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Abstract 

In this paper, the Eigenvalue Complementarity Problem (EiCP) with real 
symmetric matrices is addressed, which appears in the study of contact prob-
lem in mechanics. We discuss a quadratic programming formulation to the 
problem. The resulting problems are nonlinear programs that can be solved 
by a line search filter-SQP algorithm. 
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1. Introduction 

The Eigenvalue Complementarity Problem (EiCP) appears in the study of static 
equilibrium states of finite dimensional mechanical systems with unilateral 
frictional contact [1] [2] and takes the following form:  
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where B is a positive definite matrix. Note that any solution with 0ω =  
correspond to a solution of the (GEiCP). 

The Generalized Eigenvalue Complementarity Problem (GEiCP) is  
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where B is a positive definite matrix, { }1,2, ,J n⊆ 
 is given, and  

{ }1,2, , \J n J= 
. The (EiCP) is clearly the particular case of the (GEiCP)J with

{ }1,2, ,J n= 
. 

For any solution ( ),xλ ω , the value λ  is called a (general) complementary 
eigenvalue of ( ),A B , and x is a corresponding (general) complementary 
eigenvector [3]. 

In this paper, the symmetric Eigenvalue Complementarity Problem is studied. 
Some properties of EiCP are derived, including a necessary and sufficient 
condition for solvability. When this condition is verified, we can easily obtain an 
initial point. For the design of an initialization algorithm, we discuss a quadratic 
programming formulation and a line search filter-SQP algorithm is introduced 
to solve the (EiCP). 

2. The Symmetric Eigenvalue Complementarity Problem 

In this section, the symmetric EiCP is considered, where the matrices A and B 
are both symmetric. In this case, the EiCP is closely related to the classical 
Eigenvalue Problem , and some properties are derived. 

Proposition 2.1. Proposition The solvability of the (GEiCP)J is in general a 
NP-complete problem. 

It follows that solving the (GEiCP) is in general a NP-hard problem. Despite 
this fact, for some classes of matrices the solvability of the corresponding (EiCP) 
can be answered easily. 

Since the set of complementary eigenvectors of a given complementary 
eigenvalue is a cone, there is no loss of generality in restricting the problem to 
finding solutions satisfying 

2 1x = , which replaces the constraint 0x ≠ . In 
case of the (EiCP) the linear constraint T

1 1x e= = , can be considered instead 
of 

2 1x = , since 0x ≥ . 
When A and B are both symmetric, the (EiCP) is closely related to the 

classical Eigenvalue Problem [4] [5]. The complementary condition T 0xω =  
can be rewritten as ( )T 0x Bx Axλ − = . Since 0x ≠ , and B is positive definite,  

then ( )
T

T

x Axx
x Bx

λ = , where ( )xλ  is the generalized Rayleigh quotient. The 

gradient of this function is ( ) ( )T

2x A x B x
x Bx

λ λ∇ = −    and ( ) 0xλ∇ =  if  

and only if ( ) 0A x B xλ− =   . Analogously to the classical case, equilibrium 
points of the Rayleigh quotient in the nonnegative orthant with ( ) 0xλ >  are 
solutions of the (EiCP). This is the main result concerning he practical solution 
of the symmetric (EiCP). 
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Proposition 2.2. (EiCP) is solvable if and only if there exists some 0x ≥  
such that T 0x Ax > . 

Proposition 2.2. shows a necessary and sufficient condition for solvability. For 
the practical solution of the symmetric (EiCP), finding an initial point is a 
NP-hard problem. But for some class of matrices which an initial solution for 
the (OEiCP) can be easily obtained. 

Proposition 2.3. Suppose that the matrix A satisfies one of the following 
conditions 

1) : 0;iii A∃ >  
2) , : 0, 0 and 0;ii jj iji j A A A∃ = ≤ >  
3) 0, 0;A A≥ ≠  
4) A is a S-matrix ( 0 : 0x Ax∃ ≥ > ). 
Then a point x X∈  such that T 0x Ax >  can be easily obtained and the 

corresponding (EiCP) is solvable.  
An equivalent way to formulate the (EiCP) is through the quadratic 

formulation  

( )

T

T

Max

s.t 1
0

x Ax
NLP x Bx

x




≤
 ≥

                     (2) 

Theorem 2.1. If A is strictly copositive and 0x ≥  is a stationary point of 
(QB), then the pair x , Tx Axλ =  is a solution of (EiCP). 

