Journal of Applied Mathematics and Physics, 2018, 6, 910-924
http://www.scirp.org/journal/jamp

ISSN Online: 2327-4379

ISSN Print: 2327-4352

@,
0:0‘ Sclentific

Q: Publishing

4

Controllability of a Stochastic Neutral
Functional Differential Equation
Driven by a fBm

Jingqi Han?, Litan Yan12

'College of Information Science and Technology, Donghua University, Shanghai, China
*Department of Mathematics, Donghua University, Shanghai, China
Email: jingqihan0916@163.com, litan-yan@hotmail.com

How to cite this paper: Han, J.Q. and Yan,
L.T. (2018) Controllability of a Stochastic
Neutral Functional Differential Equation
Driven by a fBm. Journal of Applied Ma-
thematics and Physics, 6, 910-924.
https://doi.org/10.4236/jamp.2018.64078

Received: March 30, 2018
Accepted: April 24,2018
Published: April 27, 2018

Copyright © 2018 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we consider a class of Sobolev-type fractional neutral stochastic
differential equations driven by fractional Brownian motion with infinite delay
in a Hilbert space. When « >1-H , by the technique of Sadovskii’s fixed point
theorem, stochastic calculus and the methods adopted directly from determinis-
tic control problems, we study the approximate controllability of the stochastic
system.
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1. Introduction

As an important part of mathematical control theory, the research on approximate
controllability has attracted more and more attention [1] [2] [3]. Approximate
controllability means that the system can be steered to a small neighborhood of the
final state. In fact, the approximate controllability of systems has been studied by
several authors [4] [5]. During the past three decades, the importance of fractional
differential equations and their applications are prominent, especially in modeling
several complex phenomena such as anomalous diffusion of particles (see, for
examples, [6] [7]). In addition, neutral stochastic differential equations with infi-
nite delay have become very useful in the mathematical models of physical and so-
cial sciences [8] [9]. So, it is necessarily and significatively to study fractional order
neutral differential equations of Sobolev-type ([10] [11] and references therein).
On the other hand, the properties of long/short-range dependence are widely
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used in describing many phenomena in fields like hydrology and geophysics as
well as economics and telecommunications. As extension of Brownian motion,
fractional Brownian motion (fBm) is a self-similar Gaussian process which has
the properties of long/short-range dependence. However, fractional Brownian

motion is neither a semimartingale nor a Markov process (except for

1
the case H = > when it is a Brownian motion). For this reason, there are a few

publications leaning the systems which are driven by this type of noise. We refer
[12] [13] and references therein for the details of the theory of stochastic
calculus for fractional Brownian motion. In [14], authors consider the
approximate controllability of a class of Sobolev-type fractional stochastic
equation driven by fractional Brownian motion in a Hilbert space.

Motivated by these results, in this paper, we study the approximate controllability
of the Sobolev-type fractional stochastic differential equations of the form

D [Lx(t)-G(t,x) ] = Ax(t)+ f (t,x )+ Bu(t)+o-(t)%BH (1), te(0,T],

x(t)= (1), te(-o0,0].
(1.1)

In the above system, we assume that

‘D is the Caputo fractional derivative of order a e(1-H,1),
e A, L are two linear operators on a Hilbert space U,

e Bisabounded linear operator from the Hilbert space Vinto Hilbert space U,
e The time history x (6)=x(t+6), t>0,

e u(-) isacontrol function on L2 ([O,T],V),

« BM :{BH (t),te[O,T]} is a cylindrical fractional Brownian motion with

Hurst index H e(%,l],

The functions G, fand oare Borel functions with some suitable conditions.
The paper is organized as follows. In Section 2, we represent some preliminaries
for stochastic integral of fractional Brownian motion in Hilbert space. In Section
3, we obtain the approximate controllability results of the Sobolev-type fractional

neutral stochastic system (1.1).

2. Preliminaries

In this section, we will introduce some definitions, lemmas and notions which

will be used in the next section.

