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Abstract 
In this article, we will show non-scattering of the solution of the nonlinear 
Schrodinger equation on the torus. The result extends the result of Colliander, 
J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. for the cubic nonlinear 
Schrödinger equation on 2-dimensional torus. 
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1. Introduction 

In this article, we will consider the nonlinear Schrödinger equation on 
d-dimensional torus: 

�
𝑖𝑖𝜕𝜕𝑡𝑡𝑢𝑢 + ∆𝑢𝑢 =  |𝑢𝑢|𝑝𝑝−1𝑢𝑢.

𝑢𝑢(0, 𝑥𝑥)  =  𝑢𝑢0(𝑥𝑥) ∈ 𝐻𝐻1(𝕋𝕋𝑑𝑑),
�                 (1) 

where 𝑢𝑢: ℝ × 𝕋𝕋𝑑𝑑 → ℂ ,1 < p < ∞. This kind of nonlinear Schrödinger equations 
has been studied intensively in the last two decades. See [1] [2] [3] [4]. 

Many mathematicians believe this equation does not have nontrivial solutions 
which scatter, i.e. which approach a solution to the linear equation at time t = 
∞. Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. [5] consider 
the cubic nonlinear Schrödinger equation on two dimensional torus, and prove 
the solution cannot scatter to free solution in 𝐻𝐻1(𝕋𝕋𝑑𝑑). 

As in [5], the explicit solution  

𝑢𝑢(𝑡𝑡, 𝑥𝑥)  =  Ae𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖 |𝑛𝑛 |2𝑒𝑒𝑖𝑖|𝐴𝐴|𝑝𝑝−1𝑡𝑡 ,               (2) 

where 𝐴𝐴 ≥ 0, 𝑘𝑘 ∈ ℝ
2𝜋𝜋ℤ

,𝑛𝑛 ∈ ℤ𝑑𝑑  cannot converge to a free solution e𝑖𝑖𝑖𝑖∆u+ due to  

the presence of the phase rotation e𝑖𝑖|𝐴𝐴|𝑝𝑝−1𝑡𝑡  which is caused by the nonlinearity. 
We will show this is the only solution that scatters modulo phase rotation in H1 
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in the sense that there exists 𝑢𝑢+ ∈ 𝐻𝐻1(𝕋𝕋𝑑𝑑) and function 𝜃𝜃:ℝ → ℝ/2πℤ such 
that 

�𝑢𝑢(𝑡𝑡) − 𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖∆𝑢𝑢+�𝐻𝐻1(𝕋𝕋𝑑𝑑 )
→ 0, 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞. 

is of the form (2), which then reveals that no solution of the nonlinear 
Schrödinger equation on torus can scatter to free solution. 

2. Main Theorem 

In this section, we will present the main theorem in this article. We will show the 
only solution that scatters modulo phase rotation is of the form (2). 

Theorem 1 (No non-trivial solution scatters modulo phase rotation). Let 
𝑢𝑢: ℝ × 𝕋𝕋𝑑𝑑 → ℂ be an H1 solution to (1) which scatters modulo phase in H1, 
then u is of the form (2) for some 𝐴𝐴 ≥ 0, 𝑘𝑘 ∈ ℝ/2πℤ,𝑛𝑛 ∈ ℤ𝑑𝑑 . 

To prove this theorem, we first need some lemmas.  
Lemma 2 (Pre-compactness). For 𝑢𝑢+ ∈ H1(𝕋𝕋𝑑𝑑) , {𝑒𝑒𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖∆𝑢𝑢+ ∶  𝜃𝜃 ∈

ℝ/2𝜋𝜋ℤ, 𝑡𝑡 ∈ ℝ} is pre-compact in 𝐻𝐻1(𝕋𝕋𝑑𝑑).  
Proof. It is equivalent to show {𝑒𝑒𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝑖𝑖 |𝑛𝑛 |2𝑢𝑢�+(𝑛𝑛): 𝜃𝜃 ∈ ℝ

