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Abstract 
In this paper, we investigate the solvability of a class of semilinear elliptic eq-
uations which are perturbation of the problems involving critical Hardy-So- 
bolev exponent and Hardy singular terms. The existence of at least a positive 
radial solution is established for a class of semilinear elliptic problems involv-
ing critical Hardy-Sobolev exponent and Hardy terms. The main tools are 
variational method, critical point theory and some analysis techniques. 
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1. Introduction and Main Results 

In this paper, we are concerned with the existence of positive radial solutions for 
the following semilinear elliptic problem with Hardy-Sobolev exponent and 
Hardy singular terms: 
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( )( )1,2 3ND N ≥  denotes the space of the functions ( )2 Nu L
∗

∈   such that 

( )2 Nu L∇ ∈  , endowed with scalar product and norm, respectively, given by 
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that coincides with the completion of ( )0
NC∞   with respect to the L2-norm of 

the gradient. By Hardy inequality [1], we easily derive that the norm is 
equivalent to the usual norm: 

2 2

0 dNu u x= ∇∫  

in ( )1,2 ND  . 
Clearly, ( )1,2 N

rD   is a closed subset of ( )1,2 ND  , so ( )1,2 N
rD   is a 

Hilbert space. By the symmetric criticality principle, in view of [2], we know that 
the positive radial solutions of problem (1.1) correspond to the nonzero critical 
points of the functional ( )1,2: N

rI Dδ →   defined by 
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where { }max ,0u u+ = . 
The reason why we investigate (1.1) is the presence of the Hardy-Sobolev 

exponent, the unbounded domain N  and the so-called inverse square 
potential in the linear part, which cause the loss of compactness of embedding 

( ) ( )*1,2 2N ND L→  , ( ) ( )1 N p NH L→   and ( ) ( )21,2 2 dND L x x−→ . 
Hence, we face a type of triple loss of compactness whose interacting with each 
other will result in some new difficulties. In last two decades, loss of 
compactness leads to many interesting existence and nonexistence phenomena 
for elliptic equations. There are abundant results about this class of problems. 
For example, by using the concentration compactness principle, the strong 
maximum principle and the Mountain Pass lemma, Li et al. [3] had obtained the 
existence of positive solutions for singular elliptic equations with mixed 
Dirichlet-Neumann boundary conditions involving Sobolev-Hardy critical 
exponents and Hardy terms. Bouchekif and Messirdi [4] obtained the existence 
of positive solution to the elliptic problem involving two different critical 
Hardy-Sobolev exponents at the same pole by variational methods and 
concentration compactness principle. Lan and Tang [5] have obtained some 
existence results of (1.1) with 0µ =  via an abstract perturbation method in 
critical point theory. There are some other sufficient conditions, we refer the 
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interested readers to ([6]-[18]) and the references therein. 
In the present paper, we investigate the existence of positive radial solutions 

of problem (1.1). There are several difficulties in facing this problem by means 
of variational methods. In addition to the lack of compactness, there are more 
intrinsic obstructions involving the nature of its critical points. Based on a 
suitable use of an abstract perturbation method in critical point theory 
discussed in [5] [13] [14], we show that the semilinear elliptic problem with 
Hardy-Sobolev exponent and Hardy singular terms has at least a positive 
radial solution. 

In this paper, we assume that h satisfies one of the following conditions: 
(H) ( ) ( ) ( ) ( ) ( )1 , ,N Nh L C h x h x h r r x∞∈ = = =  , and 

( )1
1

dN sr h r rα∞ − + − − < ∞∫  

for some N sα < − . 
(H’) ( ) ( ) ( ) ( )2 , ,Nh C h x h x h r r x∈ = = = , ( )h r  is T-periodic and 
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0

d 0.
T
h r r =∫  

The main results read as follows. 
Theorem 1 Let (H) hold, and assume that ( )0 0h =  and 0h ≡/ . Then for 

δ  small, problem (1.1) has a positive radial solution uδ . 
Remark 1 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 1, 

( ) 2 .
er

rh r =  

Theorem 2 If assumption (H) holds, and suppose that ( )2 Nh C∈   and 
( ) ( )0 0 0h h′′ > . Then for δ  small, problem (1.1) has a positive radial solution 

uδ . 
Remark 2 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 2, 

( ) 1 2 .
er

rh r −
=  

Theorem 3 Assume that (H) holds, and suppose 
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Then for δ  small, problem (1.1) has a positive radial solution uδ . 
Remark 3 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 3 for all 3N ≥  and 0 2s< < , 

( ) ,
er

rh r =  

in fact, 
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We can also give the following example for 3N =  and 1s = , 
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Theorem 4 Suppose that assumption (H’) holds, and satisfies the condition 
that ( ) ( )0 0 0h h′′ > . Then problem (1.1) has a positive radial solution uδ , 
provided 1δ  . 