2.1. Fractional Brownian Motion

Let (Q,./‘,(./?),P) be a complete filtered probability space. A fractional
Brownian motion (fBm) A" = {,BH (t),t IS [O,T]} with Hurst index H e(0,1)is

a mean zero Gaussian process such that A" (0) =0 and
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1 2H
E(B" (1) 5" (S)):E(SZH " —Jt-s")
for all t,s>0. When H :]/2 s ,BH coincides with the standard Brownian
motion, and when H ;t% it is neither a semi-martingale nor a Markov process.
The fBm A" admits the following integral representation:
B (1) = [ Ky (ts)dw (1)

for all t>0, where {W (t),O <t ST} is a standard Brownian motion and the
kernel Ky (t,s) satisfies

o) 122 (-0

with a normalizing constant x,, >0 such that E( B )2 =1. Throughout this

1
paper we assume that > <H <1 is arbitrary but fixed.

Let ‘H be the completion of the linear space £ generated by the indicator

functions 1, te [0,T] with respect to the inner product

<]1o,s]']10,t]>H :%(tz” +s2H —Jt—g™" )
The mapping
€30 " (p)=[ p(s)dp" (s)
is an isometry from & to the Gaussian space generated by A" and it can be

extended to 7, which is called the Wiener integral with respect to g" .
Consider the operator K; from £ to L ([O,T]) defined by

oK

(Kio)(s) :_[:go(t)a—t“(t,s)dt

for @ e&. Then, the operator K, is an isometry between & and L2 ([O,T])
which can be also extended to the Hilbert space H.

Lemma 2.1 For every ¢ < H , we have

T T *
[ o(s)dB" (s)=], (Ki)(s)dw (s).
We now recall that the definition of stochastic integral of fBm in the Hilbert
space V. Let {BH (t),OStST} be a W-valued ./ -adapted fBm defined on

(Q,‘ 7, ( /?), P) with the representation of the form

B (1) =S4 A (e, 20,
n=1
where {e } . isacomplete orthogonal basis in W, and

. {ﬂnH,n :1,2,---} is a sequence of independent fBms with the same Hurst

index He [%,1) R
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e {4,;neN} is a bounded sequence of non-negative real numbers such that

Qe_nn’

¢ (Qis a non-negative self-adjoint trace class operator with finite trace
TrQ =>4, <+w.
n=1
Let ¢:[0,T]—>L5(W,U) such that

e |

where L) (W,U) is the space of all Hilbert-Schmidt operators from QW to

0

2K

n=1

< oo (2.1)

B([oTIv)

Uwith norm ||||Lg W) defined by
1 2
el - Jr07| 705
H-S

Definition 2.1 Let ¢:[0,T]—> Ly (W,U) satisty (2.1). We define the

stochastic integral I ,¢(s)d B"(s) by

w 1 © 1

fiotee" () Lotsioiean =5 1| i sa%e | i)
n=1 n=1

Lemma 22 Let ¢:[0,T]|->L5(W,U) satisty (2.1). Then, for any

a,be[O,T] with a<b we have

2

EHf:‘”(S)dBH(S)H cH (2H -1)(b- azm

1
In addition, ) " llp(s)Q?e,| is uniformly convergent in te[0,T], then, we

have
EHJ BY H <cH (2H -1)(b- a“”zj" (Vg 85

2.2. Some Assumptions

In this subsection, we recall that some notions of fractional calculus and give
some assumptions for the stochastic system (1.1). Recall that the fractional
integral 1“ of order « for a function f :[0,00) > R is defined as
S
W(t):thLds t>0,a>0,
T(a)®(t-s)
provided the right side is point-wise defined on [0,:0), where I'(-) is the
gamma function, which is defined by T'(x _f t**e”'dt . Moreover, the Caputo

derivative °D“ of order « for a function f eC" ([0,00)) is defined as
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(0

ds=1"f"(t), t>0n-1l<a<n.
r(n_a) o(t_s)lwz—n ()

If fis an abstract function with values in U, then the integrals appearing in the
above definitions are taken in Bochner’s sense.

To study the stochastic system (1.1), we need some assumptions. Throughout
this paper we assume that U,V,W is three real separable Hilbert spaces with
inner products <~, '>u R <~, '>v and <~, '>w , respectively. We first give some
conditions about the three operators L, A,B as follows:

(A1) Aand Lare two linear operators on Usuch that D(A)cU, D(L)cU,
and A is closed,

(A2) D(L)=D(A) and Lis bijective,

(A3) L':U >D(U) iscompact,

(A4) Bis a bounded linear operator from Vinto U.