2πℤ
, 𝑡𝑡 ∈ ℝ}  is pre- 

compact in l2(〈𝑛𝑛〉2𝑑𝑑𝑑𝑑) after taking Fourier transforms. By monotone conver-
gence, ∀ϵ>0, there exists R > 0 such that ∑ 〈𝑛𝑛〉2|𝑢𝑢�+(𝑛𝑛)|2 ≤ 𝜖𝜖𝑛𝑛∈ℤ𝑑𝑑 ,𝑛𝑛≥𝑅𝑅 . We can 
conclude {𝑒𝑒𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖 | |2𝑢𝑢+� : 𝜃𝜃 ∈ ℝ/2πℤ, 𝑡𝑡 ∈ ℝ} is covered by finitely many balls of 
radius 𝑂𝑂(𝜖𝜖), and the claim follows. 

□ 

Lemma 3 (Diamagnetic inequality) If 𝑢𝑢 ∈ H1(𝕋𝕋𝑑𝑑), then |𝑢𝑢| ∈ H1(𝕋𝕋𝑑𝑑) and 
‖|𝑢𝑢|‖𝐻𝐻1(𝕋𝕋𝑑𝑑 ) ≤ ‖𝑢𝑢‖𝐻𝐻1�𝕋𝕋𝑑𝑑�. 

Proof. It suffices to verify this when 𝑢𝑢 is smooth. For any ϵ > 0, we have 

2 ��𝜖𝜖2 + |𝑢𝑢|2∇�𝜖𝜖2 + |𝑢𝑢|2�  =  |∇(𝜖𝜖2+|𝑢𝑢|2)|  =  2|𝑅𝑅𝑅𝑅(𝑢𝑢�∇𝑢𝑢)| ≤ 2|𝑢𝑢||∇𝑢𝑢|, 

and hence 
�∇�𝜖𝜖2 + |𝑢𝑢|2� ≤ |∇𝑢𝑢|. Taking distributional limits as ϵ → 0, we obtain the 

claim. 
□ 

Lemma 4 (H1 has no step functions). Let 𝑢𝑢 ∈ H1(𝕋𝕋𝑑𝑑) be such that 𝑢𝑢(𝑥𝑥) 
takes at most two value. Then u is constant. 

Proof. We may assume that 𝑢𝑢 takes 0 and 1 only, thus u2 = 𝑢𝑢. On the one 
hand, differentiating this we obtain 2𝑢𝑢∇𝑢𝑢 =  ∇𝑢𝑢, thus (1-2𝑢𝑢)∇𝑢𝑢 =  0. On the 
other hand, since u2 = 𝑢𝑢 , (1 − 2u)2 = 1, and thus ∇𝑢𝑢 = 0, therefore 𝑢𝑢  is 
constant. 

□ 

Proof of Theorem 1. Let u, u+, θ  be as above. We may assume 𝑢𝑢  has 
non-zero mass. From Lemma 2, we see that {u(t): t ∈ [0,∞)} is precompact in 
𝐻𝐻1 . Thus we can find a sequence t𝑚𝑚 → ∞ such that 𝑢𝑢(t𝑚𝑚 ) → 𝑣𝑣0 in H1(𝕋𝕋𝑑𝑑), as 
m → ∞. Applying Lemma 2 and passing to a subsequence, we can also assume 
e𝑖𝑖𝑡𝑡𝑚𝑚 ∆𝑢𝑢+ → 𝑣𝑣+ in H1, as m→ ∞. 
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Since 𝑢𝑢  has non-zero mass, we see 𝑣𝑣+  also has non-zeromass. Let 
𝑣𝑣(𝑚𝑚):ℝ × 𝕋𝕋𝑑𝑑 → ℂ be the time-translated solution 𝑣𝑣(𝑚𝑚)(𝑡𝑡)  =  𝑢𝑢(𝑡𝑡 + 𝑡𝑡𝑚𝑚 ), thus 
𝑣𝑣(𝑚𝑚)(0) → 𝑣𝑣0 in 𝐻𝐻1(𝕋𝕋𝑑𝑑). Let 𝑣𝑣:ℝ × 𝕋𝕋𝑑𝑑 → ℂ be solution to NLS with initial 
data 𝑣𝑣(0) = 𝑣𝑣0. By the local well-posedness theory in 𝐻𝐻1 we conclude that 
𝑣𝑣(𝑚𝑚 ) converge uniformly in 𝐻𝐻1 to 𝑣𝑣 on every compact time interval [-T,T]. 