3. A Line Search Filter-SQP Algorithm 

In this section a line search filter-SQP algorithm is introduced to solve the 
formulation of the previous section. As we all know, sequential Quadratic 
Programming (SQP) algorithm is one of the most efficient methods for the 
numerical solution of constrained nonlinear optimization problems [6]. In the 
previous methods, penalty function is always used as a merit function to test the 
acceptability of the iterate points. However, there are several difficulties 
associated with the use of penalty function and in particular with the choice of 
the penalty parameter. Too low a choice may result in the loss of an optimal 
solution; on the other hand, too large a choice damps out the effect of the 
objective function. Fletcher and Leyffer proposed a filter method as an alternative to 
the traditional merit function for solving the nonlinear optimization [7]. The 
significant advantage of the filter method is that it does not need to estimate the 
penalty parameter which could be difficult to obtain. Recently, the filter method 
was developed in [8] [9]. 

Considering a suitable continuously differentiable merit function ( )f x , it is 
possible to reduce the (NLP) to the following nonlinear program  

( )
( )
( )

Min
P

s.t 0j

f x

g x




≤
                        (3) 
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where the objective function : nf →   and the constraints : n
ic →    

{ }1, 2, ,j I m∈ = 
 are twice continuously differentiable. 

In SQP methods, at each iteration the search direction is generally obtained by 
solving the subproblem as follows:  

( )

( ) ( )
{ }

TT

T
1

1Min
2

QP s.t. 0

1,2, ,

k k

j k j k

d B d f x d

g x g x d

j I m

 +∇
 +∇ ≤
 ∈ =




                (4) 

However, the previous QP subproblem has a serious shortcoming that 
constraints in (QP1) may be inconsistent. To overcome this disadvantage, much 
attention has been paid [10] [11] [12] [13]. In addition, Liu and Li [12] and Liu 
and Zeng [13] proposed SQP algorithms with cautious update criteria, which 
can be considered as modifications of the SQP algorithm given in [11]. In our 
algorithm, stimulated by [10] [11] [12] [13], the quadratic subproblem (QP1) is 
replaced by the following problem: 

( )
( )

( ) ( )

TT

T

1Min
2

, ,
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, 0

k k k

k k k
j k j k

d B d f x d b t
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            (5) 

where kb  is a positive parameter. Clearly, this subproblem is always consistent 
and is a convex programming if kB  is positive semidefinite. The KKT condition for 
the subproblem ( ), ,k k kQ x B b  are  
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               (6) 

where ( ) ( ) ( ){ }T: 0k j k j k k kx j g x g x d t e= +∇ − =  is the active set at point kd , 

k
λ +  which can be used to determine a new estimate 1kλ +  for the next iteration 
is the Lagrangian multiplier corresponding to subproblem ( ), ,k k kQ x B b , and 

j
k
λ +  is the ith component of 

k
λ + . 

After kd  has been computed, a step size ( ]0,1kα ∈  is determined in order 
to obtain a next iterate 1k k k kx x dα+ = +  and ( )1k k k kk

λ λ α λ λ++ = + − . 
In this paper, the Lagrangian function value instead of the objective function 

value is used in the filter together with an appropriate infeasibility measure. 

( ) ( ) ( )T,L x f x c xλ λ= −                      (7) 

and we define the constraints violation function ( ),h x λ  by 
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( ) ( ){ }( ) ( ){ }
2

2

1 1
, max 0, min 0,

m m
j

i j
j j

h x c x c xλ λ
= =

 
= − + − 

 
∑ ∑       (8) 

where λ  is the Lagrangian multiplier corresponding to NLP satisfied at x and 
jλ  is the ith component of λ . Define ( ) ( ), ,k k l k k l kk

λ α λ α λ λ+= + − . 
In the line search filter technique, for fixed constants ( ), 0,1h Lγ γ ∈ , a trial 

step size ,k lα  provides sufficient reduction with respect to the current point kx  
if  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )
, ,

, ,

, 1 ,

or , , ,

k k l k k l h k k

k k l k k l k k L k k

h x h x

L x L x h x

α λ α γ λ

α λ α λ γ λ

≤ −

≤ −
          (9) 

Similar to the traditional strategy of the filter method, to avoid the convergence to 
a feasible point but not an optimal solution, we consider the following L-type [14] 
[15] switching condition:  

( ) ( ) ( )1
, , ,0 and ,L L h

k k l k k l k l k km m h x
ω ω ω

α α α δ λ
−     < − >           (10) 

where 0, 0, 1h Lδ ω ω> > ≥  and  

( ) ( ) ( ) ( )( ) ( )
TT T 1k k k k k k kk

m g x d g x g xα α λ α λ λ+
 = ∇ + − − −  

    (11) 

then the Armijo-type reduction condition is employed as follows:  

( ) ( )( ) ( ) ( ), , ,, ,k k l k k l k k L k k lL x L x mα λ α λ η α≤ +             (12) 

where 
10,
2Lη

 ∈ 
 

 is a fixed constant. 

