 16 , ;
24 40 2x xx y x y x y

u u u u hτ λ = × + − + × = 
 

    (41) 

( ) ( )4 2 2 4 6 6
6

-odd -odd
1 14 4 16 , 2.
24 40y yx y x y x y

u u u u hτ λ = × × + − × + = 
 

   (42) 

As for the computation of (odd, even) fine grid points on the X-odd grid view  

with the mesh aspect ratio -odd
1
2xλ = , the coefficients in Equation (25) are set as  

1 2 3 4
5 1 19 50, , , .
8 4 4 4

m m m m= = = =  

Assume the truncation error of (odd, even) fine grid points to be mcgα , an 
equation upon the error of X-odd grid view is generated from Equation (25) 
with the above coefficients as  

( ) ( )Extrapo Extrapo Extrapo -odd
5 1 19 504 ,
8 4 4 4mcg mcg xτ α α τ τ α τ× + × + + × + − = −  (43) 

https://doi.org/10.4236/jamp.2018.66097


R. X. Dai, P. P. Lin 
 

 

DOI: 10.4236/jamp.2018.66097 1150 Journal of Applied Mathematics and Physics 

 

which gives  

-odd
Extrapo .

12
x

mcg
τ

α τ= +                       (44) 

As for the computation of (even, odd) fine grid points on the Y-odd grid view 
with the mesh aspect ratio -odd 2yλ = , the coefficients in Equation (25) are set as  

1 2 3 4
5 , 19, 1, 50.
2

m m m m= = = =  

Assume the truncation error of (even, odd) fine grid points to be mcgβ , an 
equation upon the error of Y-odd grid view is generated from Equation (25) 
with the above coefficients as  

( ) ( )Extrapo Extrapo Extrapo -odd
5 4 19 1 50 ,
2 mcg mcg mcg yτ τ τ β β β τ× + × + + × + − = −   (45) 

which gives  

-odd
Extrapo .

48
y

mcg

τ
β τ= +                     (46) 

The update for (odd, odd) fine grid points uses the operator based 
interpolation Equation (4) and updated sixth order solutions of (even, even), 
(odd, even) and (even, odd) fine grid points. Assume the truncation error of 
(odd, odd) fine grid points to be mcgγ , an equation upon the error of the fine 
grid points is generated by Equation (36) as  

( ) ( )Extrapo4 4 4 20 ,mcg mcg mcg mcg mcg opτ α α β β γ τ+ × + + × + − = −       (47) 

which gives 

-odd-odd
Extrapo .

30 120 20
y opx

mcg

τ ττ
γ τ= + + +                 (48) 

3.3. Truncation Error of Completed Richardson Extrapolation 

The completed Richardson extrapolation uses two kinds of interpolation on the 
correction Equation (6) of (even, even) fine grid points to approximate 
corrections for other fine grid points. As we all know, interpolation brings error. 
Next, we will analyze how much of the error. 

The A coefficients in Equations (7) and (9) can be viewed as a function of u 
which has the form of ( ) 4

FOC4A u hτ= . Based on the Taylor series expansion, 
the ( )2O h  term in Equation (7) has an explicit form as the  

( ) ( )2 4 2 42
FOC4 FOC4

2 22

h hh
x y

τ τ ∂ ∂
 +
 ∂ ∂ 

; while the ( )2O h  term in Equation (9) has 

an explicit form as 
( ) ( )2 4 2 42

FOC4 FOC4
2 24

h hh
x y

τ τ ∂ ∂
 +
 ∂ ∂ 

. 

The second order truncation error for Equation (7), which uses rotated grid 
interpolation to approximate (odd, odd) fine grid points, has the form as  

( ) ( )4 4 6 2 2 6 8 8
2

RotateInter
1 1 1 ;
24 120 80x y x y x y x y

u u u u u hτ  = + + − + 
 

      (49) 
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while the second order truncation error for Equation (9), which uses standard 
grid interpolation to approximate (odd, even) and (even, odd) fine grid points, 
has the form as  

( ) ( )4 4 6 2 2 6 8 8
2

StandInter
1 1 1 .
48 240 160x y x y x y x y

u u u u u hτ  = + + − + 
 

     (50) 

We find that RotateInter StandInter2τ τ= . 
Consider (odd, odd) fine grid points at first. Equation (7) can be re-written as  