On the other hand, by hypothesis, ∀ 𝑡𝑡  we have  

�𝑣𝑣(𝑚𝑚)(𝑡𝑡) − 𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡+𝑡𝑡𝑚𝑚 )𝑒𝑒𝑖𝑖(𝑡𝑡+𝑡𝑡𝑚𝑚 )∆𝑢𝑢+�𝐻𝐻1 → 0, 𝑎𝑎𝑎𝑎 𝑚𝑚 → ∞. 

Since 𝑒𝑒𝑖𝑖𝑡𝑡𝑚𝑚 ∆𝑢𝑢+ → 𝑣𝑣+, as 𝑚𝑚 → ∞, we conclude that  

�𝑣𝑣(𝑚𝑚)(𝑡𝑡) − 𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡+𝑡𝑡𝑚𝑚 )𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+�𝐻𝐻1 → 0, 𝑎𝑎𝑎𝑎 𝑚𝑚 → ∞. 

By taking limits, we conclude that  

𝑣𝑣(𝑡𝑡)  =  𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+ 

for some α(t) ∈ ℝ/2πℤ. 
In particular, since 𝑣𝑣+ has non-zero mass, we have 

𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)  =  
1

‖𝑣𝑣+‖ 𝐿𝐿2
2 � 𝑣𝑣(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+d𝑥𝑥.

𝕋𝕋𝑑𝑑
 

From (1) and Sobolev, we see that 𝑣𝑣(t) is continuously differentiable in 
𝐻𝐻−1(𝕋𝕋𝑑𝑑), and so from the above identity we see that α is continuously differen-
tiable in time. Now we apply i ∂𝑡𝑡 + ∆ to both sides of (3). Using the NLS equa-
tion, we conclude that  

(i ∂𝑡𝑡 + ∆)𝑣𝑣 = (−i ∂𝑡𝑡 + ∆)�𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+� 

⟹ |𝑣𝑣(𝑡𝑡, 𝑥𝑥)|𝑝𝑝−1𝑣𝑣(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼′(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥). 

And thus by (1.3), we have whenever 𝑣𝑣(𝑡𝑡, 𝑥𝑥) ≠ 0, 
|𝑣𝑣(𝑡𝑡, 𝑥𝑥)|𝑝𝑝−1𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥)  =  𝛼𝛼′𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥) 

⟹ |𝑣𝑣(𝑡𝑡, 𝑥𝑥)|𝑝𝑝−1 =  𝛼𝛼′(𝑡𝑡). 

Thus we see that ∀ t, |𝑣𝑣(𝑡𝑡, 𝑥𝑥)| takes at most two values. By Lemma 3 and 
Lemma 4, we conclude that |𝑣𝑣(𝑡𝑡, 𝑥𝑥)| is constant in 𝑥𝑥, by (3), we see that the 
same is true for |𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥)|. By mass conservation we conclude that |𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥)| 
is also constant in time. 

