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Abstract 
In the present paper, a custom algorithm based on the method of orthogonal 
collocation on finite elements is presented and used for the location of global 
homoclinic point-to-point asymptotic connecting orbits. This kind of global 
bifurcation occurs in a large variety of problems in Applied Sciences, being 
associated to specific, significant physical aspects of the problem under con-
sideration. In order to confront the difficulties faced when the location of such 
orbits is attempted, high order boundary conditions are constructed through 
scale order approximations, and used instead of the more common first order 
ones. The effectiveness of the implemented algorithm is justified by means of 
the specific applications and the figures presented. 
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1. Introduction 

In recent years, the improvement of hardware capabilities, such as operational 
CPU frequency, the increasing amount of RAM equipped, the use of paralleliza-
tion and the improvement of symbolic mathematical software has enabled re-
searchers to numerically compute global asymptotic orbits more easily, since 
their computation constitutes a computationally demanding task, even in the 
case of low dimensional systems. Homoclinic point-to-point connecting orbits 
arise in various occasions where hysteresis and saturation phenomena are en-
countered. Also, these orbits act as separatrices for the nonlinear state space in 
2D conservative ODEs, since they divide the phase space into regions of periodic 
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and non-periodic solutions, respectively, as it is known. In that sense, we can 
consider homoclinic orbits as the limit of periodic solutions, that is a periodic 
orbit with infinite fundamental period, while it remains bounded. 

In the present paper, we present an algorithm for the numerical computation 
of global homoclinic asymptotic point-to-point connecting orbits (homoclinic 
P2P orbits for short from now on), where the evaluation of high order boundary 
conditions (BC from now on) is involved. It is well known that the projection 
method converges exponentially with the increase of the truncation interval, 
which in turn, however, can increase the computational time (mainly in ordi-
nary PCs with low to moderate CPU power such as an Intel Core i7 870). So, the 
use of high order BC can be proved useful in cases like that. In Section 2, a brief 
description of the algorithm is given and in Section 3 the procedure of the ex-
traction of high order BC is presented. The algorithm is applied to the Lorenz 
system (Section 4), as well as to a three-species food chain model with group de-
fence ecosystem (Section 5), both being three dimensional cases of dynamical 
systems. The analysis is carried out with the aid of MathworksMatlab and the 
symbolic engine of Maplesoft Maple, by means of which we also obtain the re-
spective graphs. 

2. Description of Algorithm 

The well-known algorithm of orthogonal collocation on finite elements (widely 
used in the famous software AUTO86 (see [1] and MATCONT (see [2]) has 
been implemented and Legendre orthogonal polynomials of maximal degree m , 
defined by user, have been used for the approximation of the orbits of interest. 
Regarding the numerical approximation of the homoclinic orbit of the dynami-
cal differential system 

( ) 1; , , , :n n nx f x a x a f += ∈ ∈ →
                 (1) 

With ( )1,..., T
nx x x=  the vector of state variables and a  a parameter of the 

system, the infinite time horizon ( ),−∞ +∞  is generally truncated to [ ],T T− + , 
so that by setting ( )t T Tτ + −= − , (1) is transformed to (see [3]) 

( ) ( ) ( ); ,y T T f y α y y τ+ −= − =                  (2) 

together with an integral phase condition (see below). Here we have chosen a 
symmetrically truncated time interval, that is T T T+ −= − = . Then, through the 
appropriate normalization, the independent variable of time is scaled to [0,1]  
and the system is further reduced to 

( )2 ;y Tf y α=                          (3) 

Thus after defining the maximal degree of the orthogonal basis polynomials 
(the Legendre polynomials here), the time interval [ ]0,1  is divided into 1N −  
subintervals-elements, [ ]1, ,  1,.., 1i iτ τ i N+ = − . Moreover, the solution of the 
differential system is approximated by a weighted sum of the basis polynomials 

( ) ( ), ,
0

, 1,.., 1,
m

n
i i l i l i

l
y τ c P τ i N y

=

= = − ∈∑ 

            
(4) 
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in each time subinterval, where ( ),i lP τ  are the Legendre polynomials of degree 
l  and the coefficients ,i lc  must be determined. The positions of the colloca-
tion points, , , 1,...,i jτ j m= , being m  internal points in each time subinterval 
(See Figure 1), are defined as the translated roots of the original Legendre poly-
nomial of degree m . Then, by substituting (4) into (3) we obtain the discretized 
system of differential equations, that is a system of nonlinear algebraic colloca-
tion equations, which are required to be exact at the collocation points. Thus the 
following ( )1nm N −  equations ( n  is the number of state variables) should 
hold: 

