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Abstract 
One of the reasons for the great success of the finite element method is its 
versatility to deal with different types of geometries. This is particularly true of 
problems posed in curved domains. Nevertheless it is well-known that, for 
standard variational formulations, the optimal approximation properties 
known to hold for polytopic domains are lost, if meshes consisting of ordinary 
elements are still used in the case of curved domains. That is why method’s 
isoparametric version for meshes consisting of curved triangles or tetrahedra 
has been widely employed, especially in case Dirichlet boundary conditions 
are prescribed all over a curved boundary. However, besides geometric in-
conveniences, the isoparametric technique helplessly requires the manipula-
tion of rational functions and the use of numerical integration. In this work 
we consider a simple alternative that bypasses these drawbacks, without erod-
ing qualitative approximation properties. More specifically we work with a 
variational formulation leading to high order finite element methods based 
only on polynomial algebra, since they do not require the use of curved ele-
ments. Application of the new approach to Lagrange methods of arbitrary or-
der illustrates its potential to take the best advantage of finite-element discre-
tizations in the solution of wide classes of problems posed in curved domains. 
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1. Introduction 

This work deals with a new variational formulation designed for finite-element 

How to cite this paper: Ruas, V. (2017) 
Variational Formulations Yielding High- 
Order Finite-Element Solutions in Smooth 
Domains without Curved Elements. Jour-
nal of Applied Mathematics and Physics, 5, 
2127-2139. 
https://doi.org/10.4236/jamp.2017.511174 
 
Received: September 24, 2017 
Accepted: November 4, 2017 
Published: November 7, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2017.511174
http://www.scirp.org
https://doi.org/10.4236/jamp.2017.511174
http://creativecommons.org/licenses/by/4.0/


V. Ruas 
 

 

DOI: 10.4236/jamp.2017.511174 2128 Journal of Applied Mathematics and Physics 
 

solution methods of boundary value problems with Dirichlet boundary conditions, 
posed in a two- or three-dimensional domain having a smooth curved boundary 
of arbitrary shape. The principle it is based upon is related to the technique called 
interpolated boundary conditions studied in [1] for two-dimensional problems. 
Although the latter technique is very intuitive and has been known since the 
seventies (cf. [2] [3]), it has been of limited use so far. Among the reasons for 
this we could quote its difficult implementation, the lack of an extension to 
three-dimensional problems, and most of all, restrictions on the choice of 
boundary nodal points to reach optimal convergence rates. In contrast our method 
is simple to implement in both in two- and three-dimensional geometries. 
Moreover optimality is attained very naturally in both cases for various choices of 
boundary nodal points. 

In order to allow an easier description of our methodology, thereby avoiding 
non essential technicalities, we consider as a model the Poisson equation in an 
N-dimensional smooth domain Ω  with boundary Γ , for 2N =  or 3N = , 
with Dirichlet boundary conditions, namely, 

in
on ,

u f
u d
−∆ = Ω
 = Γ

                          (1) 

where f and d are given functions defined in Ω  and on Γ , having suitable 
regularity properties. 

Here (1) is supposed to be solved by different N-simplex based finite element 
methods, incorporating degrees of freedom other than function values at the 
mesh vertices. For instance, if standard quadratic Lagrange finite elements are 
employed, it is well-known that approximations of an order not greater than 1.5 
in the energy norm are generated (cf. [4]), in contrast to the second order ones 
that apply to the case of a polygonal or polyhedral domain, assuming that the 
solution is sufficiently smooth. If we are to recover the optimal second order 
approximation property something different has to be done. Since long the 
isoparametric version of the finite element method for meshes consisting of 
curved triangles or tetrahedra (cf. [3] [4]), has been considered as the ideal way 
to achieve this. It turns out that, besides a more elaborated description of the 
mesh, the isoparametric technique inevitably leads to the integration of rational 
functions to compute the system matrix, which raises the delicate question on 
how to choose the right numerical quadrature formula in the master element. In 
contrast, in the technique to be introduced in this paper exact numerical 
integration can always be used for this purpose, since we only have to deal with 
polynomial integrands. Moreover the element geometry remains the same as in 
the case of polygonal or polyhedral domains. It is noteworthy that both advantages 
are conjugated with the fact that no erosion of qualitative approximation 
properties results from the application of our technique, as compared to the 
equivalent isoparametric one. 