From the above assumptions (Al)-(A3) and the closed graph theorem it
follows that the linear operator AL':U -»U is bounded, and AL®

generates a semigroup {S(t),t>0} in U Denote M :rrg%x”S ) uf=M,

and ”L*l”:I\A/IJl.
For xeU , we define two families {A/f(t),tZO} and {.’/L(t),tZO} of

operators by

A ()x=[L, (0)S(t"0)xdo

and
Z(t)x=af L0, (0)S(t“0)xdo,
where
= fa(e):%g(—e)"1%F(na+1)sin(nna)

is a probability density function defined on (0,).

Lemma 2.3 Feckan, M. et al. [15] The operators ./ (t) and ./ (t) have the
following properties:
e Forevery t>0, ./ (t) and ./ (t) are linear and bounded, and moreover

for every xeU
[ @] < MM, ],
M M. (2.2)

<

e ./ (t) and ./ (t) arestrong continuous and compact.
We now introduce the abstract phase space. For a continuous function
h:(—,0]—(0,0) satisfying
1= [° h(t)dt <eo,

we define a phase space .7 associated with £ as follows
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12
4= {¢ :(~0,0] > U, for any a > 0,(E||¢(6)||2) is bounded
and measurable functions on [-a,0] with ¢(0) =

and.[ h(s sup( ||¢(0)||2)]/2 ds<oo}.

$<6<0

Clearly, ( Zall . ) is a Banach space if .4 is endowed with the norm (see,

Cui and Yan [16])

2\Y2
ol = 1" n(s)sup (EJe o))~ os

for ge.4 .

We present the definition of mild solutions of (1.1).

Definition 2.2 An U-valued stochastic process {X(t),t € [—OO,T]} is a mild
solution of (1.1) if the next conditions hold:

i) x(t) is measurableand ./ -adapted,and X is .#4 -valued,

ii) x(t) iscontinuous on [O,T] and the function

(t-s) " LAY (t-3)G(t, X;) is integrable for each se[0,t] such that x(t)

satisfies the equation
X(t) =7 (t)(L#(0)-G(0,4))+ LG (t.x)
j( )y ’1A/( 5)G(t,x,)ds
I(t L(t=s)[ (s,x,)+Bu(s)]ds
+(t=s —s)o(s)dB" (s),

iii) x(t)=¢(t) on (—oo,0] such that ”¢”2«1 <.

Finally, in order to prove our main statement, we need some conditions as

(2:3)

follows.
(B1) Let the function f :[0,T]x.¢ﬁ —U is continuous and there exist some
constants N, >0, k; >0 suchthatfor te[0,T] and &,ne 4

E[f(t.¢)

forall te[0,T] and k, —Sup”f tO”

te[0,T]
(B2) For the complete orthogonal basis {e, }neN in W, the function
c:[0,T]> L (W,U) satisfy

0

2

n=1

1
oQ?%e,

<

2(o1)0)

1
2¢,| is uniformly convergent in te[0,T]. In addition, there

20

exist some t; and 6>0 such that

ItoJ-lo ~5g=o "0' |||_2(W,U) ”O-(S)"L%(W,U) drds < .
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(B3) Let the function G:[0,T]x.4 —U is continuous and satisfies:
(a) there exist some constants Ny >0, kg >0 for t,se[0,T] and
&,n €. % such that the function AG satisfies the Lipschitz condition

E[AG (t.&)- AG (t.n)[ < Ng -7

2
4
forall te[0,T] and K, =ts[L;[T)]||AG(t,O)||2.