For the sake of a simplified notation, the filter is defined in this paper not as a list 
but as a set [ ] [ ]0, 0,k ⊆ ∞ × −∞F  containing all ( ),h L  pairs that are prohibited in 
iteration k. We say that a trial point ( ),k k lx α  is acceptable to the filter if its 

( ),h L  pair does not in kF . Given a 0F , throughout the algorithm ,the filter is 
then augmented in some iterations after the new iterate point 1kx +  has been 
accepted. We use the updating formula 

( ) ( ) ( ){
( ) ( )}

1 , : 1 ,

and , ,
k k h k k

k k L k k

h L h h x

L L x h x

γ λ

λ γ λ
+ = ≥ −

≥ −

F F
             (13) 

In the situation where the trial step size is too small to guarantee sufficient 
reduction as defined by (10), the method switches to a feasibility restoration 
phrase, whose purpose is to find a new iterate point that satisfies (10) and is also 
acceptable to the current filter by trying to decrease the constraint violation. In 
order to detect the situation where no admissible step size can be found and the 
restoration phase has to be invoked, we approximate a minimum desired step 
size using linear models of involved functions. For this, we define that 

( ) ( )
[ ]min

,,
min , , if 0

:

otherwise

h

L

k kL k k
h k

k k k

h

h xh x
ω

ω
α

δ λγ λ
γ ω

α γ ϕ ϕ

γ

      < = ∗ − −  

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where ( ) ( ) ( ) ( )
TT T

k k k k k k kk
g x d g x g xϕ λ λ λ+= ∇ + − − ,  ( ]0,1αγ ∈ ,  , ,h Lδ ω ω   

are form (11) and ,h Lγ γ  are form (10). The proposed algorithm switches to the 
feasibility restoration phase when ,k lα  becomes smaller than min

kα . 
Now, the algorithm for solving the inequality constrained optimization 

problem (NLP) can be stated as follows: 
Algorithm 
Step 1. Initialization: choose an initial point 0

nx ∈ , an initial filter 
( ) ( ){ }0 0 0: , : > ,h L L h xτ λ≥F , an initial parameter 0 0b > , a symmetric and 

positive definite matrix 0
n nB ×∈ , 0δ > , 1 2, 0δ δ > , and ( ), 0,1H Lγ γ ∈ . 

Choose 1 20 1τ τ≤ ≤ < , ( ]0,1αγ ∈ , and 0, 1h Lω ω> ≥ . 
Step 2. Solve the subproblem ( ), ,k k kQ x B b  to obtain the solution ( ),k kd t , 

and let ( ), kk
vλ +  be the Lagrange multiplier. If 0kd =  and 0kt = , stop. 

Step 3. If 0kd =  but 0kt ≠ , set 1k kx x+ =  and 1k k+ =F F , go to Step 7. 
Step 4. If 0kd ≠  and 0kϕ ≥ , go to the feasible restoration phrase in Step 9. 
Step 5. If 0kd ≠  and 0kϕ < , using backtracking line search consider the 

following: 
Step 5.1. Initial line search: set , 1k lα =  and 0l = , compute the min

kα . 
Step 5.2. Compute a new trial point. If the trial step size min

,k l kα α< , go to 
Step 9. Otherwise, compute new trial point ( ), ,k k l k k l kx x dα α= +  and  

( ) ( ), ,k k l k k l kk
λ α λ α λ λ+= + − . Check acceptability to the filter: if the trial point 

( )( ) ( )( )( ), ,,k k l k k l kh x L xα α ∈F  reject the trial step size and go to Step 5.4. 
Step 5.3. Check sufficient decrease with respect to current iterate point: 
Step 5.3.1. Case I: condition (11) holds. If the Armijo condition (12) holds, 

accept the trial step (that is, an L-type iteration), set ( )1 ,k k k lx x α+ = , ( )1 ,k k k lλ λ α+ = , 

1k k+ =F F  and go to Step 5.5; otherwise, go to Step 5.4. 
Step 5.3.2. Case II: condition (11) does not hold. If (9) holds, accept the trial 

step , and go to Step 5.5; otherwise, go to Step 5.4. 
Step 5.4. Choose a new trial size , 1 1 , 2 ,,k l k l k lα τ α τ α+  ∈   . Set 1l l= + , and go 

back to Step 5.2. 
Step 5.5. Accept trial point. Set ( )1 ,k k k lx x α+ =  and ,k k lα α= . 
Step 6. Augment filter if it is necessary. If k is not an L-type iteration, augment 

the filter using (13); otherwise leave the filter unchanged; that is, set 1k k+ =F F . 
Step 7. Update parameters. Compute kα  by  