An outline of the paper is as follows. In Section 2 we present our method to 
solve the model problem with Dirichlet boundary conditions in a smooth curved 
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two-dimensional domain with conforming Lagrange finite elements based on 
meshes with straight triangles, in connection with the standard Galerkin 
formulation. Numerical examples illustrating technique’s potential are given. In 
Section 3 we extend the approach adopted in Section 2 to the three-dimensional 
case including also numerical experimentation. We conclude in Section 4 with 
some comments on possible extensions of the methodology studied in this work. 

In the remainder of this paper we will be given partitions h  of Ω  into 
(closed) ordinary triangles or tetrahedra, according to the value of N, satisfying 
the usual compatibility conditions (see e.g. [4]). Every h  is assumed to belong 
to a uniformly regular family of partitions. We denote by hΩ  the set 

hT
T

∈ 
 

and by hΓ  the boundary of hΩ . Letting Th  be the diameter of hT ∈ , we set 
: max

hT Th h∈=  , as usual. We also recall that if Ω  is convex hΩ  is a proper 
subset of Ω . 

2. The Two-Dimensional Case 

To begin with we describe our methodology in the case where 2N = . In order 
to simplify the presentation in this section we assume that 0d ≡ , leaving for the 
next one its extension to the case of an arbitrary d. 

2.1. Method Description 

Here we make the very reasonable assumption on the mesh that no element in 

h  has more than one edge on hΓ . 
We also need some definitions regarding the skin ( ) ( )\ \h hΩ Ω Ω Ω

. First of 
all, in order to avoid non essential difficulties, we assume that the mesh is 
constructed in such a way that convex and concave portions of Γ  correspond 
to convex and concave portions of hΓ . This property is guaranteed if the points 
separating such portions of Γ  are vertices of polygon hΩ . In doing so, let h  
be the subset of h  consisting of triangles having one edge on hΓ . Now for 
every hT ∈  we denote by T∆  the set delimited by Γ  and the edge Te  of T 
whose end-points belong to Γ  and set : TT T′ = ∆  if T∆  is not a subset of T 
and : \ TT T′ = ∆  otherwise (see Figure 1). 

Notice that if Te  lies on a convex portion of hΓ , T is a proper subset of T ′ , 
while the opposite occurs if Te  lies on a concave portion of hΓ . With such a 
definition we can assert that there is a partition h′  of Ω  associated with h  
consisting of non overlapping sets T ′  for hT ∈ , besides the elements in 

\h h  . 
For convenience henceforth we refer to the kn  points in a triangle T which 

are vertices of the 2k  equal triangles T can be subdivided into, where 
( )( ): 2 1 2kn k k= + +  for 1k >  as the lagrangian nodes of order k (cf. [4]). 

Next we introduce two function spaces hV  and hW  associated with h . 

hV  is the standard Lagrange finite element space consisting of continuous 
functions v defined in hΩ  that vanish on hΓ , whose restriction to every 

hT ∈  is a polynomial of degree less than or equal to k for 2k ≥ . For  
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Figure 1. Skin T∆  related to a mesh triangle T next to a convex (right) or a concave (left) 
portion of Γ . 
 
convenience we extend by zero every function hv V∈  to \ hΩ Ω . 

hW  in turn is the space of functions defined in hΩ Ω  having the pro- 
perties listed below. 