( ), 1, 1 1, 1 1, 1 1, 1 RotateInter
1 , odd, odd.
4i j i j i j i j i jA A A A A i jτ+ + + − − + − −= + + + + = =  (51) 

The sixth order computation for the (odd, odd) fine grid points is only related 
to (even, even) fine grid points. For the (even, even) fine grid points, by using 
definition of fourth order solutions obtained from the FOC scheme, we have  

4
even,even even,even even,even FOC64

1 .A u u
h

τ∗ = − −              (52) 

After injecting the extrapolated coarse grid solution into the fine grid, we have  
6

even,even even,even Extrapo.u u τ∗ = +                  (53) 

Substituting Equation (53) into Equation (52) gives 

6 4
even,even even,even even,even FOC6 Extrapo4

even,even FOC6 Extrapo4

1

1 .

A u u
h

c
h

τ τ

τ τ

 = − − + 

 = − + 

        (54) 

By using Equations (8), (51) and (54), we get the truncation error of the (odd, 
odd) fine grid points as  

( ) ( )

( ) ( )

6
CompEx1 , ,

4 4 4
, , FOC6 , 1, 1 1, 1 1, 1 1, 1

4 4 4 4
, , FOC6 , 1, 1 1, 1 1, 1 1, 1

FOC6 Extrapo

4
RotateInter Extrapo

1
4
1
4

,

i j i j

i j i j i j i j i j i j i j

i j i j i j i j i j i j i j

u u

u A h u c c c c

u A h u A A A A h

h

τ

τ

τ

τ τ

τ τ

∗

+ + + − − + − −

+ + + − − + − −

= −

 = + + − + + + + 
 
= + + − + + + +



+ − 


= + odd, odd.i j= =

 (55) 

Then consider (odd, even) and (even, odd) fine grid points. Equation (9) can 
be re-written as  

( ), 1, 1, , 1 , 1 StandInter
1 ,
4

odd, even; even, odd.

i j i j i j i j i jA A A A A

i j i j

τ+ − + −= + + + +

= = = =
          (56) 

The sixth order computation for the (odd, even) and (even, odd) fine grid 
points are related to both (even, even) and (odd, odd) fine grid points. For the 
updated (odd, odd) fine grid points, we have  

6 6 4
odd,odd odd,odd CompEx1 odd,odd RotateInter Extrapo.u u u hτ τ τ∗ = + = + +         (57) 
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By using the definition of fourth order solutions obtained from the FOC 
scheme, we have  

4
odd,odd odd,odd odd,odd FOC64

1 .A u u
h

τ∗ = − −                 (58) 

Substituting Equation (57) into Equation (58) gives  

6 4 4
odd,odd odd,odd odd,odd FOC6 RotateInter Extrapo4

4
odd,odd FOC6 RotateInter Extrapo4

1

1 .

A u u h
h

c h
h

τ τ τ

τ τ τ

 = − − + + 

 = − + + 

       (59) 

By using Equations (10), (54), (56) and (59), we get the truncation errors of 
the (even, odd) and (odd, even) fine grid points as  

( ) ( )

( ) ( )

6
CompEx2 , ,

4 4 4
, , FOC6 , 1, 1, , 1 , 1

4 4 4 4
, , FOC6 , 1, 1, , 1 , 1

4
FOC6 RotateInter Extrapo

4
StandInter Rotate

1
4
1
4

1
2

1
2

i j i j

i j i j i j i j i j i j i j

i j i j i j i j i j i j i j

u u

u A h u c c c c

u A h u A A A A h

h

h

τ

τ

τ

τ τ τ

τ τ

∗

+ − + −

+ − + −

= −

 = + + − + + + + 
 
= + + − + + + +


+ − − 


= + 4
Inter Extrapo

4
RotateInter Extrapo , odd, even; even, odd.

h

h i j i j

τ

τ τ

+

= + = = = =

    (60) 

We find that the truncation errors of (odd, odd), (odd, even) and (even, odd) 
fine grid points have the same form as ( 4

RotateInter Extrapohτ τ+ ), which is larger than 
the truncation error of (even, even) fine grid points ( Extrapoτ ) generated from 
Richardson extrapolation as we expect. It is because another interpolation is 
involved, i.e., Equation (55) or Equation (60). 

