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Abstract

The modified Zakharov-Kuznetsov equation with the initial value problem is
studied numerically by means of homotopy perturbation method. The analyt-
ical approximate solutions of the modified Zakharov-Kuznetsov equation are
obtained. Choosing the form of the initial value, the single solitary wave, two
solitary waves and rational solutions are presented, some of which are shown
by the plots.
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1. Introduction

Partial differential equations widely describe many phenomena in the world.
Although many mathematicians and physicists presented various methods to
find the explicit solutions of the partial differential equations, it is a difficult and
important task to build the solutions of initial and boundary value problem.
Recently, homotopy perturbation method (HPM) has been applied into many
problems [1]-[10] and tested to be an effective tool. Here, the initial value
problem of the modified Zakharov-Kuznetsov (mZK) equation is studied by
using HPM.

The initial value problem of mZK equation is as following:
u, + uzux fu tu, = 0,

(1)
u(x,y,O) =f(x,y).
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Many authors have studied the mZK equation [11]-[16]. The authors in Ref.
[11] applied the asymptotic approach into mZK equation and found for the
mZK equation that critical collapse in two dimensions is accompanied by
damping both the momentum and energy of the perturbed solitary waves and
that slows down the rate of the singularity formation. Ref. [12] considered the
two-dimensional solitary wave (lump) interactions and the formation of
singularities in mZK equation. Ref. [13] obtained a class of approximate periodic
solutions for mZK equation by using the homotopy analysis method. The
authors in Ref. [14] obtained many solitary waves and periodic waves and kink
waves of mZK equation by using the theory of bifurcations of dynamical systems.
Uisng the extended tanh method, Ref. [15] got new travelling wave solutions
with solitons and periodic structures. In Ref. [16], the first integral method was
used to construct travelling wave solutions of mZK equation. Peng [17]
developed the extended mapping method to study the traveling wave solution
for the mZK equation. Ref. [18] applied the exp-function method to construct
generalized solitary and periodic solutions of mZK equation. Authors in Ref. [19]
applied the improved (G'/G)-expansion method to construct abundant new
exact traveling wave solutions of mZK equation. Ref. [20] employed the complex
method to obtain the exact solutions of mZK equation.

This paper is arranged as follows: In Section 2, by using HPM, we obtain the
analytical approximate solution of Equation (1). By taking the form of the initial
value, some exact solutions of mZK equation are obtained in Section 3. And
some pictures are given to show the structure of the obtained solutions. Finally,

some conclusions and discussions are given in Section 4.

2. The Homotopy Perturbation Method to mZK Equation

In order to obtain the analytical approximate solution of Equation (1), we

consider the one-parameter family of Equation (1) as follows
(”_”o), +p(142u)C +u,, +uxyy)=0, (2)

where the parameter p €[0,1] and u, = f(x,»).
If p=0,wemeet u=u,.
If p=1, we come back to the original problem (1). Let the solution u (x, y,t)

of the system (2) be written in the form of an infinite series,

0

u(x,y,t)zZul.(x,y,t)pf. (3)

i=0

Then u(x,y,t)=2"" u,(x,y.t) isaseries solution of Equation (1).
Substituting Equation (3) into Equation (2), and equating the coefficients of
p,p°,--+, we have

2
ul,t + uO uO,x + uO,xxx + uO,xyy = 07 (4)
2
u2,t + u() ul,x + 2uOuluo‘x + ul,xxx + ul,xyy = 0’ (5)
2 2
Uy, +ugly gy o+ 2ugu |+ 22Uy i, Uy =0, (6)
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and so on. Solving Equation (4), (5) and (6), one can obtain

_ 2
u] (-xa y’t) - _(uouo,x + uO,xxx + uO,xyy )t’