1) The restriction of hw W∈  to every hT ∈  is a polynomial of degree less 
than or equal to k; 

2) Every hw W∈  is continuous in hΩ  and vanishes at the vertices of hΓ ; 
3) A function hw W∈  is also defined in \ hΩ Ω  in such a way that its 

polynomial expression in hT ∈  also applies to points in T∆ ; 
4) hT∀ ∈ , ( ) 0w P =  for every P among the 1k −  intersections with Γ  

of the line passing through the vertex TO  of T not belonging to Γ  and the 
points M different from vertices of T subdividing the edge opposite to TO  into 
k segments of equal length (cf. Figure 2). 

Remark The construction of the nodes associated with hW  located on Γ  
advocated in item 4 is not mandatory. Notice that it differs from the intuitive 
construction of such nodes lying on normals to edges of hΓ  commonly used in 
the isoparametric technique. The main advantage of this proposal is an easy 
determination of boundary node coordinates by linearity, using a supposedly 
available analytical expression of Γ . Nonetheless the choice of boundary nodes 
ensuring our method’s optimality is really wide, in contrast to the restrictions 
inherent to the interpolated boundary condition method (cf. [1]). 

The fact that hW  is a non empty finite-dimensional space was established in 
[5]. Furthermore the following result was also proved in the same reference: 

Proposition 1 (cf. [5]). 
Let ( )k T  be the space of polynomials defined in hT ∈  of degree less than 

or equal to k. Provided h is small enough hT∀ ∈ , given a set of km  real 
values , 1, ,i kb i m=   with ( )1 2km k k= + , there exists a unique function 

( )T kw T∈  that vanishes at both vertices of T located on Γ  and at the 1k −  
points P of Γ  defined in accordance with item 4. of the above definition of hW , 
and takes value ib  respectively at the km  lagrangian nodes of T not located on 

hΓ . 
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Figure 2. Construction of nodes P∈Γ  for space hW  related to lagrangian nodes 

hM ∈Γ  for 3k = . 
 

Now let us set the problem associated with spaces hV  and hW , whose 
solution is an approximation of u, that is, the solution of (1). Denoting by f ′  a 
sufficiently smooth extension of f to \hΩ Ω  in case this set is not empty, and 
renaming f by f ′  in Ω , we wish to solve, 

( ) ( )
( ) ( )

Find such that ,

where , : and :
h h

h h h h h h

h h

u W a u v F v v V

a w v grad w grad v F v f v
Ω Ω

 ∈ = ∀ ∈
 ′= ⋅ = ∫ ∫

         (2) 

The following result is borrowed from [5]: 
Proposition 2 Provided h is sufficiently small problem (2) has a unique 

solution. 

2.2. Method Assessment 

In order to illustrate the accuracy and the optimal order of the method described 
in the previous subsection rigorously demonstrated in [5], we implemented it 
taking 2k = . Then we solved Equation (1) for several test-cases already 
reported in [5] and [6]. Here we present the results for the following one: 

Ω  is the ellipse delimited by the curve ( )2 2 1x e y+ =  with 0e >  for an 
exact solution u given by ( )( )2 2 2 2 2 2 2 2u e e x y e x e y= − − − − . Thus we take 

:f u= −∆  and 0d ≡  and owing to symmetry we consider only the quarter 
domain given by 0x >  and 0y >  by prescribing Neumann boundary 
conditions on 0x =  and 0y = . We take 0.5e =  and compute with 
quasi-uniform meshes defined by a single integer parameter J, constructed by 
the procedure described in [5]. Roughly speaking the mesh of the quarter 
domain is the polar coordinate counterpart of the standard uniform mesh of the 
unit square ( ) ( )0,1 0,1×  whose edges are parallel to the coordinate axes and to 
the line x y= . 

Hereunder, and in the remainder of this work we denote by h  the 
standard mean-square norm in hΩ  of a function or a vector field  . 

In Table 1 we display the absolute errors in the energy norm, namely 
( )h h

grad u u−  and in the mean-square norm, that is h hu u−  for increasing  
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Table 1. Absolute errors in different senses for the new approach (with ordinary 
triangles). 