( )
,

,2
i j

i
i i j

τ

dy
Tf y τ

dτ
 =  

                     
(5) 

for 1, .. , 1, 1, .. ,i N j m= − =  and τ  the scaled independent variable of time. 
By setting 

( ), , , 1, .. , 1, 1, .. ,i j i i jy y τ i N j m= = − =  

then the requirement that the solution be continuous within the whole time in-
terval, leads to the associated ( )2n N −  continuation (matching) conditions 

1, ,0 , 2,.., 1i m iy y i N− = = −                     (6) 

where ( ),0 , 1,.., 1i i iy y τ i N= = − . Also, the discrete counterparts of the BC that 
are used for the location of limit cycles are the n  equations 

1,0 1,N my y −=                           (7) 

A technique for the determination of high order BC in the case of homoclinic 
orbits will be described below. 

Finally, the discrete counterpart of an integral type phase condition is utilized 
for both limit cycles and homoclinic orbits; the continuous form of this condi-
tion is (See [1]) 

( ) ( ) ( )1 T

0
ˆ ˆ d 0y y yτ τ τ τ− =  ∫                     

(8) 

where the approximation ( ) ( )( )ŷ τ f y τ≈  is used. Note that for the location of 
limit cycles, by the time normalization pτ t T= , mapping 0, pT    to [ ]0,1 , 
with pT  the fundamental period of the limit cycle, the original system (1) is 
transformed to 
 

 
Figure 1. Meshing of time interval, collocation points. 
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( ) ( ); ,pu T f u α u u τ= =                     (9) 

Also, (5) becomes 

( )
,

,
i j

i
p i i j

τ

dy
T f y τ

dτ
 =  

                    
(10) 

So, the period appears explicitly as a system parameter to benefit the numeri-
cal continuation performed. Now, by using the Gauss-Legendre quadrature, the 
discrete counterpart of the integral phase condition (8) takes the form 

1

, , , ,
1 0

ˆ , 0
N m

i j i j i j i j
i j

ω y y v
−

= =

− =∑∑ 

                  
(11) 

where ,i jω  denote the Gauss-Legendre quadrature coefficients-weights, , ,ˆ,  i j i jv y  
are the values of the derivatives and the points of the computed orbit itself at a 
previous step, respectively, and ,i jy  are the points to be determined. This con-
dition has certain advantages over the Poincaré type, scalar ones, especially when 
continuation of the orbit of interest is carried out. So, counting up the number 
of the unknowns and the number of the equations for the case of limit cycle lo-
cation, we deduce that the problem is well-posed, since these numbers are equal. 

3. High Order Boundary Conditions 

Both the well-known and widely used techniques of projection BC and the 
method of eigenvectors [4] are of first order. Thus quite good initial data is re-
quired for the successful computation of the orbits of interest and this is be-
coming harder and harder to achieve as the number of state variables together 
with the number of active parameters increase. Here, by appropriately combin-
ing the multiple scales approximation method with that of successive approxi-
mations, we construct a technique for the determination of high order BC, in 
order to locate numerically homoclinic P2P orbits. The idea for the above men-
tioned combination comes from Deprit and Henrard [5], Bennett [6] and the 
relevant references therein. Also, Hassard [7] presented the idea to use high or-
der BC instead of the projection ones. Let us give a quick description of this 
technique. 

We consider a dynamical differential system of the form (1) which possesses a 
number of equilibrium points, and let ( )0 0 0 0

1 2, ,..,
T

nx x x x=  be the fixed point of 
interest (i.e. the one associated with the homoclinic P2P orbit). Then by setting 

0 , 1,...,i i iξ x x i n= − =                     (12) 

we expand the right-hand side of (1) in a Taylor series and keep terms up to the 
fourth order, that is 

( )1,..., ; , 1,...,i i nξ h ξ ξ a i n= =

                 (13) 

with ih  polynomial functions of 1,..., nξ ξ , of order less or equal to four. 
Moreover, assuming ( ), 1,...,i t i n=ξ , can be approximated up to the order of 
interest in positive integerpowers of a small amplitude orbital parameter, let it be 
ε , as 
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( ) ( ),
1

k
j

i i j
j

ξ t ε ξ t
=

≈ ∑
                      

(14) 

where k  is the desired order of approximation. Then, substituting (14) in the 
expanded equations (13) and equating the terms of the same order, we derive k  
respective linear (with regard to the variables ( ), , 1,...,i j i nξ =  corresponding 
to the j − order, 1,...,j k= ) scale order systems. Further assuming the fixed 
point of interest is hyperbolic (i.e. no eigenvalue associated with it, is trivial), the 
respective systems are solved successively. Then, in order to substitute the solu-
tions associated with a specific order to the higher order systems, all the integra-
tion constants which are not associated with the manifold of interest (the high 
order approximation of which is sought), as well as the integration constants 
corresponding to the homogeneous part of the respective 2nd and higher order 
systems are set equal to zero. Finally, the total solution up to the desired order, 
k , is given by the n  sums of (14). 