2 2
+ 2u, Uy gy T 12u0’xu0m

1 3.2 4 2
u2 (-xs YV, t) = 5(41”0”0,)( + uOuO,xx + ZuOuO,XXXX

2 2
+ 6u0u0,xx + IOuOMOquO!m + 2u0’xu0,yy + 8u0’xu0,yuoqu

2 2
+ 4u0u0qu + 6u0u0’xu0,xyy + 2u0’yu0’xx + 4u0u0,yu0’my

2
+ 2”0”0,Xxu0,yy + uO,JLDOOCX + 2”0,mxyy + uO,xxyyyy )t b

l 2 2
u, (x, ¥, t) = _6(30”0”0,w”0,mx +66u, 1y, + TOUGM, Mg g

2 2 2
+92u, Up Mg oMo r T 84u, Uy Uy oMo + 46u, Uy U Uy

2 2 4 2
+ 160u0u0’xu05},u0‘xy +3u, Ug creorer T 3u, Uy ey + 21 6uoguu0’m

2
+ 150140’xu()’m + 12u0u0’yu0’m}w + 46u0u0,mu0’my

3 4 2.2 5
+ 66uouo,xxu(lm + 3u, + 174”0”0,,x”o,m + 18u0u0’xu0,m

uO,mxx

+ 84uouo’muo’xm + 168u0,xu0,xy + 12u0u0,

uO,my yuO,xxxxxy

+ 84u0’yu0,mu0’W + 84u0,yu0’nu0,my + 48u0’xu0’yu0,my

3 3 6
+ 42“0”0,1”0,)000: + 264”0”0,x”0,xx + 24”0,xu0,}yu0,wooc + uO uO,xxx

4.3
+ 8u0u0,m +30u, Uy, + 56u0’xu0’xy + 84u0u0,mu0’xm

uO,xxxy uO,x}yy

2.2 2
+ 6”0”0,);\)”0,xxxxx + 14u0uo,yu0,xxx + 24”0,yu0,yyu0,xxxy + Suo,xuo,xyy}y

+1Augu, 1y o, + 40Uy U

yuO,xxyy + 72u0,xyu0 ,}yuO,xxy

+ 6u0’xu0,xxu0’yyyy + 24u0,xxu0,xyu0’w + 36u0uoﬂxu0,xmyy

3
+ 54u0u0’m + 24u0u0‘xxuoquy + 28140’ WU

uO,xx}y uO,xyyy

+ 8u0u0’xx + 48u0’yu0,xyu0,nﬂ + 28u0u0m

uO,X};wy ‘yuO,XVW

+ 54”0”0,.mu0,mxx + 24u0uO,xu0,xxxxxx + 54u0uo,nuo,xxxyy

+ 234u0’xu0’m + 48u0u0’xy + 144u0’xu0’xx

uO,)owcx uO,xxxxy uO,xxyy

5 3 2
+ 76u0’yu0’mu0m, + 24”0,x + 2u0u07mu0’y}w + 24uoyxu0‘y

+ Souo,yuo,xyuo,xxy\/ + 32u0uo,xyu0,xxytﬁvy + 32uo,xu0,yu0,xxyyy

3
+ IZuOuoﬁxuo’Ww + ZSuOuO,XuO’W + 38u0’ﬂu0’ 0.0y

+ 42140’)05140’),},uo’m + 24u0’xuoswu0,m + 240u0’xxu0,xyu0’m

3 2 2 2 2 3
+ 30u0u0‘xuogmy +222ug5u, g +92u, Uy Uy, + 6140140!},th0,m

3 2 3 2.2
+ 36u0u0,xyuoymy + 6u0uoqmw + 12u0u0’yu0’ ooy T 68u, Uy Uy o

2 2
+ 96u0,xu0’mu0,xyy + 8u0,yu0,mu0’m + 6u0’yyu0’m + 42uogxu0,xyy

2 2 2 2
+ 14u0,yu0,xu;y + 76u0,xyu0,xyy + 54u0,xu0,xxxxx + 6uO,yu0,xxxxx

+ 84u§ oMo T 54u§ R +120u, xué T 3u§

U ey U rexyyyy
3
+ uO,mxxxxxx + 3”0,xmm:xyy + 3”0,mxxyyyy + uO,xxxyyy}yy )t °
Hence, we obtain the solution of Equation (1)

u(xayat)=f(an)+”1(xay,t)"‘“z (xayat)+u3 (xayat)_""'a

)

(8)

&)

(10)
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where u,, u, and u, are given by Equation (7), (8) and (9) respectively.