{ }1
11

min ,k k kdα λ δ−= +  

Set 

1
2

if
otherwise

k k k
k

k

b b
b

b
α

δ+

≥
=  +

 

Step 8. Update kB  to 1kB + . Go to Step 2 with k replaced by 1k + . 
Step 9. Obtain a new point 1kx +  from a feasible restoration phrase. Set 

1k k= + , and go to Step 2. 
Remark 1. The mechanisms of the filter could ensure that  
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( ) ( )( ), , ,k k k k kh x L xλ λ ∉F . 
Remark 2. The feasibility restoration phrase in Step 9 could be any iterative 

algorithm with the goal of finding a less infeasible point. 
Remark 3. Step 3 - Step 7 which are call the inner loop are backtracking line 

search whose goal is to find the kα  such that k k kx dα+  is acceptable as the 
next iteration. 

Remark 4. In Step 9, we decrease ( ),h x λ  to get 1kx +  by fixing kλ λ= . 

4. Global Convergence of Algorithm 

In this section, we will show the proposed algorithm is well defined and globally 
convergent under some mild donditions. Let x  be a feasible point of NLP (1) 
and λ  be the multiplies corresponding to the nonlinear constraints satisfied at 
x . Denote the ith component of λ  by iλ . Then throughout this paper, we 
always assume that them following assumptions hold: 

Assumptions 
1) The function ( ),L x λ  and ( )g x  are twice continuously differentiable. 
2) The sequence { }kx  remains in a compact and convex subset nX ∈ . 
3) The strict Mangasarian-Fromowitz constraint qualification (SMFCQ) 

condition holds when x  is a feasible point of the NLP. Then for x , the vectors 
( ) ( ){ },jg x j I x∇ ∈  are linearly independent, where  

( ) ( ) ( ){ }| ,jI x j I g x h x λ= ∈ = . There exists a constant 0BM >  such that 
2T

k Bz B z M z≥ , ( ) ( ){ }T: 0,j kz z g x z j I x∈ ∇ = ∈ . And there exist two constants 
0q p≥ >  such that the matrices sequence { }kB  satisfy  

2 2T
kp d d B d q d≤ ≤  for all k and nd ∈ . 

4) ,k kd λ  are uniformly bounded, i.e., there exist constants 0dM >  and 
0Mλ > , such that k dd M≤ , k Mλλ

∞
≤ . 

In the following, we first show that under Assumptions G the sequence of 
infeasibility measure ( ){ }kh x  converges to zero, and all limit points of { }kx  
are feasible. 

Lemma 4.1. Suppose that Assumptions hold and that the filter is augmented 
only finite number of times. Then ( )lim , 0k kk

h x λ
→+∞

= . 
Lemma 4.2. Suppose that Assumptions hold and let { }kx  be the sequence of 

iterates generated by Algorithm so that the filter is augmented in every iteration 
k. Then ( )lim , 0k kk

h x λ
→+∞

= .  
The proof of the Lemma 4.1 and Lemma 4.2 are similar to Lemma 5 in [14] by 

replacing ( )f x  by ( ),L x λ , we omit it. After we have the previous two 
lemmas, we can get the following theorem. That is to say that the limit point of 
{ }kx  is feasible. The proof of the next theorem is similar to the Theorem 1 in 
[14]. 

Theorem 4.1. Suppose that Assumptions G hold. Then ( )lim , 0k kk
h x λ

→+∞
= . 

Lemma 4.3. Suppose that Assumptions hold and let x  be a feasible point of 
NLP at which SMFCQ condition holds, but not a KKT point. If { }kx  is a 
subsequence of iterate points for which ( ) 0kxχ ≥  with a constant 0> , then 
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there exist constants 1 0> , 2 0> , such that  

( ) ( )1 2,k k kh x mλ α α≤ ⇒ ≤ −   

Lemma 4.3. shows that the search direction, the optimal solution of the 
subproblem is a sufficient descent direction for Lagrangian function at points 
that are nonoptimal and sufficiently close to feasible point. And the next lemma 
shows that no ( ),h L -pair corresponding to a feasible point is ever including in 
the filter.  

Lemma 4.4. Suppose that Assumptions hold. Then  
( ){ }: min : , 0k kh h LΩ = ∈ >F  for all k.  

