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Abstract 
A technique for solving the three-dimensional problem of bending in the 
theory of elasticity in orthotropic plates of variable thickness is developed in 
the paper. On the basis of the method of expansion of displacements into an 
infinite series, the problem has been reduced to the solutions of two independent 
problems, which are described by two independent systems of two-dimensional 
infinite equations. 
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1. Introduction 

Published papers on the calculation of plates of variable thickness are realized 
within the framework of classical theory of plates, developed with a number of 
simplifying hypotheses. It should be noted that in the places where the thickness 
of a plate of variable thickness is the greatest, it is not advisable to apply any 
simplifying hypotheses. Scientific researches have shown that in calculations of 
thick plates, it is necessary to take into account not only the moments and forces, 
but the bimoments as well. The account of bimoments in the sections of the 
plate is based on the application of the method of expansion of displacements 
into an infinite series along one of spatial coordinates directed along the normal. 

In published literature, there are a number of papers devoted to the investiga-
tion of this problem. The law of thickness variation of plates and shells is taken 
in the form of linear, quadratic and other functions. Various problems of the 
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behavior of thin-walled structural elements under the action of static and dy-
namic loads are considered. 

A wide survey of papers devoted to plates of variable thickness is given in [1] 
[2]. In the monograph [1], static problems of bending of plates of variable 
thickness of different outlines under different types of loading are considered. 
The author’s dissertation [2] is devoted to the dynamic and static problems of 
plates of constant and variable thickness. 

In [3], dynamic problems of oscillation of plates of variable thickness are con-
sidered. The law of thickness variation is taken in the form of a quadratic func-
tion. The paper [4] is devoted to the study of free vibrations of plates of variable 
thickness of arbitrary shape in plan. The equations of oscillation of a plate of va-
riable thickness are derived from the Kirchhoff’s hypothesis. A methodology for 
the numerical solution of the problem is developed. Numerical results are ob-
tained and compared with the results of other authors. 

In [5], oscillations of super-elliptical plates of variable thickness with a fixed 
and freely supported edge are investigated. An analytical study of acoustic radia-
tion from thin circular plates of linearly variable thickness is carried out in [6]. A 
review given in [5] [6], allows us to evaluate the state-of-the-art of the investi-
gated problem. In [7], the stability problems of a thin-walled cylindrical shell of 
variable thickness are considered. The law of thickness variation is taken as a li-
near function. 

In [8] [9] [10] [11], geometrically nonlinear problems of plates and shells of 
variable thickness with different systems of approximating functions are consi-
dered. In [8] [9], the problems of studying vibrations of viscoelastic plates of va-
riable thickness are considered. The problems set on the basis of the Bub-
nov-Galerkin method are reduced to the solution of ordinary differential equa-
tions. 

Monographs [10] [11] are devoted to the development of the methods for 
solving geometrically nonlinear problems of plates and shells of variable thick-
ness under various loading options. In [12], geometrically nonlinear problems of 
determining the stress-strain state of plates of variable thickness with different 
systems of approximating functions are considered. 

2. Statement of the Problem 

As an object of investigation, a thick orthotropic elastic plate of variable thick-
ness has been chosen; the plate is located between two asymmetric face surfaces 

( )1 1 2,z h x x= , ( )2 1 2,z h x x= − . Let ( ) ( )1 1 2 2 1 2, , 0h x x h x x≥ ≥ , then the thickness 
of the plate is ( ) ( )1 1 2 2 1 2, ,H h x x h x x= + . 

In contrast to classical theory of plates, the components of the displacement 
vector are defined as functions of three spatial coordinates and times ( )1 1 2, , ,u x x z t , 

( )2 1 2, , ,u x x z t , ( )3 1 2, , ,u x x z t . The components of the strain tensor are deter-
mined by the Cauchy relations. The plate is considered as a three-dimensional 
orthotropic body [13] [14] [15] [16], the material of which obeys the generalized 
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Hooke’s law: 

11 11 11 12 22 13 33

22 21 11 22 22 23 33

12 12 12 13 13 13 23 23 23

,
,

2 , 2 , 2 ,

E E E
E E E
G G G

σ ε ε ε
σ ε ε ε
σ ε σ ε σ ε

= + +

= + +

= = =

               (1) 

where 11 12 33, , ,E E E —are the elastic constants determined by Poisson’s coeffi-
cients and elastic moduli, given in [15] [16], 12 13 23, ,G G G —are the shear moduli 
of plate material.  