Since𝑣𝑣+has non-zero mass, we can thus write  

𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+(𝑥𝑥) = 𝐴𝐴𝐴𝐴, a.e., 

where 𝜙𝜙:ℝ × 𝕋𝕋𝑑𝑑 → 𝕊𝕊1 is some function and 𝐴𝐴 > 0. Since 𝑣𝑣+ was in 𝐻𝐻1 , we 
see that 𝜙𝜙(𝑡𝑡) is in 𝐻𝐻1  also for every t. Differentiating the identity 𝜙𝜙𝜙𝜙�  =  1, 
We see that ∂𝑗𝑗𝜙𝜙𝜙𝜙 is imaginary almost everywhere for j = 1, 2, thus ∂𝑗𝑗𝜙𝜙(𝑡𝑡, 𝑥𝑥) is 
an imaginary multiple of 𝜙𝜙(𝑡𝑡, 𝑥𝑥) for almost every (t, x). This implies the im-
aginary vector field ∇𝜙𝜙.𝜙𝜙� is curl-free and thus by Hodge theory, we may write 
∇𝜙𝜙.𝜙𝜙� = 𝑖𝑖∇𝜔𝜔 for some ω:ℝ × ℝ𝑑𝑑 → ℝ which is locally in 𝐻𝐻1 uniformly in t. 
This implies that ∇(𝜙𝜙𝑒𝑒−𝑖𝑖𝑖𝑖 ) = 0, thus by adjusting ω by a constant independent 
of space. We may assume 𝜙𝜙 = 𝑒𝑒−𝑖𝑖𝑖𝑖 , thus 𝑒𝑒𝑖𝑖𝑖𝑖∆𝑣𝑣+ = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥). 

Applying  i ∂𝑡𝑡 + ∆ to both sides, we conclude that  

0 = (i ∂𝑡𝑡 + ∆)𝑒𝑒−𝑖𝑖𝑖𝑖∆𝑣𝑣+ 
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= (i ∂𝑡𝑡 + ∆)�𝐴𝐴𝐴𝐴−𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)� 

= 𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)𝜕𝜕𝑡𝑡𝜔𝜔 + ∆𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥))  
 =  𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)𝜕𝜕𝑡𝑡𝜔𝜔 + ∇(𝑖𝑖∇𝜔𝜔(𝑡𝑡, 𝑥𝑥)∆𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)))  

 =  𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑖𝑖∆𝜔𝜔(𝑡𝑡, 𝑥𝑥)∆𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥) + 𝑖𝑖∇𝜔𝜔(𝑡𝑡, 𝑥𝑥)𝑖𝑖∇𝜔𝜔(𝑡𝑡, 𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)) 
 =  𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑖𝑖∆𝜔𝜔(𝑡𝑡, 𝑥𝑥)∆𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥) − |∇𝜔𝜔(𝑡𝑡, 𝑥𝑥)|2𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)) 

 =  𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 (𝑡𝑡 ,𝑥𝑥)(𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑖𝑖∆𝜔𝜔 − |∇𝜔𝜔|2) 

in the sense of distributions. 
Since A is non-zero, we conclude that  

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑖𝑖∆𝜔𝜔 − |∇𝜔𝜔|2 = 0 

Taking imaginary parts, we conclude that ∆ω = 0 and in particular at time t 
= 0, ω is a harmonic function from ℝ𝑑𝑑  to ℝ. On the other hand, from the 
identity ∇𝜙𝜙𝜙𝜙� = 𝑖𝑖∇𝜔𝜔, we know that ∇𝜔𝜔 is periodic, so 𝜔𝜔 has at most linear 
growth. Thus 𝜔𝜔 must in fact be linear. Descending back to 𝕋𝕋𝑑𝑑 , we conclude 
that  

𝑒𝑒𝑖𝑖𝑖𝑖 (0,𝑥𝑥) = 𝑒𝑒𝑖𝑖(𝑛𝑛𝑛𝑛+𝛽𝛽), for some 𝑛𝑛 ∈ ℤ𝑑𝑑 ,𝛽𝛽 ∈ ℝ/2𝜋𝜋ℤ . 