More precisely, regarding the scale order approximations of the outgoing (in-
coming) solution vector, associated with the unstable (stable) manifold of the 
equilibrium (to which the orbit under consideration is homoclinic), by consi-
dering the solutions of the respective systems, we remove the homogeneous part 
of the solution ( 2, 1,...,j j k≥ = ) and set the integration constants correspond-
ing to the eigenvalues with negative (positive) real part equal to zero. Then, we 
define the high order BC for the computation of the homoclinic orbit, in the 
form 

( ) ( )2 2

,0 1 ,1 10 1 0, 1,...,i out i in
i i i N iC y C y i nτ ξ τ ξ−   = − + = − = =        

(15) 

where the upper index in 1y  and 1Ny −  denotes the i -coordinate of these 
vector functions, ,0 ,1(C ,C )i i  are some positive weighting coefficients (set equal 
to 1 for the applications under consideration in this paper)and ( , )out in

i iξ ξ  have 
been evaluated via (14). 

Equation (15) are differentiable, so that the standard iterative correcting 
methods of Jacobian based solvers can be used during the solution procedure. By 
employing the aforementioned high order BC a computation of the homoclinic 
orbit of interest is achieved and this type of BC can be proved useful in cases like 
those mentioned in the introduction. Ideally (that is when (15) is zero for all 

1,...,i n= ), both the start and endpoints are equal to the ones defined through 
the high order BC presented above and the corresponding relations are differen-
tiable, so that standard iterative correcting, Jacobian based solvers can be used 
during the solution procedure. All the aforementioned coefficients have been set 
equal to 1 for the applications under consideration in this work. 

In general, considering the system (1) (with pa∈ ), we should determine 
the number of control parameters, p , for which the connecting orbits are iso-
lated and structurally stable phenomena. The fixed points ,x x− +  associated 
with the global connecting orbit are in fact two invariant sets of the system, 

, n pM M +
− + ⊂  , respectively, and the orbit { }( ( ), ) :  γ x t a t= ∈  is called a 
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connecting orbit from M −  to M +  if 

( )( ), 0dist z t M ± →
 

as t → ±∞                 (16) 

where ( ),z x a=  is the connecting orbit pair. More specifically, for the a −  
and ω−  limit sets it holds that 

a( ) , ω( )γ M γ M− +⊂ ⊂                     (17) 

So, if ( ) ( )a γ ω γ= , the connecting orbit is called homoclinic. It is called het-
eroclinic, otherwise. Assuming that M ±  are adequately smooth invariant 
manifolds of dimensions cn p± + , where cn±  denote the dimensions of the 
manifolds ( )M a±  in the following decomposition (See [3]) 

( ) { }( )
Πa

M M a a
∈

= ×


                     
(18) 

where Π p⊂   is compact and ( )M a  are compact invariant sets of the sys-
tem. If we further assume that ( )M a± , Πa∈  have unstable manifolds 

( )uM a±  and stable manifolds ( )sM a±  with dimensions c un n± ±+  and 

c sn n± ±+ , respectively, and ( )M a±  also have a hyperbolic structure (so that 
these are independent of Πa∈ ), then c s un n n n± ± ±= + + . However, for the 
steady case, since ( )M a±  are hyperbolic equilibria of (1) (assumed throughout 
the present paper unless stated otherwise), that is 

( ) ( ) ( ) ( ),M a x a M a x a+ + − −= =                (19) 

we have that 0c cn n+ −= = , so u sn n n± ±= − . Whenever ( )uM x−  and 
( )sM x+  intersect in at least one point, they intersect in at least one orbit by 

uniqueness of solutions to the initial value problem and 

( ) { }( ) ( ) { }( ),  where ,u s u u s s
a a

γ M M M M a a M M a a− + − − + +⊂ ∩ = × = ×
 

 

Then we expect the orbit γ  to be an isolated connecting orbit if 

( ) ( ) ( ) ( ){ }u sz t z t z tT M T M T γ span z t− +∩ = = 

 
for all t∈         (20) 

for the tangent spaces at ( )z t . Furthermore, the connecting orbit is persistent 
in parametricp −  systems as long as the intersection is transversal [3], that is if 

( ) ( )
n p

u sz t z tT M T M +
− ++ = 

                   
(21) 