For the equations of motion of the plate we would use the three-dimensional 
equations of motion of the theory of elasticity: 

( )1 2 3

1 2

, 1, 2,3 .i i i
iu i

x x z
σ σ σ

ρ
∂ ∂ ∂

+ + = =
∂ ∂ ∂

                  (2) 

Here ρ —is the density of plate material. 
The boundary conditions on the lower and upper surfaces of the plate  

( )1 1 2,z h x x=  and ( )2 1 2,z h x x= −  are written relative to the generalized exter-
nal forces in the form: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
33 3 31 1 32 2 1 1 2

33 3 31 1 32 2 2 1 2

, , , at , ,

, , , at , .

q q q z h x x

q q q z h x x

σ σ σ

σ σ σ

+ + +

− − −

= = = =

= = = = −
         (3) 

3. Method of Solution 

The solution of the set problem of the theory of elasticity for thick plates of va-
riable thicknesses (1), (2), and (3) is built by the method of expansion of the 
components of the displacement vector into the Maclaurin series [13] [14] [15] 
[16]: 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3
1 1 1 1

2 3

3 0 1 2 3
1 1 1 1

, 1, 2

.

m
k k k k k

k m

m

m

z z z zu B B B B B k
h h h h

z z z zu A A A A A
h h h h

     
= + + + + + + =     

     

     
= + + + + + +     

     

 

 

 (4) 

Here ( ) ,k
m mB A —are the unknown functions of two spatial coordinates and 

time: 

( ) ( ) ( ) ( )

( )

1
1 2
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0
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!
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m
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m
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z
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=
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= = = 
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= =  

∂ 

.            (5) 

On the basis of expansion (4), the components of the strain and stress tensor 
also expand into the Maclaurin series in the form: 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3

1 1 1 1

, 1, 2,3
m

m
ij ij ij ij ij ij

z z z z i j
h h h h

ε ε ε ε ε ε
     

= + + + + + + =     
     

 
, (6) 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3

1 1 1 1

, 1, 2,3
m

m
ij ij ij ij ij ij

z z z z i j
h h h h

σ σ σ σ σ σ
     

= + + + + + + =     
     

 
. (7) 
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Here, the expansion coefficients are defined as:  

( ) ( ) ( )
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

 

Based on the Cauchy relation and expansion (4), we obtain the expressions for 
the expansion of strain (6) of thick plates of variable thickness. The components 
of elongation strain are: 

( )
( )

( )
1

1 1
11

1 1 1

m m
m

B hmB
x h x

ε
∂ ∂

= −
∂ ∂

,                   (8a) 

( )
( )

( )
2

2 1
22

2 1 2

m m
m

B hmB
x h x

ε
∂ ∂

= −
∂ ∂

,                    (8b) 

( ) ( ) 1
33

1

1m mm A
h

ε ++
= .                      (8c) 

Components of angle strain are written in the form:  

( )
( ) ( )

( ) ( )
1 2

1 21 1
12

2 1 1 2 1 1

1
2

m m m
m m

B B h hm mB B
x x h x h x

ε
 ∂ ∂ ∂ ∂

= + − −  ∂ ∂ ∂ ∂ 
,          (9a) 

( ) ( )
( )1

1 1
13

1 1 1 1

1 1
2

m m m mB A A hm
h x h x

ε +
 ∂ ∂

= + + −  ∂ ∂ 
,             (9b) 

( ) ( )
( )2

1 1
23

1 2 1 2

1 1
2

m m m mB A A hm
h x h x

ε +
 ∂ ∂

= + + −  ∂ ∂ 
.             (9c) 

Based on Hooke’s law (1) and expansions (5) and (7), we obtain the expres-
sions for the coefficients of stress expansion (7). The coefficients of expansion of 
normal stresses are defined as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 11 11 12 22 13 33

22 21 11 22 22 23 33

33 31 11 32 22 33 33

,

,

.

m m m m

m m m m

m m m m

E E E

E E E

E E E

σ ε ε ε

σ ε ε ε

σ ε ε ε

= + +

= + +

= + +

              (10а) 

The coefficients of the expansion of tangential stresses are defined as: 
( ) ( ) ( ) ( ) ( ) ( )
12 12 12 13 13 13 23 23 232 , 2 , 2m m m m m mG G Gσ ε σ ε σ ε= = = ,        (10b) 

where 0,1,2,3,m =  . 
Based on expansion (4), we would demonstrate that the proposed elasticity 

problem in plates of variable thickness is described by two unrelated problems, each 
of which is formulated on the basis of a system of infinite recurrent 
two-dimensional equations with the corresponding boundary conditions. The 
first system of recurrent equations has the form: 

( ) ( ) ( ) ( ) ( ) ( )
( )

2 12 2 2 2
11311 11 1 12 12 1

2
1 1 1 2 1 2 1

2 12 2 mm m m m

m
mm h m h B

x h x x h x h
σσ σ σ σ

ρ
++∂ ∂ ∂ ∂

− + − + =
∂ ∂ ∂ ∂

 , (11а) 
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( ) ( ) ( ) ( ) ( ) ( )
( )

2 12 2 2 2
22321 21 1 22 22 1

2
1 1 1 2 1 2 1

2 12 2 mm m m m

m
mm h m h B

x h x x h x h
σσ σ σ σ

ρ
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− + − + =
∂ ∂ ∂ ∂
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 2 12 1 2 1
31 3231 321 1

1 1 1 2 1 2

2 2
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2 1
1
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m
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m
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σ σσ σ

σ
ρ

+ ++ +

+

+
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+
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Here 0,1,2,3,m =  . 
The second system of recurrent equations has the form: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2 1 2 12 1 2 1
11 1211 1 12 1