Thus, we have  

𝑣𝑣+(𝑥𝑥) = 𝑒𝑒𝑖𝑖𝑖𝑖 (0,𝑥𝑥) = 𝑒𝑒𝑖𝑖(𝑛𝑛𝑛𝑛+𝛽𝛽) 

Since  

𝑒𝑒𝑖𝑖𝑡𝑡𝑚𝑚∆𝑢𝑢+ → 𝑣𝑣+ in 𝐻𝐻1, as m → ∞,  
𝑒𝑒𝑖𝑖𝑡𝑡𝑚𝑚∆𝑣𝑣+ → 𝑢𝑢+ in 𝐻𝐻1, as m → ∞,  

but 𝑒𝑒−𝑖𝑖𝑡𝑡𝑚𝑚∆𝑣𝑣+  is a multiple of 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖  by a phase, thus 𝑢𝑢+(𝑥𝑥)  =  A𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 . Ap-
plying phase rotation, we may assume 𝑟𝑟 = 0, thus 𝑢𝑢+(𝑥𝑥)  =  A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , and we 
have  

�𝑢𝑢(𝑡𝑡) − 𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖∆A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 �
𝐻𝐻1(𝕋𝕋𝑑𝑑 )

→ 0, as 𝑡𝑡 → ∞. 

From mass and energy conservation, we conclude  

� |𝑢𝑢(𝑡𝑡, 𝑥𝑥)|2d𝑥𝑥
𝕋𝕋𝑑𝑑

 =  lim
𝑡𝑡→∞

� |𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖∆A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |2d𝑥𝑥
𝕋𝕋𝑑𝑑

 

= lim
𝑡𝑡→∞

� |𝑒𝑒−𝑖𝑖𝑖𝑖∆A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |2d𝑥𝑥
𝕋𝕋𝑑𝑑

 

= lim
𝑡𝑡→∞

� |A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |2d𝑥𝑥
𝕋𝕋𝑑𝑑

 =  𝐴𝐴2|𝕋𝕋𝑑𝑑 |,  

and 

�
1
2

|∇𝑢𝑢(𝑡𝑡, 𝑥𝑥)|2 +
1

𝑝𝑝 + 1
|𝑢𝑢(𝑡𝑡, 𝑥𝑥)|𝑝𝑝+1d𝑥𝑥

𝕋𝕋𝑑𝑑
 

= lim
𝑡𝑡→∞

�
1
2

|∇(𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖∆A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 )|2 +
1

𝑝𝑝 + 1
|𝑒𝑒𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖∆A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |𝑝𝑝+1d𝑥𝑥

𝕋𝕋𝑑𝑑
 

= lim
t→∞

�
1
2

|∇(Aeinx )|2 +
1

p + 1
Ap+1|e−it∆Aeinx |p+1dx

𝕋𝕋d
 

 = �
1
2
𝐴𝐴2|𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |2 +

1
𝑝𝑝 + 1

𝐴𝐴𝑝𝑝+1d𝑥𝑥
𝕋𝕋𝑑𝑑
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=
𝑛𝑛2

2
𝐴𝐴2|𝕋𝕋𝑑𝑑 | +

𝐴𝐴𝑝𝑝+1

𝑝𝑝 + 1
|𝕋𝕋𝑑𝑑 | . 

On the other hand, from Hölder’s inequality, we have 

�� |𝑢𝑢(𝑡𝑡, 𝑥𝑥)|2𝑑𝑑𝑑𝑑
𝕋𝕋d

�

1
2

≤ ‖𝑢𝑢(𝑡𝑡, 𝑥𝑥)‖𝐿𝐿𝑥𝑥𝑝𝑝+1�𝕋𝕋𝑑𝑑�|𝕋𝕋
𝑑𝑑 |

1
2−

1
𝑝𝑝+1  

= ‖𝑢𝑢(𝑡𝑡, 𝑥𝑥)‖𝐿𝐿𝑥𝑥𝑝𝑝+1�𝕋𝕋𝑑𝑑�|𝕋𝕋
𝑑𝑑 |

𝑝𝑝−1
2(𝑝𝑝+1). 

then  

�
1

𝑝𝑝 + 1
|𝑢𝑢(𝑡𝑡, 𝑥𝑥)|𝑝𝑝+1𝑑𝑑𝑑𝑑

𝕋𝕋𝑑𝑑
≥

1
𝑝𝑝 + 1

�� |𝑢𝑢(𝑡𝑡, 𝑥𝑥)|2𝑑𝑑𝑑𝑑
𝕋𝕋𝑑𝑑

�

𝑝𝑝+1
2

|𝕋𝕋𝑑𝑑 |−
𝑝𝑝−1

2  

=
1

𝑝𝑝 + 1
(𝐴𝐴2|𝕋𝕋𝑑𝑑 |)