Remark 4 It is easy to check that the following function ( )h r  satisfies the 
conditions of Theorem 4, 
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and by a direct computation, we have 
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2

20 2e 0.h
−
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Theorem 5 Let h satisfy (H’), and suppose that ( )0 0h =  and 0h ≡/ . Then 
problem (1.1) has a positive radial solution uδ , provided 1δ  . 

Remark 5 It is easy to check that the following function ( )h r  satisfies the 
conditions of Theorem 5, 

( ) sin 2 .h r r=  

This paper is organized as follows. After a first section we devoted to studying  

the unperturbed problem 
( )2 2

2

s

s

uuu u
x x

µ
∗ −

−∆ − = . The main results are proved  

in Section 3. In the following discussion, we denote various positive constants as  

C or ( )0,1,2,3,iC i =   for convenience. ( )o t  denote 
( ) 0

o t
t

→  as 0t +→ .  

This idea is essentially introduced in [5] [13]. 

2. The Case 0δ =  

In this section, we will study the unperturbed problem 
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It is well-known that the nontrivial solutions of problem (2.1) are equivalent 
to the nonzero critical points of the energy functional 
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For all 0ε > , it is well known that the function 
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0I  has a (non-compact) 1-dimensional critical manifold given by 
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The unperturbed problem is invariant under the transformation that  
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. The purpose of this  
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section is to show the following lemmas. 
Lemma 2.1. For all 0ε > , ( )0KerzT Z I z

ε ε′′ =   . 
Proof. We will prove the lemma by taking 1ε = , hence z Uε = . The case of a 

general 0ε >  will follow immediately. It is always true that  
( )0KerUT Z I U′′⊆    . We will show the converse, i.e., that if ( )0Ker I Uν ′′∈    , 
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look for a second independent solution of the form ( ) ( ) ( )u r c r w r= , we will 
check that u is not in ( )1,2 N

rD  . A direct computation gives 
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where C is a constant. This implies ( ) 2 2 2Nc r Cr µ µ µ− + − −≈  as well as 
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2
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µ µ

−
− − < , we have ( )1,2 N

ru D∉  . This implies a 
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contradiction to assumption which had been made. So ( )0KerUT Z I U′′=    .  

This completes the proof of Lemma.  
Lemma 2.2. For all 0ε > , ( )0I zε′′  is a Fredholm operator with index zero. 
Proof. Indeed, ( )1,2 N

rD   is a Hilbert space, this implies  
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∗
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It is obviously that ( )0I U′′  is a self-adjoint operator on ( )1,2 N
rD  , we have  
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⊥

′′ = , hence 
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Moreover, fox fixed ( )1,2 N
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( ) dNv a x uv x∫


 

is a bounded linear functional in ( )1,2 N
rD  , where  
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( ) ( )2 2

2 1
s

s

U x
a x s

x

∗ −
∗= − . So by the Riesz representation theorem, there is  

an element in ( )1,2 N
rD  , denote it by Tu , such that 

( ), d .NTu v a x uv x= ∫                   (2.3) 

Clearly ( ) ( )1,2 1,2: N N
r rT D D→   is linear symmetric and bounded. 

Moreover T is compact; indeed, let { }nu  be a bounded sequence in ( )1,2 N
rD  . 

Passing to a subsequence we may assume that nu u  in ( )1,2 N
rD  , nu u→  

in ( ) ( )2 s NL
∗

 . Use u replaced by nu u−  and v by nTu Tu−  in (2.3), and 

apply Hölder’s inequality with 
( ) ( )
1 1 1 1

22 2
N sp

p ss s∗ ∗

− + + = = − 
 to get 

( ) ( )2 2
2

s spn n nL L LTu Tu a u u Tu Tu∗ ∗− ≤ − −  

( )2 ,sn n LTu Tu c u u ∗⇒ − ≤ −  

which implies that nTu Tu→  in ( )1,2 N
rD  . This shows that T is compact. We 

have 

( ) ( )0 , , , , , .I U u v u v Tu v u Tu v I T u v′′ = − = − = −  

So ( )0I U I T′′ = − , where I is an identical operator. By the fact that I Tλ −  is 
a Fredholm operator with index zero, where 0λ ≠  and T is compact, we obtain 
that ( )0I U I T′′ = −  is a Fredholm operator with index zero. This completes the 
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proof of Lemma.  
Now, we give the abstract perturbation method, which is crucial in our proof 