So, based on (20) and (21), the sum of dimensions results in 

1u c s cp n n n n p n p− − + ++ + + + + − = +               (22) 

or (since 0c cn n+ −= = ) 

1.u up n n+ −= − +                        (23) 

A more thorough explanation lies in the field of differential topology and 
more specifically according to transversality theorem of the homonymous theory, 
when two manifolds of dimensions k  and l  intersect in an n − dimensional 
space, then generally their intersection will be a manifold of dimension k l n+ −  
(See [8]). Let us also note that the non-transversal intersections can be perturbed 
to transversal ones, whereas the transversal ones retain their topology under 

https://doi.org/10.4236/jamp.2018.63049


P. S. Douris, M. P. Markakis 
 

 

DOI: 10.4236/jamp.2018.63049 560 Journal of Applied Mathematics and Physics 
 

perturbation. The above dimension formula can also be expressed in terms of 
codimension. The codimension of an l -dimensional submanifold of n -space 
is n l− . Now, if case (22) or equivalently (23) does not hold, then either the two 
manifolds intersect at more than one orbit, so that extra conditions (restrictions) 
are necessary for the parameterization of a unique orbit, or the connecting orbit 
is not a structurally stable phenomenon, so a number of extra parameters need 
to be considered. For the systems under consideration in this paper, u un n+ −= , 
because the orbit sought is a homoclinic point-to-point one, so according to (23), 

1p =  and thus we have chosen one active parameter in each case. 

4. Application to the Lorenz System 

The first application of the methodology presented in this paper is on the well- 
known Lorenz model [9], which not only serves as a pure mathematical model, 
but it is applied in various fields of applied physics (thermosyphons, dynamos, 
meteorology, convection, etc.). This example serves as a validation of the integr-
ity, accuracy and precision of the implemented algorithm. The system equations 
are 

x σx σy
y rx y xz
z bz xy

= − +
= − −
= − +





                         

(24) 

We choose the standard parameter values 10,  8 / 3σ b= =  and use r  as the 
bifurcation parameter. 

4.1. Equilibrium Analysis 

As it is known, the system possesses three equilibria, one at the origin, 
( )0 0,0,0E  and two nonzero ones (see [10]) 

( ) ( )( ) ( ) ( )( )1 , 1 , 1 , 1 , 1 , 1E b r b r r E b r b r r+ −− − − − − − − −  

4.2. Hopf Bifurcation-Limit Cycles Continuation 

By using the Liu criterion [11], regarding the equilibrium point E+ , in order to 
investigate the occurrence of the Hopf bifurcation, we first evaluate the Jacobian 

0
1

σ σ
J r z x

y x b

− 
 = − − − 
 −                       

(25) 

so that 

( )
( ) ( )

0

1 1 1

1 1

E

σ σ

J b r

b r b r b
+

 −
 
 = − − −
 
 − − −              

(26) 

Then by writing the characteristic polynomial 
3 2

2 1 0 0λ p λ p λ p+ + + =                     (27) 
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where 0 1 22 ( 1),  ( ),  1p bσ r p b σ r p σ b= − = + = + + , the above mentioned crite-
rion yields 

( )
( )

0

1

2 1 2 0

0 1
0 0

2 1
0 ,

1cr

p r
p b σ r

σ σ b σ
D p p p r r

σ b

> → >

> → + >

+ + +
− = → = =

− −


          

(28) 

hence a Hopf bifurcation takes place, which is subcritical, since the first 
Lyapunov coefficient is evaluated ( ) 3

1 2.55 10 0crl r −× > . The limit cycles are 
continued up to one close enough to the saddle equilibrium ( )0 0,0,0E . The 
numerical continuation for both applications presented in this work has been 
carried out by means of a custom algorithm of sequential numerical continua-
tion based on the method of orthogonal collocation on finite elements and the 
integral phase condition (8). (Also, the numerical continuation can be per-
formed by means of the well-known numerical toolbox MATCONT [12]). The 
Jacobian matrix evaluated at 0E  has two negative eigenvalues, as well as a posi-
tive one, namely [6] 

( )2
1,2 30.5 1 1 4 ,λ σ σ σr λ b = × − − ± − + = −  

 

The continued limit cycles are presented in Figure 2. 
 

 
Figure 2. Continued limit cycles for the Lorenz system with 10,  8 / 3= =σ b . 
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As soon as the numerically continued cycles are close enough to the fixed 
point of interest and the free parameter remains practically unchanged, then the 
main computation of the homoclinic connecting orbit can be initiated, as the 
former (the largest cycle) can be considered as a good initial approximation of 
the latter. 