3. Application
In this section, we will study the single soliton, two-soliton and rational
solutions of mZK equation.
3.1. Single Solitary Wave Solution
Consider the following case:
u, + uzux fu, tu, = 0,
2k 6(1+m2)exp(k(x+my)) (11)

u(x,,0)= exp(2k (x+my))+1

From the above section, we can have

246 1+ m* exp(k (x + my)) (12)

exp(2k(x+ my)) +1

uO (x:y:t)z

26t (147 ) 61+ m* ) exp (k (x+my))

ul(x,y,t): (exp(2k(x+my))—1)t, (13)

(exp(2k(x+my))+l)2
. (x,y’t):k7(1+m2)2 6(1+m2)exp(k(x+my))
’ (exp(2k(x+my))+l)3 (14)
><(exp(4k(x+my))—6exp(2k(x+my))+1)t2,
_k'0(1+m2)3 6(1+m2)exp(k(x+my)) .
u3(x’y’t)_ 3(exp(2k(x—i-my))+l)4 (eXP(6k(x my)) (15)
—23exp(4k(x+my))+23exp(2k(x+my))—1)t3,
(s t)_2k4/6(1+m2)exp(k(x+my))
V= exp(2k(x+my))+l
2k4(1+m2> 6(1+m2)exp(k(x+my)) B
(exp(Zk(x+my))+l)2 ( p(2( ) l)t
k7(1-i-m2)2 6(1+m2)exp(k(x+my)) .
(exp(Zk(x+my))Jrl)3 ( p(4k( y)) (16
B . N 2+k1°(1+m2)3 6(1+m2)exp(k(x+my))
6exp (2K (x+my)) 1)t 3(e><lﬁ>(21c(x+my))+l)4

x(exp(6k(x+ my))—23exp(4k(x+my))+ 23exp(2k(x+my)) —l)t3 4o

Using Taylor series, one can obtain the exact solution
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2chxp(k(x+my—k2(”’"z)t)).

exp 2k {x+my—# (1 m? )] 1 )

u(x,y,t)=

Figure 1 shows the single soliton (17) for k=1, m=1, —4<x<4,
—4<y<4 and ¢=0, from which one can find Equation (17) is a single-soliton

solution.

3.2. Two Solitary Waves Solution

f(x,y)=44,6(1+m )exp(x+my) (s

exp(2(x+my))+1

In this case, we take

Then from the above section, one can have

46(1 ) exp(-+my) (19)

exp(Z(x+my))+1 ’

uO (x’y>t)=

4(1+m2) 6(1+m2)exp(x+my)

(exp(Z(x + my)) + 1)4
+73 exp(4(x + my)) =73 exp(2(x + my)) - l)t,

(exp(6(x +my))

”1(35»)’91):

(20)

e T e
2 (%21 (oxn(2(r 2} +1] (exp(12(x +my))

+2158exp(10(x +my))+2863exp(8(x +my)) (1)
- 26236exp(6(x + my)) +2863 exp(4(x + my))

+2158exp(2(x+my))+1)7,

Figure 1. 3D plot of solution (17) for k=-1.

DOI: 10.4236/jamp.2018.65081

953 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.65081

Z.Z.Dong, L. Wang

2(1—|-m2)3 6(1+m2)exp(x+my)
3<exp(2(x+ my))+1)10

+58951exp(16(x +my))+225620exp(14(x +my))

(exp(lS(x+ my))

U, (x,y,t) =

~1999268 exp(12(x +my)) - 6147250exp(10(x+my))  (22)
+6147250exp (8 (x +my))+1999268 exp(6(x +my))

—225620exp(4(x+my))—58951exp(2(x +my))—1)¢,

41/6(1+m2)exp(x+my)+4(1+m2) 6(1+m2)exp(x+my)

exp(Z(x+my))+1 (exp(2(x+my))+1)4

u(x,y,t) =

X (exp(6(x+ my)) +73 exp(4(x+ my)) =73 exp(Z(x + my)) - l)t
. 2(1+m2 )2 6(1+m2)exp(x+my)
(exp(2(x + my)) + 1)7