(b) there exist constants N; >0, E; >0 such that
El6(t&)-6(tn)f <Nefe-n[",
forall te[0,T], &ne. 4 and E = sup "G (t,O)"Z.

te[0,T]
K
K

(B4) There is a constant .~ >0 such that

>1, where

— . 2 2~2 a 2
K =1-2a2| MM |y 1y g MM MeT2 g
al (a) ail' (a)

2/\“2 2T 2
K:Z =4|2 (MM]_,M/]_)Z E||¢o||2 1+12[MJ +4||¢||2/ﬁ
a

ﬂd“(oz)2

M, ) oM omEre | | (2K, T2
+12|2(MJ 14 4] MMy MsT ] x( L —+cH(2H —1)NUJ

I'(a) ail (@)’ a’

2
MM, MZT* 2 Al
2 2H-1
+ 961 {—aﬂrl(a)i ] (E||ZT|| +cH@H -1 [ ||¢(S)||L3(W’U)d5),

N, = 20 [ (9 00) o o6 (g 8507 <2

te[0,T]
and M, =|B].

3. Main Results

In this section, we will show the approximate controllability of the stochastic
system (1.1). We need to establish the existence of the solution for the stochastic
control system and to show that the corresponding linear part is approximate
controllability.

Definition 3.1 The system (1.1) is called to be approximately controllable on
[0,T] if

R(T)=U (3.1)

with R(t)= {x(t) =x(t,u):uel*([0,T].V )} .

Consider the corresponding linear fractional deterministic control system to

(1.1)

DOI: 10.4236/jamp.2018.64078

916 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.64078

J.Q.Han, L. T.Yan

{ Df [ Lx(t)]=Ax(t)+Bu(t), te[0T] 42
x(0)=4(0),
and define the relevant operators
Iy = _[OT (T—s)" /(T -s)BB /(T -s)ds (3.3)
and
R(a.I7)=(al +17) ", (3.4)

where B" and /(T -s) denote the adjoint operators of Band ./ (T -s),
respectively. It is clear that the operator T’ is a linear bounded operator. The
fact that the linear Sobolev-type fractional control system (3.2) is approximately
controllable on [O,T] is equivalent to the next hypothesis (see, for example,
Mahmudov and Denker [17]):

o aR(a,Fg ) — 0 in the strong operator topology, as « —0".

Lemma 3.1 (Guendouzi and Idrissi [18]) For any z; e *(Q;U), there
exists ¢(t)e L’ (Q, L (O T; Lg)) such that

_EzT+J'(p s)dB" (s). (3.5)

For any A>0 and z; € L2 (Q;U ) , we now define the control function u*
as follows.

U (t)=B" 4" (T —t)(21+T7) [~/ (T)(Lb(0) -G (0.¢)) - L'G(T %, )]
B (T =) (1+TT) | Bz + [ (s)dB" (5)
BT [ (AT (T=s) AL (T-5)G(sx)ds  (3.6)
T (AT (T8 A (T ) (s )ds
B (T ) [L(A1+TT) (T =) 4 (T =)o (s)dB (s).

Theorem 3.1 (Daher [19]) Let ® be a condensing operator on a Banach space

~B"

X, that is, ® is continuous and takes bounded sets into bounded sets, and
,u(d)(B))S,u(B) for every bounded set B of X with 11(B)>0.1f ®(N)cN
for a convex, closed and bounded set N of X, then @ has a fixed point in X
(where u(-) denotes Kuratowski’s measure of noncompactness).

Define the space

.%;:{XZXEC((—OO,T],U)With X0:¢e.//1;}

and let ||||a be a seminorm defined by
1
I =1l + sup (EX(  xe (37)

where C((—OO,T],U) denotes the space of all continuous U-valued stochastic

process {f(t),te(—oo,T]}.
Lemma 3.2 (Li and Liu [20]) Assume that Xe.7 , then for all
te[0,T],x €. 4 . Moreover,
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12 12
(o) <t i}f)%(E"X(S)HZ) +x], (3.8)

where | —I h(s)ds is given in Section 2.

Theorem 3.2 Assume the conditions (B1)-(B4) hold, then for each A >0
there exists a mild solution of (1.1) on (—oo,T] , provided that

42| VN | MMTE <
ol (a)

Proof. Define the operator ®:. 4 — . by

¢(t), te(—oo,O],
7 (D)(Lp(0)-G(0.¢))+ LG (. %)
ox(t)={+ [ (t-s) LA/ (t-5)G(s,x,)ds (3.9)
.[(t s)" 4 (t=s) f(s,x)+Bu’(s)]ds
[, (t=s)" A (t=5)a(s)dB™ (5) te(0.T],

for xe. 7.
We will show that @ has a fixed point which is a mild solution for system (1.1).
For ¢e. 4 ,define

. é(t), te(-x,0],
¢(t):{ Z(1)(Lg(0)), te(o,T].