4.3. Application of High Order Boundary Conditions 

Let us describe the definition and application of high order BC. Assuming the 
solutions of the dynamical differential system of interest can be approximated by 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, ,
k k k

j j j
j j j

i i i
x t ε x t y t ε y t z t ε z t

= = =

≈ ≈ ≈∑ ∑ ∑
      

(29) 

where ε  denotes the orbital parameter and k  is the desired order of ap-
proximation. Then, by substituting (29) into (24) and equating the terms of the 
same order, we get the respective linear (as regards the variables ( , , )j j jx y z  
corresponding to the j -order, 1,...,j k= ) systems. In terms of the present 
analysis the desired order of approximation has been chosen as 4k = , so that 
we obtain 

1st order approximation 

1 1 1

1 1 1

1 1

x σx σy
y rx y
z bz

= − +
= −
= −





                         

(30) 

2nd order approximation 

2 2 2

2 2 2 1 1

2 2 1 1

x σx σy
y rx y x z
z bz x y

= − +
= − −
= − +





                       

(31) 

3rd order approximation 

3 3 3

3 3 3 1 2 2 1

3 3 1 2 2 1

x σx σy
y rx y x z x z
z bz x y x y

= − +
= − − −
= − + +





                    

(32) 

4th order approximation 

4 4 4

4 4 4 1 3 2 2 3 1

4 4 1 3 2 2 3 1

x σx σy
y rx y x z x z x z
z bz x y x y x y

= − +
= − − − −
= − + + +





                  

(33) 

By means of the procedure described in Section 3, we arrive at the approxima-
tions of both the outgoing (locally asymptotically unstable) vector solution and 
the incoming (locally asymptotically stable) one. Then, by using (30), the total 
solution up to the fourth order is given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 3 4
1 2 3 4

2 3 4
1 2 3 4

2 3 4
1 2 3 4

x t εx t ε x t ε x t ε x t

y t εy t ε y t ε y t ε y t

z t εz t ε z t ε z t ε z t

≈ + + +

≈ + + +

≈ + + +              

(34) 
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where ( , , )x y z  represent the outgoing or the incoming solution and 
( , , ), 1, 2,3, 4j j jx y z j =  stand for ( , , )out out out

j j jx y z  or ( , , )in in in
j j jx y z , respectively.  

Moreover, since all the demanded calculations can be lengthy even for low 
dimensional systems, the above approximations can be obtained via a symbolic 
computational package, such as Mathematica or Maplesoft Maple (which offers 
direct integration with MathworksMatlab). We present below the solutions as-
sociated with the outgoing vectors: 

1st order approximation 

( ) ( ) ( )

( ) ( )

( )

( )

1 111 81 40 11 81 40
2 2

1 1 2

1 11 81 40
2

1 1

1 11 81 40
2

2

8
3

1 3

9 1 81 40
20 20

9 1          81 40
20 20

− + + − + +

− + +

− + +

−

= +

 = + + 
 

 + − + 
 

=

r t r t

r t

r t

t

x t c e c e

y t r c e

r c e

z t c e
            

(35) 

where 1 2 3, ,c c c  denote the integration constants (from now on ,  1, 2,3, 4,...ic i =  
will denote integration constants, unless stated otherwise). By setting 2 3 0c c= =  
we obtain the first order approximation of the outgoing solution vector 

( )

( )

1 11 81 40
2

1 1
1 11 81 40
2

1 1

1

9 1 81 40
20 20

0

r tout

r tout

out

x c e

y r c e

z

− + +

− + +

=

 = + + 
 

=             

(36) 

2nd order approximation 

( ) ( ) ( )

( ) ( )

( )

( )
( )( ) ( )

1 111 81 40 11 81 40
2 2

2 4 5

1 11 81 40
2

2 4

1 11 81 40
2

5

1 25 3 81 40
3 8

2 3
2 1 6

9 1 81 40
20 20

9 1           81 40
20 20

25 3 81 40 9 81 403
160 13 45

− + + − + +

− + +

− + +

− + +

−

= +

 = + + 
 

 + − + 
 

 
+ + + + 

= + 
+ 

 

r t r t

r t

r t

r t

t

x t c e c e

y t r c e

r c e

r r e
z t c c e

r
 

(37) 

and setting 4 5 6 0c c c= = =  we get the second order approximation 

( )
( )

( )
( )( ) ( )

2

2

11 81 402
2 1

0

0

25 3 81 40 9 81 403
160 13 45

out

out

r tout

x t

y t

r r
z t c e

r
− + +

=

=

+ + + +
=

+      

(38) 

Regarding the next orders of approximation, only the outgoing solution vec-
tors are presented, since the formulae of the respective full solutions are quite 
lengthy. However, the symbolic engine of Maplesoft Maple proved excellent at 
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handling them. 
3rd order approximation 