In summary, these three Richardson extrapolation-based methods are able to 
compute the sixth order accurate solution on the entire fine grid. For (even, 
even) fine grid points, all methods use Richardson extrapolation to get the sixth 
order solution with truncation error Extrapoτ . For other three subsets of fine grid 
points, different computational strategies are used to obtain sixth order 
solutions, which add errors of different magnitude on the truncation error 

Extrapoτ . Table 1 lists the truncation errors of the three different Richardson 
extrapolation-based sixth order compact computations, respectively. Since the 
error expressions involve various high-order partial derivatives of u, it is hard to 
conclude a quantitative relationship. By comparing the coefficients of common 
items, we predict that the completed Richardson extrapolation method should 
be more accurate than the other two methods. We think the operator based 
interpolation method has comparable accuracy to the multiple coarse grid 
computation method. We cannot estimate which one is more accurate than the 
other because there exists uncertainty of high order partial differential terms in 
the explicit truncation errors and it is hard to determine the magnitude and sign 
of them. 
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Table 1. Truncation error comparison. 

Richardson extrapolation with operator based interpolation 

(even, even) points Extrapoτ  

(odd, even) points ( ) ( )4 2 2 4 6 6
6

Extrapo

7 1 1
48 24 40x y x y x y

u u u u hτ  + + − +  
 

(even, odd) points ( ) ( )4 2 2 4 6 6
6

Extrapo

7 1 1
48 24 40x y x y x y

u u u u hτ  + + − +  
 

(odd, odd) points ( ) ( )4 2 2 4 6 6
6

Extrapo

8 1 1
48 24 40x y x y x y

u u u u hτ  + + − +  
 

Richardson extrapolation with multiple coarse grid computation 

(even, even) points Extrapoτ  

(odd, even) points ( ) ( )4 2 2 4 6 6
6

Extrapo

1 1 14 16
12 24 40x y x y x y

u u u u hτ  + × + − + × 
 

 

(even, odd) points ( ) ( )4 2 2 4 6 6
6

Extrapo

1 1 14 16
12 24 40x y x y x y

u u u u hτ  + × + − × + 
 

 

(odd, odd) points 

( ) ( )

( ) ( )

( ) ( )

4 2 2 4 6 6

4 2 2 4 6 6

4 2 2 4 6 6

Extrapo

6

1 1 14 16
30 24 40

1 1 14 16
30 24 40
1 1 1
20 24 40

x y x y x y

x y x y x y

x y x y x y

u u u u

u u u u

u u u u h

τ   + × + − + ×   
 + × + − × +  

 + + − +   

 

Completed Richardson extrapolation 

(even, even) points Extrapoτ  

(odd, even) points ( ) ( )4 4 6 2 2 6 8 8
6

Extrapo

1 1 1
24 120 120x y x y x y x y

u u u u u hτ  + + + − + 
 

 

(even, odd) points ( ) ( )4 4 6 2 2 6 8 8
6

Extrapo

1 1 1
24 120 120x y x y x y x y

u u u u u hτ  + + + − + 
 

 

(odd, odd) points ( ) ( )4 4 6 2 2 6 8 8
6

Extrapo

1 1 1
24 120 120x y x y x y x y

u u u u u hτ  + + + − + 
 

 

4. Numerical Results 

We tested three Richardson extrapolation-based sixth order methods on two 2D 
Poisson equations. The 9-point FOC scheme (28) was used to get fourth order 
solutions on different scale grid levels. 

One merit of using Richardson extrapolation for sixth order computation lies 
in that we can easily choose highly efficient solvers for the resulting large sparse 
linear systems. In our experiments, we chose a multiscale multigrid (MSMG) 
computational framework [22], which uses multigrid methods to speed up the 
linear system solution, at the same time, involves a multiscale strategy to obtain 
higher order accurate solution by extrapolating the computed lower order 
solutions. The standard V(1, 1)-cycle is selected. The initial guess for the V-cycle 

https://doi.org/10.4236/jamp.2018.66097


R. X. Dai, P. P. Lin 
 

 

DOI: 10.4236/jamp.2018.66097 1154 Journal of Applied Mathematics and Physics 

 

on 4hΩ  was the zero vector. The V-cycle on 2hΩ  and hΩ  stopped when the 
L2-norm of the difference of the successive solutions was reduced by a factor of 
1010. The stopping criteria for the iterative operator based interpolation and 
Gauss-Seidel procedure was 10−10. All reported errors were the maximum 
absolute errors over the discrete grid of the finest level. 