Then, §(t)e. 4. Let x(t)=¢(t)+y(t),te(-oo,T]. It is easy to check that
x(t) satisfies (1.1) if and only if y, =0 and

y(t)=—-7(1)G(0.4)+L'G(ty +4)
+I (t=s)"L*A/ (t-5)G(s,y, +4,)ds
+I t-s)" 4 (t- s)[f(s,ys+&s)+8u*(s)st
+J'O (t=s)" 4 (t-s)a(s)dB" (s).

Denote .4 ={ye. 4,y,=0€.%} and let |||, be the seminorm in .4,
defined by

(3.10)

(3.11)

12 12
vl =l + s (<)) = sum (B ) a2

For r>0 we set Br:{ye.zl;,"y"tz)sr}. Then, B, is a bounded closed

r

convex setin . for each r. According to Lemma 3.2, we get

el <2(iuf, Il

<a{1 sy + Il

+prEW ".4%”] 613

=r
7

s4(| r+1°M2MZM, E[[¢(0

DOI: 10.4236/jamp.2018.64078
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for ye B, . Define the mapping W:.4 —.4 by
Wy(t)=— 7 (1)G(0,4)+L'G(t,y, +4)
+J';(t—s)"’1 LA (t=5)G(s, Y, +4,)ds
+J';(t—s)“’1.'/L (t —s)[f (s,q?s + y5)+ Bu* (s)} ds
+[(t=s)" 7 (t-s)o(s)dB" (s)

for te[0,T]. It is evident that the operator @ has a fixed point if and only if the
operator ¥ has a fixed point. Now, we divide ¥ into ¥ =¥, + ¥, , where

y(t)=-/ (t)G(0,¢)+L"'G (t, Y, +¢31)
+j;(t— LAY (t-5)G(s, Y, + 4, )ds,
,y(t) =J';(t—s)“’l.’/L (t—s)[f (5.6 +v.)+ Bu‘(s)}ds
+[ (t=s)" A4 (t-s)o(s)dB™ (s).

Now, we need to prove the operator ¥, is a contraction map and ¥, is

(3.14)

(3.15)

(3.16)

compact.

Step I. ¥, isa contraction map. For Y,y €., we have
E[w.y(t)-wy)

<2E ‘L‘lG t,yt+q5t)—L_1G(t,71 +‘/§t) 2

+2E“j )AL (t=5)[G(s. v, +4)-G(s. T, +¢35)]dsuz (3.17)

s 2
2 M, MT? 2
ﬁ( a}(a) j Ne v =%l

—~—2 2
s (M.’MT e
<A MOND 4| L | A
[ . G+[ ar(a)] G]tg[gg]llyt Yl

It follows that W, isa contraction map with the assumption

—2 « 2
42| MG ) MIMTE e
al (o)

Step II. We claim that ¥, is compact. In [14], we have proved that ¥,

P _
<2M, Ny, -V,

maps bounded sets into bounded sets of .4 and ¥, maps bounded sets into
equicontinuous sets of . . It is enough to prove that ¥, maps B, into a

precompact set in B, . Define an operator ¥5° on B by
vy () =af, [T (t-s) Lz, (6)S((t- “a)def (s.y,+4.)ds
raf, [ (t-s)" L, (0)
raf) [ (t=s)" L0, (0)S((t-5)" 0)dao(s)dB (s).

s((t-s)"6)doBu’ (s)ds  (3.18)
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Since S(t),t>0 is a compact operator, the set {‘Pj"*y(t), ye Br} is
precompact in Ufor every ¢e(0,t),5>0. Foreach yeB,

Efws7y()-wsy(o)
ol (t=sy " L0, (0)8((t=5)" 0)dof (s, v, +4,)ds
+6%E[ ["(t-s)" Lz, (0)S ((t —s)” e)def sy, +4.)ds

