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Abstract 
In this paper, by applying a fixed point theorem to verify the existence of at 
least three positive solutions to a three-point boundary value problem with 
p-Laplacian. The interesting point is the nonlinear term is involved with the 
first-order derivative explicitly. 
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1. Introduction 

In this paper, we will consider the positive solutions to the following three-point 
boundary value problem with p-Laplacian 

( ( ( ))) ( , ( ), ( ))) 0, (0,1),p u t f t u t u t tφ ′ ′ ′+ = ∈                (1) 

(0) 0, (1) ( ),u u u η= =                        (2) 

where 2( ) | |p
p s s sφ −= , 1p > , (0,1)η∈  is a constant and  

( , , ) ([0,1] [0, ) [0, ))f t x y C R∈ × +∞ × → +∞ . 
The study of positive solutions on second-order boundary value problems for 

ordinary differential equations has aroused extensive interest, one may see 
[1]-[10] and references therein. 

Among the substantial number of works dealing with nonlinear differential 
equations we mention the boundary value problem (1) and (2). One thing to be 
mentioned is that nonlinear ter f is involved with the first-order derivative expli-
citly. 

2. Preliminaries 

Firstly, we present here some necessary definitions and background material of 
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the theory of cones in ordered Banach spaces. 
Definition 2.1. Let E  be a real Banach space. A nonempty closed set 

P E⊂  is said to be a cone provided that 
1) au bv P+ ∈  for all ,u v P∈  and all 0a ≥ , 0b ≥ , and  
2) ,u u P− ∈  implies 0u = . 
Definition 2.2. The map ψ  is said to be a nonnegative continuous concave 

functional on P  provided that : [0, )Pψ → ∞  is continuous and 

( (1 ) ) ( ) (1 ) ( )tx t y t x t yψ ψ ψ+ − ≥ + −  

for all ,x y P∈  and [0,1]t∈ . Similarly, we say the map α  is a nonnegative 
continuous convex functional on P  provided that : [0, )Pα → ∞  is conti-
nuous and 

( (1 ) ) ( ) (1 ) ( )tx t y t x t yα α α+ − ≤ + −  

for all ,x y P∈  and [0,1]t∈ . 
Definition 2.3. Let 0r a> > , 0L >  be constants, ψ  is a nonnegative con-

tinuous concave functional and ,α β  are nonnegative continuous convex func-
tionals on the cone P . Define the following convex sets 

{ }
{ }

{ }
{ }

( , ; , ) ( ) , ( ) ,

( , ; , ) ( ) , ( ) ,

( , ; , ; , ) ( ) , ( ) , ( ) ,

( , ; , ; , ) ( ) , ( ) , ( ) .

P r L u P u r u L

P r L u P u r u L

P r L a u P u r u L u a

P r L a u P u r u L u a

α β α β

α β α β

α β ψ α β ψ

α β ψ α β ψ

= ∈ < <

= ∈ ≤ ≤

= ∈ < < >

= ∈ ≤ ≤ ≥

∣

∣

∣

∣

 

The following assumptions as regards the nonnegative continuous convex 
functions ,α β  are used 

1( )B : there exists 0M >  such that max{ ( ), ( )}x M x xα β≤ , for all x P∈ ; 

2( )B : ( , ; , )P r Lα β ≠ ∅ , for any 0r > , 0L > . 
Next, we present a fixed point theorem established in [10], in which Bai and 

Ge generalized the Leggett-Williams’ fixed point theorem. The generalization is 
achieved by introducing on cone of continuous functionals satisfying certain 
properties. The technique using functionals to replace norms has been proved 
very useful in generalizing some fixed point theorems. 

Theorem 2.1. [10] Let E  be a Banach space, P E⊂  is a cone and 

2 1 0r d b r≥ > > > , 2 1 0L L≥ > . Assume the ,α β  are nonnegative continuous 
convex functionals satisfying 1( )B  and 2( )B , ψ  is a nonnegative concave 
functional on P , such that  

( ) ( )y yψ α≤  for all 2 2( , ; , )y P r Lα β∈   
and 2 2 2 2: ( , ; , ) ( , ; , )T P r L P r Lα β α β→  is a completely continuous operator. 
Suppose that 

1( )C : 2{ ( , ; , ; , ) | ( ) }y P d L b y bα β ψ ψ∈ > ≠ ∅ , ( )Ty bψ >  for all  

2( , ; , ; , )y P d L bα β ψ∈ , 

2( )C : 1( )Ty rα < , 1( )Ty Lβ < , for all 1 1( , ; , )y P r Lα β∈ , 

3( )C : ( )Ty bψ >  for all 2 2( , ; , ; , )y P r L bα β ψ∈  with ( )Ty dα > . 
Then T  has at least three fixed points 1 2 3 2 2, , ( , ; , )y y y P r Lα β∈  with 
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1 1 1