( )

( )

3 11 81 403 2
3 ,3 1

3 11 81 403 2
3 ,3 1

3 0

r tout
x

r tout
y

out

x C c e

y C c e

z

− + +

− + +

=

=

=                    

(39) 

where  

( )
( )( )( )

2

,3

720 609 81 40 10503 2262 81 40 203581
16 1 160 203 13 45x

r r r r
C

r r r

− + − + − − + −
=

− + +
 

( ) ( )
( )( )( )

2

,3

540 81 40 15930 5898 81 40 70722 7917 81 40 712531
80 1 160 203 13 45y

r r r r r
C

r r r

− + − + − + − − + −
=

− + +  
4th order approximation 

( )

4

4

2 83 81 40 29
4 3 3

4 ,4 1

0

0

out

out

r t
out

z

x
y

z C c e
 + − −  

=

=

=                   

(40) 

where 1c  can be user defined and 

( )( )
( )( )( )( )

2 2

,4

3 81 40 29 120 81 40 3940 1649 81 40 21551 316 81 40 271449
640 45 14 1 160 203 45 13z

r r r r r r r r
C

r r r r

+ + + + + + + + + +
= −

− − + +
 

Similarly, the expressions of the incoming vector can be set, as well. There, the 
integration constants associated with the unstable eigenvalues must be set equal 
to zero. Via the method of orthogonal collocation on finite elements and 4th or-
derBC as described above, the homoclinic connecting orbit of interest has been 
located inside the truncated time interval [ 7.2018, 7.2018]− , which has been 
determined by means of the well-known Beyn’s method [1]. The trajectory of the 
homoclinic orbit with 13.92655740..r   is presented in Figure 3 together with 
the orbit obtained by use of the standard predictor-corrector method Adams- 
Bashforth-Moulton (ode113 of MathworksMatlab). The improvement achieved 
by the use of high order BC as compared to the traditional first order ones, is 
shown in Figure 4, Figure 5(a) and Figure 5(b). 

5. Application to a Model of Three-Species Food Chain with 
Group Defence Ecosystem 

The model used to describe a food-chain with group defense ecosystem is an in-
stantaneous one (i.e. no time delays appear), expressed by the system of auto-
nomous ordinary differential equations (See [13]) 

( ) ( )
( ) ( )
( )

,x xg x K yp x

y y r cp x zq y

z z s dq y

= −

= − + −  
= − +  







                   

(41) 

with ( ) ( ) ( )0 0,  0 0,  0 0x y z≥ ≥ ≥ . Here ( )x t  denotes the prey population,  
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Figure 3. Point-to-point homoclinic connecting orbit at ( )0 0,0,0E  for the Lorenz system with the method of orthogonal colloca-
tion on finite elements and 10,  8 3= =σ b . 
 

 

Figure 4. Comparison between 1st, 2nd and 4th order BC for the Lorenz system (outgoing vector) with 10,  8 3= =σ b . 
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(a) 

 
(b) 

Figure 5. Comparison between (a) 1st and 4th order BC and (b) 2nd and 4th order BC, for the Lorenz system (incoming vector) with 
10,  8 3= =σ b . 
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( )y t  denotes the intermediate population which feeds upon x  and ( )z t  de-
notes the top predator population that feeds upon y . Additionally, ,  ,  ,  K r c d  
are positive constants and ,  ,  g p q  are analytic functions. More specifically, 
K  denotes the carrying capacity of the environment and will be used as the bi-
furcation parameter (active parameter). The function ( , )g x K  denotes the spe-
cific growth rate of the prey in the absence of predation, ( )p x  denotes the 
predator functional response and ( )q y  a predator functional response of z on 
y . In the present analysis logistic growth rate is considered for g , that is 

( , ) 1 /g x K x K= − , ( ) xp x xe−=  and ( )q y y= . These choices satisfy certain 
conditions mentioned in [13], which the reader can refer to if further informa-
tion is sought. Group defence is a phenomenon whereby there is a decrease (or 
even total prevention) in predation when the numbers of the prey are large, due 
to the ability of the prey to better defend or disguise themselves. So, the system 
takes the form 

21 x

x

x x x xye
K

y ry cxye yz
z sz dyz

−

−

= − −

= − + −
= − +





                      

(42) 

5.1. Fixed Point Analysis 

The system (42) possesses four types of fixed points. More precisely we have 

( ) ( )

( ) ( )

( ) ( )

0

* * * *

0,0,0 , ,0,0

, ,0 , , 1 one or two

, , none, one or two

h

K

x h
h h h h h h

E E K

xr cE x y x e y x
c r K

E x y z

−  = = − 
 

     

(43) 

The latter is an internal equilibrium (i.e. in general it might or might not be an 
equilibrium of (42)), where 

*
* *

* * *1 0, , 1xx s s cd xe y z x r
K d d s K

−  
− − = = = − − 

          
(44) 

with * * *0, 0, 0x y z> > > . Thus regarding the fixed point *E , by evaluating 
the Jacobianmatrix *

*( , )
E

J x K , then the third equation of (28) together with (44) 
yield the critical equilibrium, as well as the critical value of the active parameter 
K . In particular, by setting ( , , , ) (0.28, 1, 0.5, 0.38)r c s d = , we get 

*

* *

1.0000000, 1.9381794269...