+6a7E[[[ [ (t-s)" L0, (0)S((t-5)" 0)doBu* (s)dsH2

2
<6a’E

2

veae|[! [7(t-5)* L, (0)5(t-5)" 0)doBu (s)as]

+6a°E|[[[(t=3)"" 76z, (6)S(t-5)" 0)doo () B (s)”2 o

+6a7E|[| [ (t-s)""L70¢, (0)S((t-5)" 0)dao(s)dB" (s)

6
=6a’)J;.
i=1

By using Holder inequality and the assumption (B1) we have

0 W (5 a5 504

s [ e, (6)d9)2

e ) (3.20)
s[ - J (Ner k) ([ 0z (0)de)
and
3 <MME! (t-s) as]! (t-s)E[[f (s.v.+4) i ds(fjﬁfa (.9)d9)2
g ) ) (3.21)
g[ alg ] (Nfr'+kf)(I:0§a(9)d0) .
Since
4(m MK/T)2
2 — 2
Elu’ (s) SW{(M MM, ) E[¢(0)[ +2E|z|f
—_— 2 — —~ —_— —~
+(MMM,) NG||¢||2%+M12(NGr’+kg) o)
+20H (2H -T2 [T ||‘7’(5)||2Lg<w,u) ds
—~\2 P
MM _4M MM,)?
+lipg + 1; +CH (2H _1)(1"(0:;} NG}=WNU,
where
— 2 —_— 2
M M.T* , M M.T“ ,
Lng :2( al“(la) J (Ner'+k,) and g, :Z(Wla)j (Nir'+ke ), (323)
it follows that
DOI: 10.4236/jamp.2018.64078 920
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J, < K/Ivlez.[;(t—s C"ldsj't t-s HE"Buﬁ(s)"Z ds(jjega(a)de)z

oo o o

a 12

(3.24)

and

J<MME[ (t-s)Has[ t—s)””lE||Buﬂ~(s)||zcls(j;°.9§m(6r)o|9)2

§£MM~1€J4<M MM) (f&f )2

a 2T (a)

For the last parts J.,J, when a>1-H , we have

(3.25)

7T a1 a- 2H-2 B(a,2H -1) oarH-1)
jojo (T=s) " (T-t)""|s— dsdt:mT , (3.26)

which imply that

Zﬁj’j(t—s)'ﬂL’l&fa(e)s(( )" 6)déo (s 1Q%e,dp" (s)

2

J,=E

2

=gE ol (t=s)7 Loz, (0)s((t-s)" H)dea(s)Q%endﬁnH (s)
<cH (2H -1 (MM, ) [l (t-u) (t=v) fu—vf"

2
% "O-(u)"L%(w,u) ”O—(V)”Lg(w,u) dudv(fj@fa (H)de) '

(3.27)

and

2

(t-s) L0, (0)(t-5)" 0)ddr(5)Qe, 4 (5)

= Jt-e

2

:gg [ J, (k=57 0z, (0)s((t-5)"0)doo (s )QZe dg" (s)
<cH (2H 1) (MM,) ' [ (t—u) ™ (t-v) Ju ™

" 2
% "O-(u)”Lg(w,u) ||O-(V)||L2(W,U) dUdV(.[o 0%, (9)d9) '

Then, for each yeB,,

E|

Therefore, there are relatively compact sets arbitrary close to the set

(3.28)

w5y (t) - Wiy (1) >0 ase 0,5 0.

{‘sz(t),ye Br} is precompact in B,. By Arzela-Ascoli’s theorem, ¥, is
compact. By Sadakovskii's fixed point theorem (Theorem 3.1), the operator ¥
has a fixed point which is a solution to the system (1.1).

Theorem 3.3 Assume that the conditions of Theorem 3.2 and (H,) hold. In
addition, the functions f is uniformly bounded on its domain. Then, the

fractional control system (1.1) is approximately controllable on [0, T] .