J  → 8 16 32 64 

( )h h
grad u u−  → 0.143615 E−2 0.367543 E−3 0.927840 E−4 0.232998 E−4 

h h
u u−  → 0.183918 E−4 0.230310 E−5 0.289312 E−6 0.363247 E−7 

max hu u−   
at the nodes 

→ 0.172473 E−2 0.446493 E−3 0.112615 E−3 0.282163 E−4 

 
values of J; more precisely 2mJ =  for 3,4,5,6m = . We also show the 
evolution of the maximum absolute errors at the mesh nodes. 

As one infers from Table 1, the approximations obtained with our method 
perfectly conform to the theoretical estimate given in [5]. Indeed as J increases 
the errors in the energy norm decrease roughly as ( )21 J , as predicted therein. 
The error in the mean-square norm in turn tends to decrease as ( )31 J , while 
the maximum absolute error at the nodes seem to behave like an ( )2O h . 

Now in order to rule out any particularity inherent to the above test-problem, 
we also solved it using the classical approach, that is, by replacing hW  with hV  
in (2). In Table 2 we display the same kind of results as in Table 1 for this 
approach. 

Table 2 confirms the error decrease in the energy norm like an ( )1.5O h  as 
predicted in classical texts (cf. [4]). The behavior of the classical approach 
deteriorates even more, as compared to the new approach, when the errors are 
measured in the mean-square norm, whose order seem to decrease from three to 
two. The quality of the maximum nodal absolute errors in turn are not affected 
at all by the way boundary conditions are handled. Actually in both cases this 
error is roughly an ( )2O h , while in case Ω  is a polygon it is known to be an 

( )3O h  for sufficiently smooth solutions (see e.g. [7]). 

3. The Three-Dimensional Case 

In this section we consider the solution of (1) by our method in case 3N = . 
In order to avoid non essential difficulties we make the assumption that no 

element in h  has more than one face on hΓ , which is nothing but reasonable. 

3.1. Method Description 

First of all we need some definitions regarding the set ( ) ( )\ \h hΩ Ω Ω Ω
. 

Let h  be the subset of h  consisting of tetrahedra having one face on hΓ  
and h  be the subset of \h h   of tetrahedra having exactly one edge on hΓ . 
Notice that, owing to our initial assumption, no tetrahedron in [ ]\h h h    
has a non empty intersection with hΓ . 

To every edge e of hΓ  we associate a plane skin eδ  containing e, and 
delimited by Γ  and e itself. Except for the fact that each skin contains an edge 
of hΓ , its plane can be arbitrarily chosen. In Figure 3 we illustrate one out of 
three such skins corresponding to the edges of a face TF  or TF ′  contained in  
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Figure 3. Sets T∆ , T ′∆ , eδ  for tetrahedra , hT T ′∈  with a common edge e and a 
tetrahedron hT ′′∈ . 
 
Table 2. Absolute errors in different senses for the classical approach with ordinary 
triangles. 

J  → 8 16 32 64 

( )h h
grad u u−  → 0.243341 E−2 0.829697 E−3 0.285754 E−3 0.994597 E−4 

h h
u u−  → 0.179737 E−3 0.469229 E−4 0.119436 E−4 0.300920 E−5 

max hu u−   
at the nodes 

→ 0.172473 E−2 0.446493 E−3 0.112615 E−3 0.282163 E−4 

 

hΓ , of two tetrahedra T and T ′  belonging to h . More precisely in Figure 3 
we show the skin eδ , e being the edge common to TF  and TF ′ . Further, for 
every hT ∈ , we define a set T∆  delimited by Γ , the face TF  and the three 
plane skins associated with the edges of TF , as illustrated in Figure 3. In this 
manner we can assert that, if Ω  is convex, hΩ  is a proper subset of Ω  and 
moreover Ω  is the union of the disjoint sets hΩ  and 

h TT∈
∆

 
 (cf. Figure 

3). Otherwise \hΩ Ω  is a non empty set that equals the union of certain parts 
of the sets T∆  corresponding to non convex portions of Γ . 