2 2 2

3 2 2 2 2 1 1

( , ; , ),

{ ( , ; , ; , ) | ( ) },

and ( , ; , ) \ ( ( , ; , ; , ) ( , ; , )).

y P r L
y P r L b y b
y P r L P r L b P r L

α β

α β ψ ψ

α β α β ψ α β

∈

∈ >

∈ ∪

 

3. Multiple Positive Solutions for (1) and (2) 

Let the Banach space 1[0,1]E C=  be endowed with the norm  

0 1 0 1
: max { max | ( ) |, max | ( ) | }.

t t
u u t u t

≤ ≤ ≤ ≤
′=  

and define the cone P E⊂  by 

{ | ( ) 0, (0) 0, is concave on [0,1]}.P u E u t u u= ∈ ≥ =   

Choose a natural number 1 2max
1

k
η η
 

≥  
− 

, . For notational convenience,  

we denote  

1 1 11 1 1 1 1min ( ) , ( )1 1
2 2

(1 ) , = .
p p p

p p pp pM N
p k k k p

η
η

η− − −+ +
− − −

 − − = + − 
  

 

Define functionals 

1/ 1 (1/ )0 1 0 1
( ) max | ( ) |, ( ) max | ( ) |, ( ) min | ( ) |, for .

k t kt t
u u t u u t u u t u Pα β ψ

≤ ≤ −≤ ≤ ≤ ≤
′= = = ∈  

Then , : [0, )Pα β → +∞  are nonnegative continuous convex functionals sa-
tisfying 1( )B  and 2( )B , and ψ  is nonnegative continuous concave function-
al on P , it is also clear that ( ) ( )u uψ α≤  for all u P∈ .  

Lemma 3.1. For [0,1]y L∈  then the boundary value problem 

( ( ( ))) ( ) 0, (0,1),

(0) 0, (1) ( ),
p u t y t t

u u u

φ

η

′ ′ + = ∈


= =
 

has a unique solution 

1
0

11 1
0

( ( ) ) , 0 ,
( )

( ( ) ) ( ( ) ) , 1.

t
p s

s
p ps t

y r dr ds t
u t

y r dr ds y r dr ds t

σ

η σ

σ

φ σ

φ φ σ

−

− −

 ≤ ≤= 
 + ≤ ≤

∫ ∫

∫ ∫ ∫ ∫
 

where [ ,1]uσ η∈  is the solution of the equation 
11 1( ) ( .( ( ) ))

x x s
p ps x x

dr dsy r y dr dsr
η
φ φ− −=∫ ∫ ∫ ∫  

Proof. The proof can be obtained by regular calculation, so we omit it here. 
We define an operator :T P E→  by 

1
0

11 1
0

( ( , ( ), ( )) ) , 0 ,
( )( )

( ( , ( ), ( )) ) ( ( , ( ), ( )) ) , 1.

t
p s

s
p ps t

f r u r u r dr ds t
Tu t

f r u r u r dr ds f r u r u r dr ds t

σ

η σ

σ

φ σ

φ φ σ

−

− −

 ′ ≤ ≤= 
′ ′ + ≤ ≤

∫ ∫

∫ ∫ ∫ ∫
 (3) 

where [ ,1]uσ η∈  is the solution of the equation 
11 1( ( , ( ), ( )) ) ( ( , ( ), ( )) ) .

x x s
p ps x x

f r u r u r dr ds f r u r u r dr ds
η
φ φ− −′ ′=∫ ∫ ∫ ∫   

by Lemma 3.1, we know that boundary value problem (1) and (2) has a solution 
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( )u u t=  if and only if u  is a fixed point of T . 
Lemma 3.2. :T P P→  defined by (3) is completely continuous. 
Proof. From the definition of T , we deduce that for each u P∈ , there is 

1[0,1]Tu C∈   
is nonnegative and satisfies (2).  

Moreover, ( )( )Tu σ  is the maximum value of Tu  on [0,1], since 

1

1

( ( , ( ), ( )) , 0 ,
( ) ( )

( ( , ( ), ( )) , 1.

p t
t

p

f r u r u r dr t
Tu t

f r u r u r dr t

σ

σ

φ σ

φ σ

−

−

 ′ ≤ ≤′ = 
′− ≤ ≤

∫

∫
          (4) 

is continuous and nonincreasing in [0,1] and ( ) ( ) 0Tu σ′ = . As ( ) 'Tu  is nonin-
creasing on [0,1], we have Tu P∈ . 

Hence, we get that :T P P→ . 
Then according to Arzela-Ascoli theorem, T  is completely continuous if 

and only if T  is continuous about u  and maps a bounded subset of P  
into a relatively compact set. 