The codes were written in Fortran 77 programming language and run on a PC, 
which has Intel Core i7-4770 with 3.40 GHz and 16 GB RAM. 

4.1. Test Problems 

Problem 1. 

( ) [ ] [ ]
2 2

2 2

πsin ,   , 0, 0, ,u u y x y b
bx y

α λ∂ ∂  − − = ∈Ω = × ∂ ∂  
 

where the boundary conditions are 

( ) ( ) ( ) ( )0, , ,0 , 0.u y u y u x u x bλ= = = =  

The parameters are chosen as  

7 6 7 2 2 3 1π , 10 m, 2π 10 m, 0.3 10 m s , 0.6 10 m s .F b F R
Rb

α λ − − − −= = = × = × ⋅ = × ⋅  

The analytical solution is  
2 ππsin e 1 .

π

x
bb yu

b
α

    = − −         
 

Problem 2. 

( ) ( ) ( ) [ ] [ ]
2 2

2
2 2 2π sin π cos π ,  , 0, 4 0,1 ,u u x y x y

x y
∂ ∂

− − = ∈Ω = ×
∂ ∂

 

which has the Dirichlet boundary condition. 
The analytical solution is  

( ) ( ) ( ), sin π cos π .u x y x y=  

4.2. Accuracy and Efficiency Comparison 

We refined the grid from 32N =  to 256N =  for both test problems. For 
convenience, we used three abbreviations to represent three Richardson 
extrapolation-based sixth order methods to be compared. “Op-Six” is short for 
the sixth order method with Richardson extrapolation and operator based 
interpolation; “MCG-Six” means the sixth order method with Richardson 
extrapolation and multiple coarse grid computation; “CR-Six” denotes the sixth 
order method with completed Richardson extrapolation. 

For both test problems, we compare the accuracy and efficiency of three 
methods by computing maximum errors and accuracy order, and recording the 
CPU time in seconds. The results of Problem 1 are shown in Table 2 and Table 
3 and Figure 3. The results of Problem 2 are shown in Table 4 and Table 5 and 
Figure 4. 
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Figure 4. Comparison of the error and CPU for the Problem 2. 

 
Table 2. Accuracy comparison results for Problem 1. 

N 
Op-Six MCG-Six CR-Six 

Error Order Error Order Error Order 

32 2.824e−8 - 6.237e−8 - 1.861e−8 - 

64 4.296e−10 6.04 9.881e−10 5.98 2.756e−10 6.08 

128 6.785e−12 5.98 1.716e−11 5.85 5.016e−12 5.78 

256 1.062e−13 6.00 2.429e−13 6.14 6.833e−14 6.20 

 
Table 3. Efficiency comparison results for Problem 1. 

N 
Op-Six 
CPU 

MCG-Six 
CPU 

CR-Six 
CPU 

32 0.0156 0.0156 0.0156 
64 0.109 0.0936 0.0936 
128 0.172 0.125 0.140 
256 0.920 0.764 0.781 

 
Table 4. Accuracy comparison results for Problem 2. 

N Op-Six MCG-Six CR-Six 
 Error Order Error Order Error Order 

32 2.498e−6 - 2.278e−6 - 8.927e−7 - 
64 4.582e−8 5.77 3.624e−8 5.97 1.362e−8 6.03 
128 7.663e−10 5.90 5.710e−10 5.99 2.105e−10 6.02 
256 1.237e−11 5.95 8.962e−12 5.99 3.271e−12 6.01 

 
Table 5. Efficiency comparison results for Problem 2. 

N 
Op-Six 
CPU 

MCG-Six 
CPU 

CR-Six 
CPU 

32 0.0312 0 0156 0.0156 
64 0.0936 0.0468 0.0468 
128 0.250 0.140 0.172 
256 1.248 0.780 0.796 
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As for the accuracy, it is clear that all the methods are able to obtain 
approximate solutions with sixth order accuracy. After comparing the errors of 
the three methods, we found that, for both test problmes, the solutions solved by 
the CR-Six method were more accurate than those solved by the Op-Six method 
and the MCG-Six method. This observation is consistent with our analysis in 
Section 3. Meanwhile, we notice that the Op-Six computed a little bit more 
accurate solutions than the MCG-Six method for Problem 1 yet reversed for 
Problem 2, which shows that there is no fixed conclusion about the accuracy 
comparison between them. 