of the main results of this paper. 
Lemma 2.3. [13] (Abstract Perturbation Method) Let E be a Hilbert space 

and let ( )2
0 , ,f G C E∈   be given. Consider the perturbed functional 

( ) ( ) ( )0f u f u G uε ε= − . 
Suppose that 0f  satisfies: 
1) 0f  has a finite dimensional manifold of critical points Z, let ( )0b f z= , 

for all z Z∈ ; 
2) for all z Z∈ , ( )2

0D f z  is a Fredholm operator with index zero; 
3) for all z Z∈ , ( )2

0KerzT Z D f z= . 
Hereafter we denote by Γ  the functional 

ZG . 
Let 0f  satisfy (1)-(3) above and suppose that there exists a critical point 

z Z∈  of Γ  such that one of the following conditions hold: 
1) z  is nondegenerated; 
2) z  is a proper local minimum or maximum; 
3) z  is isolated and the local topological degree of ′Γ  at z , ( )deg ,0loc ′Γ  

is different from zero. Then for ε  small enough, the functional fε  has a 
critical point uε  such that u zε → , as 0ε → . 

Remark 2.4. [13] If ( ){ }0 : : minZZ z Z z= ∈ Γ = Γ  is compact, then one can 
still prove that fε  has a critical point near 0Z . The set 0Z  could also consist 
of local minima and the same for maxima. 

3. Proof of the Theorems 

We will now solve the bifurcation equation. In order to do this, let us define the 
reduced functional, see [14], 

: ZδΦ →  

( ) ( )( )
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where ( ) zz T Z
εδ εω ⊥  and verifies ( ) 1z Cδ εω δ − ≤  as 0δ → . Hence we are 

led to study the finite-dimensional functional 
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s s
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The functional ( )εΓ  can be extended by continuity to 0ε =  by setting 

( ) ( )
( ) ( )

*2

0 0 d .N

s

s

U x
h x

x
Γ = ∫



 

Here we will prove the existence result by showing that problem (1.1) has a 
positive radial solution provided that h satisfies some integrability conditions. 
Before giving the proof of the main results, we need the following lemma. 
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Lemma 3.1. If (H) holds, then ( ) 0r εΓ →  as ε → +∞ . 
Proof. From the definition of ( )εΓ  and U, we have 
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where N sα < − . It is easy to get the first integral in the right hand side; next 
we show the second integral: In fact, 
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we deduce that ( ) 0r εΓ →  as ε → +∞ . 
Proof of Theorem 1. Firstly, we claim that ( )r εΓ  is not identically equal to 

0. To prove this claim we will use Fourier analysis. We introduce some notation  

that will be used in the following discussion. If [ )1 d0, , rg L
r

 ∈ ∞ 
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[ ]( ) ( )
0

d ,is rM g s r g r
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

d d

d d

.

i x t st its x t

i x t st its x t

g e e k e e t x

g e e t k e e x

M g x s M k x s

+∞ ∞ − −− −

−∞ −∞

+∞ ∞ − −− −

−∞ −∞

=

=

= ⋅      

∫ ∫

∫ ∫  

With this notation we can write our rΓ  in the form 

( ) ( ) ( )2

0

d .
N s

s
r

r r rh r U
r

ε
ε ε

∗
−

∞   Γ =   
  ∫  

We set m N s α= − −  and 

( ) ( ) ( ) ( )2 1 1, .
N s m

smg r h r r k r U
r r

∗
− −

  = =   
  

 

Note that [ )1 d, 0, , rg k L
r

 ∈ ∞ 
 

. We have ( ) ( )( )m
r g kε ε ε−Γ = ×  and hence  

if, by contradiction, 0Γ ≡  then 0g k× ≡  and one has 

[ ] [ ] [ ] 0.M g k M g M k× = ⋅ ≡  

On the other hand, [ ]M k  is real analytic and so has a discrete number of 
zeros. By continuity it follows that [ ] 0M g ≡ . Then g and hence h are identically 
equal to 0. We arrive at a contradiction. This proves the claim. Since ( )0 0rΓ = , 

( ) 0r εΓ →  as ε → +∞ , and 0rΓ ≡/ , it follows that rΓ  has a maximum or a 
minimum at some 0ε > . By a straight application of Lemma 2.3 jointly with 
Remark 2.4, the result follows.  