Next we introduce two sets of functions hV  and d
hW , both associated with 

h . 

hV  is the standard Lagrange finite element space consisting of continuous 
functions v defined in hΩ  that vanish on hΓ , whose restriction to every 

hT ∈  is a polynomial of degree less than or equal to k for 2k ≥ . For 
convenience we extend by zero every function hv V∈  to \ hΩ Ω . We recall that 
a function in hV  is uniquely defined by its values at the points which are 
vertices of the partition of each mesh tetrahedron into 3k  equal tetrahedra (see 
e.g. [4]). Akin to the two-dimensional case these points will be referred to as the 
lagrangian nodes of order k of the mesh. 
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d
hW  in turn is a linear manifold consisting of functions defined in hΩ Ω  

satisfying the following conditions: 
1) The restriction of d

hw W∈  to every hT ∈  is a polynomial of degree less 
than or equal to k; 

2) Every d
hw W∈  is single-valued at all the inner lagrangian nodes of the 

mesh, that is all its lagrangian nodes of order k except those located on hΓ ; 
3) A function d

hw W∈  is also defined in \ hΩ Ω  in such a way that its 
polynomial expression in hT ∈  also applies to points in T∆ ; 

4) A function d
hw W∈  takes the value ( )d S  at any vertex S of hΓ ; 

5) hT∀ ∈  and for 2k > , ( ) ( )w P d P=  for every point P among the 

( )( )1 2 2k k− −  intersections with Γ  of the line passing through the vertex 

TO  of T not belonging to Γ  and the ( )( )1 2 2k k− −  points M not belonging 
to any edge of TF  among the ( )( )2 1 2k k+ +  points of TF  that subdivide 
this face (opposite to TO ) into 2k  equal triangles (see illustration in Figure 4 
for 3k = ); 

6) h hT∀ ∈   , ( ) ( )w Q d Q=  for every Q among the 1k −  intersections 
with Γ  of the line orthogonal to e in the skin eδ , passing through the points 
M e∈  different from vertices of T, subdividing e into k equal segments, where e 
represents a generic edge of T contained in hΓ  (see illustration in Figure 5 for 

3k = ). 
Remark The construction of the nodes associated with d

hW  located on Γ  
advocated in items 5. and 6. is not mandatory. Notice that it differs from the 
intuitive construction of such nodes lying on normals to faces of hΓ  commonly 
used in the isoparametric technique. The main advantage of this proposal is the 
determination by linearity of the coordinates of the boundary nodes P  in the 
case of item 5. Nonetheless, akin to the two-dimensional case, the choice of 
boundary nodes ensuring our method’s optimality is absolutely very wide. 

The fact that d
hW  is a non empty set is a trivial consequence of the two 

following results proved in [8], where ( )k T  represents the space of 
polynomials defined in h hT ∈    of degree not greater than k. 
 

 
Figure 4. Construction of node P∈Γ  of d

hW  related to the 
Lagrange node M in the interior of T hF ⊂ Γ . 
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Figure 5. Construction of nodes eQ δ∈Γ∩  of d

hW  related 
to the Lagrange nodes hM e∈ ⊂ Γ . 

 
Proposition 3 (cf. [8]). 
Provided h is small enough h hT∀ ∈    given a set of km  real values ib , 
1, , ki m=   with ( )( )1 2 6km k k k= + +  for hT ∈  and  
( )( )( ) ( )1 2 3 6 1km k k k k= + + + − +  for hT ∈ , there exists a unique function 

)(Tw kT ∈  that takes the value of d at the vertices S of T located on Γ , at 
the points P of Γ  defined in accordance with item 5. for hT ∈  only, and at 
the points Q of Γ  defined in accordance with item 6. of the above definition of 

d
hW , and takes the value ib  respectively at the km  lagrangian nodes of T not 

located on hΓ . 
A well-posedness result analogous to Proposition 2.2 holds for problem (3), 

according to [8], namely, 
Proposition 4 (cf. [8]) 
As long as h is sufficiently small problem (3) has a unique solution. 
Remark It is important to stress that, in contrast to its two-dimensional 

counterpart, the set d
hW  does not necessarily consist of continuous functions. 