1 1 1 2 1 2

2 2
113

2 1
1

2 1 2 1

2 2

m mm m

m

m

m mh h
x h x x h x

m
B

h

σ σσ σ

σ
ρ

+ ++ +

+

+

+ +∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂

+
= 

,   (12а) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2 1 2 12 1 2 1
12 2212 1 22 1

1 1 1 2 1 2

2 2
223

2 1
1

2 1 2 1

2 2

m mm m

m

m

m mh h
x h x x h x

m
B

h

σ σσ σ

σ
ρ

+ ++ +

+

+

+ +∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂

+
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( ) ( ) ( ) ( ) ( ) ( )2 12 2 2 2
3331 31 32 321 1

2
1 1 1 2 1 2 1

2 12 2 mm m m m

m

mm mh h A
x h x x h x h

σσ σ σ σ
ρ

++∂ ∂∂ ∂
− + − + =

∂ ∂ ∂ ∂
 . (12c) 

Here 0,1,2,3,m =  . 
On the basis of expansion (7), the boundary conditions on the surface of the 

plate ( )1 1 2,z h x x= +  (3a) are rewritten as:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5
31 31 31 31 31 31 31 1qσ σ σ σ σ σ σ+ += + + + + + + =        (13а) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5
32 32 32 32 32 32 32 2qσ σ σ σ σ σ σ+ += + + + + + + =        (13b) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5
33 33 33 33 33 3 33 3k qσ σ σ σ σ σ σ+ += + + + + + + =        (13c) 

On the basis of expansion (7), the boundary conditions on the surface of the 
plate ( )2 1 2,z h x x= −  (3b) are rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 52 3 4 5
31 31 31 31 31 31 31 1qσ σ ασ α σ α α α σ α σ− −= − + − + − + = ,   (14а) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 52 3 4 5
32 32 32 32 32 32 32 2qσ σ ασ α σ α α α σ α σ− −= − + − + − + = ,   (14b) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 52 3 4 5
33 33 33 33 33 33 33 3qσ σ ασ α σ α α α σ α σ− −= − + − + − + = ,   (14c) 

where 
( )
( )

2 1 2

1 1 2

,
,

h x x
h x x

α = . 

Two independent systems of boundary conditions relative to the expansion 
coefficients (4) and (7) correspond to each boundary condition at the edges of 
the plate. 

If the displacements at the edge of the plate are equal to zero, then we get: 
( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
0 0 2 2 4 4

1 3 5

0, 0, 0, 0, 0, 0,
0, 0, 0,

B B B B B B
A A A

= = = = = =

= = =





,      (15а) 
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( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
1 1 3 3 5 5

0 2 4

0, 0, 0, 0, 0, 0,
0, 0, 0,

B B B B B B
A A A

= = = = = =

= = =





.     (15b) 

If the edge of the plate is free of supports, then the boundary conditions have 
the form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 1 2 2
11 12 13 11 12

3 4 4 5
13 11 12 13

0, 0, 0, 0, 0,

0, 0, 0, 0,

σ σ σ σ σ

σ σ σ σ

= = = = =

= = = =





,          (16а) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0 3 3
11 12 13 11 12

2 5 5 4
13 11 12 13

0, 0, 0, 0, 0,

0, 0, 0, 0,

σ σ σ σ σ

σ σ σ σ

= = = = =

= = = =





.          (16b) 

If the edge of the plate is supported, then the boundary conditions have the 
form: 

( ) ( ) ( ) ( )

( ) ( )

0 0 2 2
11 12 1 11 12

4 4
3 11 12 5

0, 0, 0, 0, 0,

0, 0, 0, 0,

A

A A

σ σ σ σ

σ σ

= = = = =

= = = =





,           (17а) 

(1) (1) (3) (3)
11 12 0 11 12

(5) (5)
2 11 12 4

0, 0, 0, 0, 0,...

0, 0, 0, 0,...

A

A A

σ σ σ σ

σ σ

= = = = =

= = = =
.           (17b) 

If the edge of the plate is supported and there is no displacement along the 
tangential direction to the plate contour, then the boundary conditions have the 
form: 

( ) ( ) ( ) ( )

( ) ( )

0 2 2 2
11 0 1 11 2 3

4 2
11 4 5

0, 0, 0, 0, 0, 0,

0, 0, 0,

B A B A

B A

σ σ

σ

= = = = = =

= = =





,       (18а) 

( ) ( ) ( ) ( )

( ) ( )

1 1 3 1
11 1 0 11 3 2

5 1
11 5 4

0, 0, 0, 0, 0, 0,

0, 0, 0,

B A B A

B A

σ σ

σ

= = = = = =

= = =





.       (18b) 

4. Conclusion 

Thus, a three-dimensional bending and elasticity problem for thick plates of va-
riable thickness is set and reduced to the solutions of two independent 
two-dimensional problems, which are described by two dependent systems of 
infinite recurrent differential equations in partial derivatives. It should be noted 
that the equations of motion for the bimoment theory of plates of constant 
thickness developed in [13] [14] [15] [16] could be obtained from the con-
structed systems of equations. It could be shown that to obtain numerical results 
with satisfactory accuracy, it is sufficient to take into account eight terms of the 
series (4). 
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