Let nu u→  as n →∞  on P .  
For 0 1t≤ ≤ , according to (3) and (4), we have 

( )( ) ( )( ) 0 as ,nTu t Tu t n− → →∞  

and 

( ) ( ) ( ) ( ) 0 as ,nTu t Tu t n′ ′− → →∞  

Hence, we obtain that T  is continuous. 
Now, let PΩ⊂  be a bounded set, i.e., there exists a positive constant R  

such that 
{ : }u P u RΩ⊂ ∈ ≤ , for all u∈Ω , 

from the expression of Tu  and ( ) 'Tu  we can obtain that TΩ  is uniformly 
bounded according to the properties of f . And it is also easy to get that, for 
any u∈Ω , 1 2, [0,1]t t ∈ , we have 

1 2 1 2

1 2 1 2

| ( )( ) ( )( ) | 0, as .
| ( ) ( ) ( ) ( ) | 0, as .

Tu t Tu t t t
Tu t Tu t t t

− → →
′ ′− → →

 

which shows that TΩ  is equicontinuous.  
Then the Arzela-Ascoli theorem guarantees that TΩ  is relatively com-

pact, which means T  is compact. Then, we obtain that T  is completely 
continuous.  

Thus, from what has been discussed above, we can draw the conclusion 
that :T P P→  is completely continuous. 

We are now ready to apply the fixed point theorem due to Avery and Pe-
terson to the operator T  in order to get sufficient conditions for the exis-
tence of multiple positive solutions to the problems (1) and (2). 

Our main result is as follows. 
Theorem 3.1.  Assume that there exist constants 2 1 0r kb b r≥ > > > ,  

2 1 0L L≥ > , such that 2
2min{ , }rb L

M N
≤ . If the following assumptions hold 
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1
1 1 1 1

2 2 2

2
3 2

1

2 2 2

( ) : ( , , ) min{ ), )}, ( , , ) [0,1] [0, ] [ , ];

( ) : ( , , ) ), ( , , ) [ 1 ] [ , ] [ , ];

( ) : ( , , ) min{ ), )}, ( ,

( (

1 1

, ) [0

( ,

( ,1] [ , ,( 0 ] [ ].

p p

p

p p

rH f t v L t v r L L
N

kbH f t v t v b kb L L
M

rH f t v L t v

k k

r L L
N

ω φ φ ω

ω φ ω

ω φ φ ω

< ∈ × × −

> ∈ − × × −

≤ ∈ × × −

 

Then the boundary value problem (1) and (2) has at least three positive solu-
tions 1u , 2u  and 3u  such that 

1 1 1 10 1 0 1

2 2 2 2 21/ 1 (1/ ) 0 1 0 1

3 3 3 21/ 1 (1/ )0 1 0 1

max ( ) , max | ( ) | ,

min ( ) max ( ) , max | ( ) | ,

max ( ) , min ( ) , max | ( ) | .

t t

k t k t t

k t kt t

u t r u t L

b u t u t r u t L

bu t u t b u t L
η

≤ ≤ ≤ ≤

≤ ≤ − ≤ ≤ ≤ ≤

≤ ≤ −≤ ≤ ≤ ≤

′

′

< <

≤ ≤ ≤ ≤

≤ ≤ ≤′

 

Proof. From we discussed earlier, , ,E P T  is well defined. Problem (1) and 
(2) has a solution ( )u u t=  if and only if u  is a fixed point of T .  

We have already showed that :T P P→  is completely continuous. 
In what following, we will prove the results step by step according to the 

Theorem 2.1. 
The proof is divided into some steps.  
Firstly, we will show that condition 3( )H  implies that 

2 2 2 2: ( , ; , ) ( , ; , ).T P r L P r Lα β α β→  

In fact, for 2 2( , ; , )u P r Lα β∈ , we have 

2 20 1 0 1
( ) max | ( ) | , ( ) max | ( ) |

t t
u u t r u u t Lα β

≤ ≤ ≤ ≤
′= ≤ = ≤ , 

and assumption 3( )H  implies  

2
2( , ( ), ( )) min{ ), )}, 0( 1( .p p

rf t u t u t L t
N

φ φ′ ≤ ≤ ≤  

Consequently, 

0 1

1
0

11 1
0

1 1 1 11 1 12
0 0

2
2

( ) max | ( )( ) | ( )( )

( ( , ( ), '( )) )

( ( , ( ), '( )) ) ( ( , ( ), '( )) )
1 [ ( ) ( ) ( ) ]
2

1 .

t

p s
s

p ps

s
p p ps s

Tu Tu t Tu

f r u r u r dr ds

f r u r u r dr ds f r u r u r dr ds
r dr ds dr ds dr ds
N
r p r
N p

σ σ

η σ

σ σ

η

η η

α σ

φ

φ φ

φ φ φ

≤ ≤

−

− −

− − −

= =

=

= +

≤ + +

−
≤ =

∫ ∫
∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 

And by Lemma 3.1 and (4), we have 

0 1

11 1
0
1 11 1

2 20 0

2

( ) max | ( ) '( ) |

max{( ) '(0), ( ) '(1)}

max{ ( ( , ( ), '( )) ), ( ( , ( ), '( )) )}

max{ ( ( ), ( ( )}

.