This is because of the interfaces between elements in h  and h . Indeed a 
function d

hw W∈  is not forcibly single-valued at all the lagrangian nodes 
located on one such an interface, owing to the enforcement of the boundary 
condition at the points Q∈Γ  instead of the corresponding lagrangian node 

hM ∈Γ , in accordance with item 6. in the definition of d
hW . On the other hand 

w  is necessarily continuous over all other faces common to two mesh 
tetrahedra. 

Next we set the problem associated with the space hV  and the manifold d
hW , 

whose solution is an approximation of u, that is, the solution of (1). Extending 
f  by a smooth f ′  in \hΩ Ω  if necessary, and renaming f  by f ′  in any 

case, we wish to solve, 

( ) ( )
( ) ( )

Find such that ,

where , : and :
h h

d
h h h h h h

h h

u W a u v F v v V

a w v grad w grad v F v f v
Ω Ω

 ∈ = ∀ ∈
 ′= ⋅ = ∫ ∫

           (3) 

3.2. Method Assessment 

In this sub-section we assess the behavior of the new method, by solving the 
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Poisson equation in a non convex domain. Now we consider a non polynomial 
exact solution. More precisely (1) is solved in the torus Ω  with minor radius 

mr  and major radius Mr . This means that the torus’ inner radius ir  equals 

M mr r−  and its outer radius er  equals M mr r+ . Hence Γ  is given by the  

equation ( )2
2 2 2 2

M mr x y z r− + + = . We consider a test-problem with symmetry  

about the z-axis, and with respect to the plane 0z = . For this reason we may 
work with a computational domain given by  
( ) ( ){ }, , 0; 0 π 4 with tanx y z z a y xθ θ∈Ω ≥ ≤ ≤ = . A family of meshes of this 

domain depending on a single even integer parameter I  containing 36I  
tetrahedra is generated by the following procedure. First we generate a partition 
of the cube ( ) ( ) ( )0,1 0,1 0,1× ×  into 3 2I  equal rectangular boxes by 
subdividing the edges parallel to the x-axis, the y-axis and the z-axis into 2I, I/2 
and I/2 equal segments, respectively. Then each box is subdivided into six 
tetrahedra having an edge parallel to the line 4x y z= = . This mesh with 33I  
tetrahedra is transformed into the mesh of the quarter cylinder  
( ){ }2 2, , 0 1, 0, 0, 1x y z x y z y z≤ ≤ ≥ ≥ + ≤ , following the transformation of the 

mesh consisting of 2 2I  equal right triangles formed by the faces of the mesh 
elements contained in the unit cube’s section given by ( )2x j I= , for  

0,1, , 2j I= 
. The latter transformation is based on the mapping of the  

cartesian coordinates ( ),y z  into the polar coordinates ( ),r ϕ  with  
2 2r y z= + , using a procedure described in [8] (cf. Figure 6). Then the 

resulting mesh of the quarter cylinder is transformed into the mesh with 36I  
the trahedra of the half cylinder ( ){ }2 2, , 0 1, 1 1, 0, 1x y z x y z y z≤ ≤ − ≤ ≤ ≥ + ≤  
by symmetry with respect to the plane 0y = . Finally this mesh is transformed 
into the computational mesh (of an eighth of half-torus) by first mapping the 
cartesian coordinates ( ),x y  into polar coordinates ( ),ρ θ , with M mr yrρ = +  
 

 
Figure 6. Trace of the intermediate mesh of 1/4 cylinder on 
sections ( )2x j I= , 0 2j I≤ ≤ , for 4I = . 
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and π 4xθ = , and then the latter coordinates into new cartesian coordinates 
( ),x y  using the relations cosx ρ θ=  and siny ρ θ= . Notice that the faces of 
the final tetrahedral mesh on the sections of the torus given by ( )π 8j Iθ = , for 

0,1, , 2j I= 
, form a triangular mesh of a disk with radius equal to mr , having 

the pattern illustrated in Figure 6 for a quarter disk, taking 4I = , 0θ =  and 
1mr = . 