DOI: 10.4236/jamp.2018.64078 921 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.64078

J.Q.Han, L. T.Yan

Proof. Let x* be a fixed point of the operator ®*. Using the stochastic

Fubini theorem, we can get
X (T)=z —2(A1+T7) [~ 7 (T)(L$(0)-G(0.9))
- L6 (t 1) +E2; + [ () dB" (5)|
AL (AT (T o) LA (T-9)G(s,x)ds (3.29)
$ A (A1+TT) (T =8) (T —s) £ (s, )ds
$ 4[] (A14TT) (T =8 (T =)o (s)dB" (s).
It follows from the property of f,G that there exists C>0 such that

“f(s,xj)

{ f (S, X:), AG (S, X! )} weakly converging to {f (S),G}. Thus, from the above

2 2
<C and “AG (s, xf) <C . Then there is a subsequence denoted by

equation, we obtain
1 2
E"x (T)——zT"

A2 +15) [Ez - L (T)(L(0) -G (0.9))]

2

<8

2

+8EH/1(/1I +T7 )71[L’1G (tx)]

-1 . 2

+8cH (2H ~1) T €[] Hx(,u +Tp) é(s) ds

Bwu)

+8E(j0T(T—s)H A(2+TT) LAY (T—s)[G(s,xj)—G(s)]Hds)z

+8EUOT (T-s)"*|A

(
(a1+17)
e [[ (75 fa(ar o) -9 1 (5)- 1 9) o)
(41+17)
(

+zaE(j0T(T—s)"’1 A

2

dsdt.

Bw)

(3.30)

A(A+TT) "/ (T=5)o(s) 2 A(A+TT) A (T-t)o(t)

Bwu)

X

On the other hand, by assumption (H) for all 0<s<T, the operator

-1

<1.

A(A1+17)

l(/ll +T] )_1 —0 strongly as 4—0+, and moreover

Thus, by the Lebesgue dominated convergence theorem and the compactness of
. (t) » we can get E”xl (T)-z "2 —0 as A—>0+ . This gives the

approximate controllability of (1.1).

4. Conclusion

We consider the following Sobolev-type fractional neutral stochastic differential
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equations driven by fractional Brownian motion with infinite delay:
“DF[LX ()G (t,%,)] = AX(t) + £ (t, )+ Bu (t)+o(t)%BH (t), te(0.T],
x(t)=¢(t), te(—o,0].
where u(-) is a control function. Inspired by [14], we show the existence of
solution and approximate controllability of (1.1).
Funding

The Project-sponsored by NSFC (No. 11571071).

References

[1] Mahmudov, N.I. (2003) Approximate Controllability of Semilinear Deterministic
and Stochastic Evolution Equations in Abstract Spaces. SIAM Jjournal on Control
and Optimization, 42, 1604-1622. https://doi.org/10.1137/50363012901391688

[2] Mahmudov, N.I. (2008) Approximate Controllability of Evolution Systems with
Nonlinear Analysis. Theory, Methods & Applications, 68, 536-546.
https://doi.org/10.1016/.na.2006.11.018

[3] Sakthivel, R., Ganesh, R. and Suganya, S. (2012) Approximate Controllability of
Fractional Neutral Stochastic System with Infinite Delay. Reports on Mathematical
Physics, 70, 291-311. https://doi.org/10.1016/S0034-4877(12)60047-0

[4] Fu, X. and Mei, K. (2009) Approximate Controllability of Semilinear Partial Func-
tional Differential Systems. Journal of Dynamical and Control Systems, 15, 425-443.
https://doi.org/10.1007/s10883-009-9068-x

[5] Sakthivel, R., Ren, Y. and Mahmudov, N.I. (2011) On the Approximate Controlla-
bility of Semilinear Fractional Differential Systems. Computers & Mathematics with
Applications, 62, 1451-1459. https://doi.org/10.1016/j.camwa.2011.04.040

[6] Baleanu, D. (2012) Fractional Calculus: Models and Numerical Methods. World
Scientific, Boston. https://doi.org/10.1142/8180

[7] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of
Fractional Differential Equations. Elsevier, Amsterdam.

[8] Gurtin, M.E. and Pipkin, A.C. (1968) A General Theory of Heat Conduction with

Finite Wave Speed. Archive for Rational Mechanics and Analysis, 31, 113-126.
https://doi.org/10.1007/BF00281373

[9] Nunziato, J.W. (1971) On Heat Conduction in Materials with Memory Q. Appl
Math., 29, 187-204.