t

p p

p p p p

Tu Tu t

Tu Tu

f r u r u r dr f r u r u r dr

dr L dr L

L

σ

σ

β

φ φ

φ φ φ φ

≤ ≤

− −

− −

=

= −

=

≤

=

∫ ∫
∫ ∫
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Then, 2 2 2 2: ( , ; , ) ( , ; , )T P r L P r Lα β α β→  holds. 
Secondly, we show that condition 1( )C  in Theorem 2.1 holds. 
In order to check condition 1( )C  in Theorem 2.1, we choose  

( ) , 0 1u t kb t= ≤ ≤ .  
It is easy to see that 2( ) ( , ; , ; , )u t kb P kb L bα β ψ= ∈  and ( ) ( )u kb bψ ψ= > , 

consequently,  

2{ ( , ; , ; , ) | ( ) }u P kb L b y bα β ψ ψ∈ > ≠ ∅ . 

If 2( , ; , ; , )u P kb L bα β ψ∈ , then ( )b u t kb≤ ≤  for 111
k k

t≤ ≤ − .  

From assumption 2( )H , we have 

( , ( ) 1, ( )) ), .1( 1p k
kbf t u t u t

k
t

M
φ′ > ≤ ≤ −  

Then we have 

1/ 1 (1/ ) 0 1

1
0

11 1
0

1
1 1

2 2
1

1 1( ) min | ( )( ) | max | ( )( ) | ( )

1 ( ( , ( ), '( )) )

1 1( ( , ( ), ( )) ) ( ( , ( ), ( )) )

1 min ( ( , (

' '

) ( ))',

k t k t

p s

s
p ps

p s
k

Tu Tu t Tu t Tu
k k

f r u r u r dr ds
k

f r u r u r dr ds f r u r u r dr ds
k k

f r u r u r
k

σ σ

η σ

σ σ

η η

ψ σ

φ

φ φ

φ

≤ ≤ − ≤ ≤

+ +

−

− −

−

= ≥ =

=

= +

≥

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

11
2

111 1
1

1 1

2

1

) ,

( ( , ( ), ( )) ) ( ( , ( ), ( )) )' '

1 1 1 11 1
2

min ( ) , ( ) (1 )

.

2

sk
p ps

k

p p p
p p p

dr ds

f r u r u r dr ds f r u r u r dr ds

b p
M p k k k

b

η
ηη

η
φ φ

η
η η

−− −

− − −

++

+ +
−





+ 


 −  > + − −
  

−

=

∫ ∫ ∫ ∫

 

Then, we can get that 

2( ) , for all ( , ; , ; , ).Ty b u P kb L bψ α β ψ> ∈  

Consequently, condition 1( )C  in Theorem 2.1 holds.  
Thirdly, We now show 2( )C  in Theorem 2.1 is satisfied. 
If 1 1( , ; , )u P r Lα β∈ , then assumption 1( )H  yields 

1
1( , ( ), ( )) min{ , }, 0 1.rf t u t u t L t

N
′ < ≤ ≤   

In the same way as in the first step, we can obtain that  

1 1 1 1: ( , ; , ) ( , ; , )T P r L P r Lα β α β→ . Hence, condition 2( )C  in Theorem 2.1 is 
aslo satisfied. 

Finally, we show 3( )C  in Theorem 2.1 is also satisfied. 
Suppose that 2 2( , ; , ; , )u P r L bα β ψ∈  with ( )Tu kbα > . Then, by the defini-

tion of ψ  and Tu P∈ , we have 

1/ 1 (1/ ) 0 1
( ) min | ( )( ) | max | ( )( )1 ) .1| (

k t k t
Tu Tu t Tu t Tu b

k k
ψ α

≤ ≤ − ≤ ≤
= ≥ = >  
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Thus, condition 3( )C  in Theorem 2.1 is also satisfied. 
Then, Theorem 3.1 is proved by Theorem 2.1. 
Consequently, Theorem 3.1 is proved by Theorem 2.1. We obtain that the 

boundary value problem (1) and (2) has at least three positive solutions 1u , 2u  
and 3u  such that 

1 1 1

2 2 2

3 2 2 2 2 1 1

( , ; , ),

{ ( , ; , ; , ) | ( ) },

and ( , ; , ) \ ( ( , ; , ; , ) ( , ; , )).

u P r L
u P r L b y b
u P r L P r L b P r L

α β

α β ψ ψ

α β α β ψ α β

∈

∈ >

∈ ∪
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