As for the efficiency, we found that the MCG-Six method and the CR-Six 
method required less CPU cost than the Op-Six method. The reason is that the 
Op-Six method involves an iterative refinement procedure with low convergence 
rate. There is no evident difference between the MCG-Six method and the 
CR-Six method on CPU cost. 

Although the CR-Six method performed better than the other two methods on 
accuracy and efficiency for the above two test problems, we need to point out 
that this advantage is for “simple” problems with “good” conditions. Here the 
“simple” and “good” mean those problems which are not hard to solve (e.g., 
small Reynolds number) and have smooth solutions, forcing functions and 
coefficients in the domain. Since the success of CR-Six method relies on the 
effectiveness of interpolation of the corrections, sufficiently smooth are 
necessary to guarantee an effective interpolation. We think the CR-Six method 
may ask for more restrictions on equations than the other two methods for the 
sixth order approximations on the finest grid. The robustness analysis and 
numerical experiments on various “difficult” problems is worth exploring in the 
future. 

5. Concluding Remarks 

Compared to the sixth order compact schemes derived by Hermitian polynomial, 
the Richardson extrapolation-based sixth order compact approximations have 
many obvious advantages, such as simple stencils, complete compact, easy 
implementation, suitable for high efficient linear system solvers, etc. We studied 
three Richardson extrapolation-based sixth order compact computation 
methods and analyzed the truncation errors of them respectively. All three 
methods were able to compute the sixth order accurate solution on the fine grid 
if Richardson extrapolation is applied to the fourth order solutions on fine and 
coarse grids successfully in the domain. From the truncation error analysis, we 
got a possible qualitative relationship on the accuracy among these sixth order 
methods, although it is not completely accurate. We also discussed the multigrid 
method which is suitable for the Richardson extrapolation-based sixth order 
methods. 

Two 2D Poisson equations are tested in the numerical part. We compared the 
accuracy and efficiency among three sixth order methods. The test results on 
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accuracy are generally consistent with the observation from the theoretical 
analysis. The completed Richardson extrapolation method usually performs 
better in accuracy than the operator based interpolation with Richardson 
extrapolation method and the multiple coarse grid computation with Richardson 
extrapolation method. As expected, the efficiency of the operator based 
interpolation with Richardson extrapolation is lower than the other two sixth 
order methods. 

The exploration of using Richardson extrapolation on sixth order compact 
computation for high dimensional problems has already begun. In fact, the 
operator based interpolation with Richardson extrapolation method and the 
multiple coarse grid computation with Richardson extrapolation method have 
been used to solve 3D convection-diffusion equations and show exciting 
performance [24]. The error analysis to 3D cases could be conducted and 
reported in the future. 

Since Richardson extrapolation-based sixth order methods require two 
comparable uniform grids (i.e., fine grid with meshsize h and coarse grid with 
meshsize 2h), the application of this technique to more practical problems in 
irregular domain with various boundary conditions (i.e., Dirichlet, Neumann, or 
mixed conditions) has limitations and is not straight forward. One undergoing 
study is to use the proposed methodology with finite difference ghost-cell 
technique to obtain high accuracy high efficiency solutions for Poisson equation 
with mixed boundary conditions. The finite difference ghost-cell technique [25] 
keeps unchanged the symmetry of the stencil and uniform meshsize through 
adding extra points (ghost points) outside the domain. Another thing we want to 
point out is Richardson extrapolation can also be used to improve the accuracy of 
solutions obtained from finite element methods [26], although we used finite 
difference methods to illustrate the idea in this paper. And, compared to high 
order spectral methods which ask for simple/regular geometry of the problem 
domain or special strategies (i.e., spectral elements, domain decomposition, and 
etc.) for complex/irregular domains, using finite element methods to provide 
basic solutions and Richardson extrapolation to improve them would be a more 
flexible way to handle complex geometries appearing in many engineering 
problems. 
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