1.31579, 0.0878794
cr cr

cr cr

x K

y z

 

               
(45) 

Also, the corresponding critical eigenvalues are 

1,2 3,0.209618 , 0.0318962sλ i λ= ± = −               (46) 

Note that there is a second solution of the system of the third equation of (28) 
together with (44), be it 1x K= − . This solution is rejected, as the fixed point 
associated with it possesses two purely imaginary eigenvalues together with a 
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trivial one, that is the first and second inequality of (28) do not hold. 
Additionally, the transversality condition 

( )1 2 0 0
crK K

d p p p
dK

=

−
≠  

is verified numerically. Then by computing the first Lyapunov coefficient at 

crK K= , ( )1 9.697250 0crl K = − < , we conclude with the occurrence of a super-
critical Hopf bifurcation. Thus, a stable limit cycle bifurcates from the equilib-
rium and it is numerically continued towards the direction of increasing period. 
The sought homoclinic orbit, associated with the equilibrium hE , will constitute 
a structurally stable phenomenon for the system of interest for 1p =  according 
to (23). The aforementioned numerically continued limit cycles are presented in 
Figure 6. 

5.2. Application of High Order Boundary Conditions 

We briefly present the corresponding scale order systems. Thus regarding a sys-
tem fixed point ( ) ( )0 0 0 0 0, , , , (0,0)E x y z x y ≠ , that is hE  or *E , by setting 

0 0 0, ,u x x v y y w z z= − = − = −                (47) 

expanding the right-hand sides of (42) in Taylor series around E  and keeping  
 

 
Figure 6. Numerically continued limit cycles for the model of the three-species food chain with group defence ecosystem, for 
( ) ( ), , , 0.28,1,0.5,0.38=r c s d . 
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terms up to the fourth order (hence, finally 4th order BC are extracted) we have 

2 3 2 4 3
1 2 11 12 111 112 1111 1112

2 3 2
1 2 3 11 12 23 111 112

4 3
1111 1112

2 3 23

1 1 1 1 1
2 6 2 24 6

1 1 1
2 6 2

1 1     
24 6

= + + + + + + +

= + + + + + + +

+ +

= + +







u H u H v H u H uv H u H u v H u H u v

v Q u Q v Q w Q u Q uv Q vw Q u Q u v

Q u Q u v

w L v L w L vw
(48) 

where 

2 20 0
1 0 0 2 11 0 0

0

1 1 1 2 1, 1 , 2
x xK K KH x x H H x x

K K y K K K K
− − + = − = − − = − + 

 
 

2 2
12 0 0 111 0 0

0

1 1 1 3 11 , 3K KH x x H x x
y K K K K

+ + = − + − = − + − 
 

 

2 2 111
11 2 0 0 1111 0 0 1112

0 0

1 2 1 4 12 , 4 ,
HK KH x x H x x H

y K K K K y
+ + = − + = − + = 

 
 

0 0
1 0 12 2 0 3 0

0

, 1 ,
x x

Q cy H Q r z c Q y
y K
 = − = − − + − = − 
 

 

11 0 112 12 12 23 111 111 112 112, , 1, ,Q cy H Q cH Q Q cH Q cH= − = − = − = − = −  

111
1111 1111 1112 2 0 3 0 23

0

, , , ,
cHQ cH Q L dz L s dy L d
y

−
= − = = = − + =  

Then, for ( ) ( )0 0 0, , , ,0h hx y z x y= , where ( ),h hx y  are given by (43), by sub-
stituting (14) in (48) with 4k = , ( ) ( )1 2 3, , , ,u v wξ ξ ξ =  and  

( ), , , 1, 2,3, 4j j ju v w j =  denoting the successive approximations of the state 
variables, we take the following scale order systems: 

1st order approximation 

1 1 1 2 1

1 1 1 2 1 3 1

1 2 1 3 1

u H u H v
v Q u Q v Q w
w L v L w

= +
= + +
= +





                     

(49) 