Recalling that here 2 2x yρ = + , we take 5 6Mr = , 1 6mr =  and  
( )6 5 3f ρ′ = − . For 0d ≡  the exact solution is given by  

( )221 36 5 6u z ρ= − − − . In order to enable the calculation of mean-square 
norms of the error in Ω , we extend u to u′  in a neighborhood of Γ  lying 
outside Ω , taking the same expression as above. In Table 3 we display the 
absolute errors in the energy norm, that is ( )h h

grad u u′ −  and in the 
mean-square norm h hu u′ − , for increasing values of I, namely 2mI =  for 

1,2,3,4m = . Now we take as a reference ( )π 8h I= . 
As one can observe from Table 3, here again the quality of the approxi- 

mations obtained with the new method is in very good agreement with the 
theoretical result in [8], for as I increases the errors in the energy norm decrease 
roughly as 21 I , as predicted. On the other hand here again the mean-square 
norm of the error function hu u′ −  tends to decrease as 31 I . Likewise the 
two-dimensional case, Table 4 in turn shows a qualitative erosion of the solution 
errors if d

hW  is replaced by hV  in (3). 

4. Final Comments 

1) The method addressed in this work to solve the Poisson equation with 
Dirichlet boundary conditions in curved domains with classical Lagrange finite 
elements provides a simple and reliable manner to overcome technical 
difficulties brought about by more complicated problems and interpolations. For 
example, Hermite finite element methods to solve fourth order problems in 
curved domains with normal derivative degrees of freedom can also be dealt 
with very easily by means of our new method. The author intends to show this in 
 
Table 3. Absolute errors for the new approach (with ordinary tetrahedra) in two different 
norms. 

h  → π/32 π/64 π/128 π/256 

( )h h
grad u u′ −  → 0.786085 E−3 0.205622 E−3 0.522963 E−4 0.131844 E−4 

h h
u u′ −  → 0.133794 E−4 0.171222 E−5 0.214555 E−6 0.269187 E−7 

 
Table 4. Absolute errors for the classical approach with ordinary tetrahedra in two 
different norms. 

h  → π/32 π/64 π/128 π/256 

( )h h
grad u u′ −  → 0.829181 E−2 0.327176 E−2 0.119077 E−2 0.425739 E−3 

h h
u u′ −  → 0.579150 E−3 0.143425 E−3 0.343823 E−4 0.834136 E−5 
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a paper to appear shortly. 
2) The technique studied in this paper is also particularly handy, to treat 

problems posed in curved domains in terms of vector fields, such as the linear 
elasticity system and Maxwell’s equations of electromagnetism. The same 
remark applies to multi-field systems such as the Navier-Stokes equations, and 
more generally mixed formulations of several types with curved boundaries, to 
be approximated by the finite element method. 

3) As for the Poisson equation with homogeneous Neumann boundary 
conditions 0u n∂ ∂ =  on Γ  (provided f satisfies the underlying scalar 
condition) our method coincides with the standard Lagrange finite element 
method. Notice that if inhomogeneous Neumann boundary conditions are 
prescribed, optimality can only be recovered if the linear form hF  is modified, 
in such a way that boundary integrals for elements hT ∈  are shifted to the 
curved boundary portion sufficiently close to Γ  of an extension or reduction of 
T. But this is an issue that has nothing to do with our method, which is basically 
aimed at resolving those related to the prescription of degrees of freedom in the 
case of Dirichlet boundary conditions. 

4) Finally we note that our method leads to linear systems of equations with a 
non symmetric matrix, even when the original problem is symmetric. Moreover in 
order to compute the element matrix and right side vector for an element T in h  
or in h , the inverse of an k kn n×  matrix has to be computed, where kn  is the 
dimension of ( )kP T . However this extra effort is not really a problem nowadays, 
in view of the significant progress already accomplished in Computational Linear 
Algebra. 
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