[10] Revathi, P., Sakthivel, R. and Ren, Y. (2016) Stochastic Functional Differential Equ-
ations of Sobolev-Type with Infinite Delay. Statistics & Probability Letters, 109,
68-77. https://doi.org/10.1016/j.spl.2015.10.019

[11] Wang, J., Feckan, M. and Zhou, Y. (2014) Controllability of Sobolev Type Fraction-
al Evolution Systems. Dynamics of Partial Difterential Equations, 11, 71-87.
https://doi.org/10.4310/DPDE.2014.v11.nl.a4

[12] Biagini, F. and Hu, Y. (2008) @ksendal B., Zhang T.: Stochastic Calculus for Frac-
tional Brownian Motion and Applications. Springer, New York.
https://doi.org/10.1007/978-1-84628-797-8

[13] Mishura, Y.S. (2008) Stochastic Calculus for Fractional Brownian Motion and Re-
lated Processes. Springer, Berlin. https://doi.org/10.1007/978-3-540-75873-0

DOI: 10.4236/jamp.2018.64078

923 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.64078
https://doi.org/10.1137/S0363012901391688
https://doi.org/10.1016/j.na.2006.11.018
https://doi.org/10.1016/S0034-4877(12)60047-0
https://doi.org/10.1007/s10883-009-9068-x
https://doi.org/10.1016/j.camwa.2011.04.040
https://doi.org/10.1142/8180
https://doi.org/10.1007/BF00281373
https://doi.org/10.1016/j.spl.2015.10.019
https://doi.org/10.4310/DPDE.2014.v11.n1.a4
https://doi.org/10.1007/978-1-84628-797-8
https://doi.org/10.1007/978-3-540-75873-0

J.Q.Han, L. T.Yan

(14]

(15]

(16]

(17]

(18]

[19]

[20]

Han, J. and Yan, L. (2018) Controllability of a Stochastic Functional Differential
Equation Driven by a Fractional Brownian Motion. Advances in Difference Equa-
tions, 2018, 104. https://doi.org/10.1186/s13662-018-1565-3

Feckan, M., Wang, J. and Zhou, Y. (2013) Controllability of Fractional Functional
Evolution Equations of Sobolev Type via Characteristic Solution Operators. Journal
of Optimization Theory and Applications, 156, 79-95.
https://doi.org/10.1007/s10957-012-0174-7

Cui, J. and Yan, L. (2011) Existence Result for Fractional Neutral Stochastic Inte-
gro-Differential Equations with Infinite Delay. Journal of Physics A: Mathematical
and Theoretical, 44, 335201. https://doi.org/10.1088/1751-8113/44/33/335201

Mahmudov, N.I. and Denker, A. (2000) On Controllability of Linear Stochastic
Systems. International Journal of Control, 73, 144-151.
https://doi.org/10.1080/002071700219849

Guendouzi, T. and Idrissi, S. (2012) Approximate Controllability of Fractional Sto-
chastic Functional Evolution Equations Driven by a Fractional Brownian Motion.
ROMATI Journal, 8, 103-117.

Daher, S.J. (1978) On a Fixed Point Principle of Sadovskii. Nonlinear Analysis:
Theory, Methods & Applications, 2, 643-645.
https://doi.org/10.1016/0362-546X(78)90012-3

Li, Y. and Liu, B. (2007) Existence of Solution of Nonlinear Neutral Stochastic Dif-
ferential Inclusions with Infinite Delay. Stochastic Analysis and Applications, 25,
397-415. https://doi.org/10.1080/07362990601139610

DOI: 10.4236/jamp.2018.64078

924 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.64078
https://doi.org/10.1186/s13662-018-1565-3
https://doi.org/10.1007/s10957-012-0174-7
https://doi.org/10.1088/1751-8113/44/33/335201
https://doi.org/10.1080/002071700219849
https://doi.org/10.1016/0362-546X(78)90012-3
https://doi.org/10.1080/07362990601139610

	Controllability of a Stochastic Neutral Functional Differential Equation Driven by a fBm
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Fractional Brownian Motion
	2.2. Some Assumptions

	3. Main Results
	4. Conclusion
	Funding
	References