Proof of Theorem 2. Using Lemma 3.1, we have ( ) 0r εΓ →  as ε → +∞ . 
and rΓ  can be extended to 0ε =  by continuity setting ( ) ( )00 0r a hΓ = , 
where ( ) ( )2 1

0 0
d 0.s N sa U r r r

∗+∞ − −= >∫  From the assumption, we have 

( ) ( ) ( ) ( ) ( )2 1
1 1 0

0 0, 0 0 , d 0s N s
r r a h a U r r r

∗+∞ + −′ ′′ ′′Γ = Γ = = >∫  

and the condition ( ) ( )0 0 0h h′′ >  implies that rΓ  has a (global) maximum (if 
( )0 0h > ) or a (global) minimum (if ( )0 0h < ), at some 0ε > . This allows us 

to use the abstract results, yielding a radial solution of problem (1.1), for δ  
small.  

Proof of Theorem 3. It suffices to remark that 

( ) ( )( ) ( )( )
( )2

2 122
0

1 2 1 d 0.
N sN s

s N sss
r N s N h r r r r

−− −∞ − − −−−Γ = − − + ≠   ∫  

If 

( )( )
( )2

2 12
0

1 d 0
N s

s N ssh r r r r
−

−∞ − − −−+ >∫  

( )( )
( )2

2 12
0

resp. 1 d 0
N s

s N ssh r r r r
−

−∞ − − −−
 

+ <  
 

∫  

then ( )0 0h ≤  (resp. ( )0 0h ≥ ) and, once more rΓ  has a (global) maximum 
(resp. a (global) minimum ) at some 0ε > .  

In the rest of the section we will give the proof of Theorem 4 and Theorem 5. 

https://doi.org/10.4236/jamp.2017.511180


Y.-Y. Lan 
 

 

DOI: 10.4236/jamp.2017.511180 2215 Journal of Applied Mathematics and Physics 
 

First we give the following Lemma. Hypothesis (H’) allows us to use the 
following Riemann-Lebesgue convergence result. 

Lemma 3.2 [13] Let [ ]0, NQ T=  be a cube in N , and ( )qf L Q∈  be a 
T-periodic function. Consider ( ) ( )f x f xε ε= , then 

( )1 d , weakly in , as .q N
locQ

f f f x L
Qε ε= →∞∫   

Lemma 3.3 If (H’) holds, then 

( ) 0, .r ε εΓ → → +∞  

Proof. Given 0ε > , there exists 0R >  large enough such that 

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

d

d .

s N s
R

s N s
R

h r z r r r

h r z r r r

ε

ε ε

∗

∗

∞ − −

∞ − −

∞
≤ <

∫

∫
 

On the other hand, the remainder integral over the interval 0 r R≤ <  tends 
to 0 as ε →∞  because of hypothesis (H’) and the Riemann-Lebesgue lemma.  

Proof of Theorem 4. Using Lemma 3.3, we have ( ) 0r εΓ →  as ε → +∞ . 
and rΓ  can be extended to 0ε =  by continuity setting ( ) ( )00 0r a hΓ = , 
where ( ) ( )2 1

0 0
d 0s N sa U r r r

∗+∞ − −= >∫ . From the assumption, we have 

( ) ( ) ( ) ( ) ( )2 1
1 1 0

0 0, 0 0 , d 0.s N s
r r a h a U r r r

∗+∞ + −′ ′′ ′′Γ = Γ = = >∫  

and the condition ( ) ( )0 0 0h h′′ >  implies that rΓ  has a (global) maximum (if 
( )0 0h > ) or a (global) minimum (if ( )0 0h < ), at some 0ε > . This allows us 

to use the abstract results, yielding a radial solution of problem (1.1), for δ  
small.  

Proof of Theorem 5. It suffices to repeat the arguments used to prove 
Theorem 1 using Lemma 3.1 instead of Lemma 3.3. 

4. Conclusion 

We study a class of semilinear elliptic problems involving critical Hardy-Sobolev 
exponent and Hardy terms, and obtain positive radial solutions for these 
problems via an abstract perturbation method in critical point theory. 
Extensions of nonradial solutions for these problems are being investigated by 
the author. Results will be submitted for publication in the near future. 
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