Lemma 4.5. Suppose that Assumptions hold. Let { }ikx  be a subsequence 
with 2( )ki

m α α≤ −  for a constant 2 0>  independent of ik  and for all 
( ]0,1α ∈ . Then there exists a constant 0α >  so that for all ik  and α α< , we 

have  

( )( ) ( ) ( ), ,
i i i i i i i ik k k k k k k L kL x d L x mα λ α λ λ λ η α++ + − − ≤  

The Lemma 4.5 shows that there exists a step length bounded away from zero 
so that the Armijo condition for the Lagrangian function is satisfied under some 
conditions. The next lemma shows that there is no cycle between Step 3 and Step 
7 in above algorithm. The proof of the Lemma 4.6 is similar to Lemma 4 in [16]. 

Lemma 4.6. Suppose that Assumptions G hold. Then the inner loop 
terminates in a finite number of iterations. 

Lemma 4.7. Suppose that the filter is augmented only a finite number of 
times; that is, < ∞L . Then lim 0kk

d
→+∞

= . 
There the proof is stated for slightly different circumstances, but it is easy to 

verify that it is still valid in our context. And we now show the global 
convergence result under some mild conditions. The proof of the next two 
theorems is similar to the Theorem 10 and Theorem 11 in [17]. 

Theorem 4.2. Suppose that all stated assumptions hold. Furthermore, assume 
that { }kx  is an infinite sequence generated by Algorithm and < ∞L . Then 
every limit point is a KKT point. 

Theorem 4.3. Suppose that all stated assumptions hold. Furthermore, assume 
that { }kx  is an infinite sequence generated by Algorithm and = ∞L . Then 
there exists at least one accumulation point which is a KKT point. 

5. Numerical Experiments 

In this section, some computational experience is presented to illustrate the 
efficiency of the algorithms described in this paper for the solution of symmetric 
EiCP. All programs are written in MATLAB and run on a Dell version 4510U 
with a 2.8 GHz Intel i7 processor. For our test problems, the matrix nB I= , and 
the matrices n nA ×∈  were randomly generated. The test problems are scaled 
according to the procedure described in [18]. The scaling is important because 
the matrices that we are using are badly conditioned, and without this tool some 
of the problems cannot be solved. 
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As described in Proposition 2.3, the initial solution 0x  can be chosen by one 
several processes. In particular if A has at least one diagonal element 0iiα >  
then the initial solution can be chosen as 0

ix pe= , where ie  is the vector i of 
the canonical basis. 

The parameters used in the algorithm are follows: 0 nB E= , 0 111b = , 1δ = , 

1 1δ = ,  2 1δ = ,  0.5H Lγ γ= = ,  0.5αγ = ,  1 2 0.5τ τ= = ,  1
3Hω = ,  2Lω = , 

610ε −= . The stop criteria are 0
kd  sufficiently small, where ( )TT

0 0 ,k
kd d t= . In  

particular, the stop criteria of Step 2 are changed to: if 6
0 10kd −≤ , stop. We 

update the matrices kB  using the BFGS formula and use the matlab toolbox to 
solve the subproblem ( ), ,k k kQ x B b . 

The test results are given in Table, the notations mean follows: No: the 
number of the problems, m: the dimension of the vector; T: the total CPU time 
in seconds for solving the problem; OPT: the final value of the objective 
function; λ : the eigenvalue of the EiCP. 
 

No m T OPT λ  

1 3 0.8807 ( )T0.9256,0.3799,0.0000  3.3097 

2 3 0.8645 ( )T0.7833,0.6216,0.0000  36.9029 

3 3 0.7931 ( )T0.7947,0.0000,0.6070  26.4018 

4 4 1.8999 ( )T0.9125,0.3960,0.0000,0.1024  5.8678 

5 4 0.0220 ( )T0.4472,0.4472,0.4472,0.4472  6.0000 

6 4 1.9396 ( )T0.9886,0.0000,0.0000,0.1508  69.4806 

7 5 1.9118 ( )T0.4653,0.3686,0.4639,0.3818,0.5354  26.6925 

 
Based on the results, we claim that this algorithm is a efficient procedure to 

solve Symmetric Eigenvalue Complementarity Problems. 

6. Conclusion 

In this paper, the Eigenvalue Complementarity Problem with real symmetric 
matrices have been considered, and we reformulate the EiCP to a NLP and use a 
line search filter-SQP algorithm to solve them. The numerical experiments show 
that this method is a promising method for solving the EiCP. Actually, we can 
solve the problem as a quadratically constrained quadratic programming 
problem not a NLP. And the design of efficient procedure for solving the 
quadratically constrained quadratic programming subproblems is also one of 
our current research areas. 
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