2nd order approximation 

2
2 1 2 2 2 11 1 12 1 1

2
2 1 2 2 2 3 2 11 1 12 1 1 23 1 1

2 2 2 3 2 23 1 1

1
2

1
2

u H u H v H u H u v

v Q u Q v Q w Q u Q u v Q v w

w L v L w L v w

= + + +

= + + + + +

= + +





          

(50) 

3rd order approximation 

( )

( )

( )

( )

3 2
3 1 3 2 3 11 1 2 12 1 2 2 1 111 1 112 1 1

3 1 3 2 3 3 3 11 1 2 12 1 2 2 1

3 2
23 1 2 2 1 111 1 112 1 1

3 2 3 3 3 23 1 2 2 1

1 1
6 2

1 1      
6 2

= + + + + + +

= + + + + +

+ + + +

= + + +







u H u H v H u u H u v u v H u H u v

v Q u Q v Q w Q u u Q u v u v

Q v w v w Q u Q u v

w L v L w L v w v w
  

(51) 
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4th order approximation 

( )

( ) ( )

( )

2 2
4 1 4 2 4 11 1 3 11 2 12 1 3 2 2 3 1 111 1 2

2 4 3
112 1 2 1 2 1 1111 1 1112 1 1

2
4 1 4 2 4 3 4 11 2 1 3 12 1 3 2 2 3 1

2
23 1 3 2 2 3 1 111 1 2 112 1

1 1
2 2

1 1 1
2 24 6

1 2
2
1 1
2 2

u H u H v H u u H u H u v u v u v H u u

H u v u u v H u H u v

v Q u Q v Q w Q u u u Q u v u v u v

Q v w v w v w Q u u Q u

= + + + + + + +

 + + + + 
 

= + + + + + + +

+ + + + +





( )

2 4 3
2 1 2 1 1111 1 1112 1 1

4 2 4 3 4 23 1 3 2 2 3 1

1 1
24 6

v u u v Q u Q u v

w L v L w L v w v w v w

 + + + 
 

= + + + +

(52) 

For ( ) ( ), , , 0.28, 1, 0.5, 0.38r c s d = , the homoclinic orbit of interest is nu-
merically computed within the truncated time interval [ ]831.2371 ,831.2371−  
with the value of the active parameter being equal to 2.080116..hK  . Then, we 
have ( )1.93101,0.494357,0hE  and the respective homoclinic orbit is presented 
in Figure 7. 

6. Conclusion-Discussion 

Firstly, an efficient custom algorithm of orthogonal collocation on finite ele-
ments implemented in MathworksMatlab has been presented together with two  

 

 
Figure 7. Point-to-point homoclinic connecting orbit at ( )1.93101, 0.494357, 0hE  for the model of the 

three-species food chain with group defence ecosystem, for ( ) ( ), , , 0.28,1, 0.5, 0.38r c s d = . 
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applications in different fields of Applied Mathematics, be them the well-known 
Lorenz system and a model of a three-species food chain with group defence 
ecosystem. As a result, global homoclinic asymptotic point-to-point connecting 
orbits have been obtained numerically, regarding the specific applications. In 
both cases an initial approximation of the homoclinic connecting orbits of in-
terest has been acquired by continuing limit cycles, which have emerged from a 
Hopf bifurcation, numerically up to a high value of the fundamental period of 
them. 

The efficiency of the algorithm also lies in the fact that all the required equa-
tions (that is, the collocation equations, the continuity equations, the BC and the 
phase condition) are converted to Matlab functions automatically, so that inte-
grated, sophisticated Matlab routines used for solving systems of nonlinear alge-
braic equations, as well as optimization routines or any other relevant, user- 
defined routines can be applied directly for the solution of the aforementioned 
system of nonlinear algebraic equations. Furthermore, the high order BC defined 
and used herein can be useful when ordinary PCs of low to moderate computa-
tional power are used for the location of homoclinic orbits, as they did not re-
quire the increase of the length of the truncation interval in order to achieve the 
precision sought for the computation.  

Finally, regarding the equilibrium point *E  of the ecosystem model, the 
physical meaning of the homoclinic orbit is that if the carrying capacity K  is 
increased (i.e. if enrichment is attempted) above the critical value crK  (leading 
to a supercritical Hopf bifurcation), then it approaches a limiting value, that of 
the homoclinic orbit, where the top predator is extinct (i.e. it eventually dies out). 
So, enrichment needs to be carried out with caution and occasions like that have 
to be taken seriously into account. Moreover, the homoclinic orbit of the Lorenz 
system can also be seen as a pure mathematical result as well, while also it serves 
as validation study of the implemented algorithm and the whole methodology 
presented in this paper. 
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