𝑝𝑝+1
2 |𝕋𝕋𝑑𝑑 |−

𝑝𝑝−1
2  

= 1
𝑝𝑝+1

𝐴𝐴𝑝𝑝+1|𝕋𝕋𝑑𝑑 |. 

Thus, we must have 

∫ 1
2

|∇𝑢𝑢(𝑡𝑡, 𝑥𝑥)|2𝑑𝑑𝑑𝑑𝕋𝕋𝑑𝑑  =  0. 

Thus, 𝑢𝑢 is constant in space, and thus it is of the form 

𝑢𝑢(𝑡𝑡, 𝑥𝑥 ) = 𝐴𝐴 𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡). 

□ 

Applying (1), we see that 

i ∂𝑡𝑡𝑢𝑢 +△ 𝑢𝑢 = (i ∂𝑡𝑡 +△)𝐴𝐴e𝑖𝑖𝑖𝑖 (𝑡𝑡) = A(𝑘𝑘′(𝑡𝑡)e𝑖𝑖𝑖𝑖 (𝑡𝑡)) = A𝑘𝑘′(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡) | u|p−1u
= Apeik (t), 

then 

A𝑝𝑝  = A𝑘𝑘′(𝑡𝑡)⟹k′(t) = 𝐴𝐴𝑝𝑝−1, 

so 

𝑘𝑘(𝑡𝑡) = 𝑘𝑘(0) + 𝐴𝐴𝑝𝑝−1𝑡𝑡, 

so 𝑢𝑢(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴e𝑖𝑖𝑖𝑖 (0)𝑒𝑒𝑖𝑖|𝐴𝐴|𝑝𝑝−1𝑡𝑡 , which is exactly the form of (2). 

References 
[1] Bourgain, J. (1999) Global Well-Posedness of Defocusing 3D Critical NLS in the 

Radial Case. J. Amer. Math. Soc., 12, 145-171.  
https://doi.org/10.1090/S0894-0347-99-00283-0  

[2] Cazenave, T. (2003) Semilinear Schrödinger Equations, Courant Lecture Notes in 
Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, 
New York, American Mathematical Society, Providence, RI. 

[3] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2008) Global 
Well-Posedness and Scattering for the Energy-Critical Nonlinear Schrödinger Equ-
ation in 𝑅𝑅3, Ann. of Math., 167, 767-865.  
https://doi.org/10.4007/annals.2008.167.767 

[4] Tao, T. (2006) Nonlinear Dispersive Equations: Local and Global Analysis, CBMS 
Regional Conference Series in Mathematics, 106. American Mathematical Society, 
Providence, RI. https://doi.org/10.1090/cbms/106  

https://doi.org/10.4236/jamp.2017.59162
https://doi.org/10.1090/S0894-0347-99-00283-0
https://doi.org/10.4007/annals.2008.167.767
https://doi.org/10.1090/cbms/106


X. Cheng, Q. Li 
 

 

DOI: 10.4236/jamp.2017.59162 1922 Journal of Applied Mathematics and Physics 
 

[5] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2010) Transfer of 
Energy to High Frequencies in the Cubic Defocusing Nonlinear Schrödinger Equa-
tion. Invent. Math, 181, 39-113. https://doi.org/10.1007/s00222-010-0242-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jamp@scirp.org 

https://doi.org/10.4236/jamp.2017.59162
https://doi.org/10.1007/s00222-010-0242-2
http://papersubmission.scirp.org/
mailto:jamp@scirp.org

	Non-Scattering of the Solution of the Nonlinear Schrödinger Equation on the Torus
	Abstract
	Keywords
	1. Introduction
	2. Main Theorem
	References