+2158exp(10(x+my))+2863exp(8(x+my)) - 26236 exp(6(x+my))

(exp(lZ(x + my))

+ 2863exp(4(x+ my))+2158exp(2(x+ my))+1)1,‘2

2(1 + mz)3 6(1 +m2) exp(x+my)
+ 10
3(exp(2(x +my))+ 1)
+58951exp(16(x +my))+225620exp (14(x +my))
~1999268exp(12(x +my)) - 6147250 exp (10(x + my)) (23)
+6147250exp(8(x +my)) +1999268 exp (6(x + my))

(exp(lS(x + my))

—225620exp(4(x +my))—5895Texp(2(x +my))—1)£ +---.

Using Taylor series, one can obtain the exact solution
u (x, ¥, t)

4, [6(1 +m? ) (exp(§ —1)+3exp(27& -3n7)+3exp(29¢ —5n7) +exp(55& —777))

1+ 4exp (28 —2n)+6exp (28 —4n)+4exp(54E —61) +exp (56 —8n)

(24)

where §=(1+m2)t and 7=x+my.

Figure 2 shows the two-soliton solution (24) for m=1, -10<x<5,
-10<y<5 and ¢t=-0.2, from which one can find Equation (24) is a
two-soliton solution. Figure 3 shows the two-soliton solution (24) for m=1,
—-8<x<8 -8<y<8 and ¢t=-0.1. Figure 4 shows the two-soliton solution
(24) for m=1, —-10<x<10 -10<y<10 and ¢=0. Figure 5 shows the
two-soliton solution (24) for m=1, -8<x<8 -8<y<8 and r=0.1.Figure
6 shows the two-soliton solution (24) for m=1, -5<x<10 -5<y<10 and

t=0.2. Figures 2-6 show the velocities of the two solitons are different.
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Figure 2. 3D plot of solution (24) for m=1 and r=-0.2.

Figure 3. 3D plot of solution (24) for m =1 and ¢=-0.1.

3.3. Rational Solution

Here, our goal is to find the rational solution of mZK equation. To do this, we
consider the form of the initial value as follows:
21,6(1+m*)

f(xy)=——— (25)

x+my—a
Due to the above section, it is obtained

21, /6(1+m2) 06

"o (x,y,t): xX+my—a
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c
,° - N w EN o ) ~

Figure 4. 3D plot of solution (24) for m=1 and ¢=0.

Figure 5. 3D plot of solution (24) for m=1 and ¢=0.1.

361,/6(1+m2)(1+m2)t,

u, (x,y,t):— 7 (27)
(x+my—a)
4321,f6(1+m*) (14 m*)
u, (x,y,t) = - 2, (28)
(x+my—a)
51841‘/6(1+m2)(1+m3)
uz(x,y,t)=— 10 £, (29)
(x+my—a)
214[6 1+m 3614[6 l+m l+m
x ¥, t
xX+my—a
(x+my a) (30)
4321‘/6(1+m2)(1+m ) S1841,[6(1+m? ) (1+m")
+ 7 r- 10 s
(x+my—a) (x+my—a)
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Figure 6. 3D plot of solution (24) for m=1 and ¢=0.2.

From the knowledge of Taylor series, one can get the exact solution

214[6(1+m2)((x+my—a)3 —6(1+m2)t)

(x+my—a)((x+my—a)3 +12(1+m2)t) ’

u(x,y,t)z (31)

which is singular at x+my=a or (x+my—a)3+12(1+m2)t:0.

4. Conclusion

In summary, we successfully apply homotopy perturbation method to the mZK
equation with the initial value problem and obtain the analytical approximate
solution of the mZK equation. Using the form of the initial value, the single
solitary wave, two solitary waves and rational solutions of the mZK are obtained.
Here, we get the two-soliton solution without using bilinear forms, Wronskian.
In our later works, we will focus on the form of the initial value that can create

the two solitary waves solutions.
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