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Abstract 
We deal with the problem of sharing vehicles by individuals with similar iti-
neraries which is to find the minimum number of drivers, each of which has a 
vehicle capacity and a detour to realize all trips. Recently, Gu et al. showed 
that the problem is NP-hard even for star graphs restricted with unique desti-
nation, and gave a polynomial-time algorithm to solve the problem for paths 
restricted with unique destination and zero detour. In this paper we will give a 
dynamic programming algorithm to solve the problem in polynomial time for 
trees restricted with unique destination and zero detour. In our best know-
ledge it is a first polynomial-time algorithm for trees. 
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1. Introduction 

There are many previous researches for assigning passengers to drivers [1]-[7]. 
In this paper we deal with a more general ridesharing problem, introduced by 
Gu et al. [8], in which each individual is a driver or passenger. Let G be a 
connected and edge-weighted graph with vertex set ( )V G  and edge set ( )E G . 
Let k be a positive integer, and let a ridesharing infomation R be a set of k trips  
( , , , , , )i i i i ii s t c d P , 1 i k≤ ≤ , where 

• is  and it  are the source (start location) and the destination, respectively, 
of the i-th trip; 
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• ic  is the number of seats (capacity) of the i-th driver available for 
passengers including the driver; 

• id  is the detour distance limit which the i-th driver can tolerate for offering 
ridesharing services; and 

• iP  is the preferred path of the i-th trip from is  to it  in G. 
Let ( )I R  be the set of the indices of all trips in R which should be served, 

that is, ( ) { | ( , , , , , ) }i i i i iI R i i s t c d P R= ∈ . A ridesharing of a graph G with R is a 
mapping : ( ) ( )f I R I R→  such that, for each ( )i I R∈ , if 1( )f i− = ∅/  then 

1( )i f i−∈ , 1| ( ) | if i c− ≤  and there is a trip (walk) P satisfying jP P⊆  for each 
1( )j f i−∈  and the distance of P is at most id  plus the distance of iP , where 

1( ) { | ( ) }f i j f j i− = = , that is, 1( )f i−  is the set of the indices of trips served by 
the i-th driver. Let ( )fdriver  be the number of drivers of a ridesharing f, that 
is, 

{ }1( ) | ( ) .f i f i−= = ∅/driver  

A ridesharing f of G with R is optimal if ( )fdriver  is minimum among all 
ridesharings f. The ridesharing problem is to find an optimal ridesharing f for a 
given graph G and a ridesharing information R. 

Recently, Gu et al. showed that the problem is NP-hard even for star graphs 
restricted with unique destination, and gave a polynomial-time algorithm to 
solve the problem for paths restricted with unique destination and zero detour 
[8]. In this paper we will give a dynamic programming algorithm to solve the 
problem for trees T restricted with unique destination and zero detour. Our 
algorithm runs in time 2( )O k n , where k is the number of the trips and n is the 
number of the vertices in T. In our best knowledge it is a first polynomial-time 
algorithm for trees. 

2. A Dynamic Programming Algorithm 

The ridesharing problem is NP-hard even for star graphs restricted with unique 
destination if some detours are not zero [8]. However, in this section, we have 
the following theorem for the problem of trees restricted with unique destination 
and zero detour. 

The ridesharing problem of trees T can be solved in time 2( )O k n  if the 
destinations of all the k trips are same and the detour of each driver is zero, 
where n is the number of the vertices in T. 

In the remainder of this section we give an algorithm to solve the ridesharing 
problem for trees in polynomial time as a proof of Theorem 2. Let k be a positive 
integer and let R be a set of the k trips ( , , , , , )i i i i ii s t c d P , 1 i k≤ ≤ , as an instance 
of the ridesharing problem of T. Since we deal with the problem restricted with 
unique destination and zero detours, let r be the unique destination. Then for 
each i, 1 i k≤ ≤ , we have it r=  and 0id = , and iP  is the unique path in T. 
For the sake of notational convenience we redefine the ridesharing information 

{( , , ) |1 }i iR i s c i k= ≤ ≤ , and let ( , , )T R r  be an instance of the ridesharing 

https://doi.org/10.4236/jamp.2017.59140


Y. M. Li et al. 
 

 

DOI: 10.4236/jamp.2017.59140 1680 Journal of Applied Mathematics and Physics 
 

problem of T with the ridesharing information R and the unique destination r in 
the remainder of this paper. 

Since the destinations of all trips are same, we choose the destination r as the 
root of a given tree T, and regard T as rooted tree. For each vertex v of T, we 
denote by vT  the subtree of T which is rooted at v and is induced by all 
descendants of v in T. For each edge )(),(= TEvve ∈′  such that v is the 
parent of v′  in T, we denote by eT  the subtree of T which is rooted at v and is 
induced by v, v′  and the descendants of v′  in T. For a subtree T ′  of T 
rooted at v, let 

( , ) {( , , ) | ( ) \{ }}.i i iR T v i s c R s V T v′ ′= ∈ ∈  

For each α , 0 kα≤ ≤ , we denote by ( , , )T v α′cap  the maximum number 
of additional trips which can be served after serving all trips in ( , )R T v′  using at 
most α  drivers, that is, 

( , , ) max ( )
f

T v fα′ =cap cap  

where the maximum is taken over all ridesharings f with the instance  
( , ( , ), )T R T v v′ ′  satisfying ( )f α≤driver  and 

1( ( , )), ( )

( ) ( , ) .i
i I R T v f i

f c R T v
−′∈ =∅/

′= −∑cap  

Let ( , , )T v α′ = −∞cap  if α  drivers can not serve all trips in ( , )R T v′  with 
the unique destination v. The main step of our algorithm is to compute the table 
of the functions cap  from leaves to the root r of T by dynamic programming. 
From the table on the root r, it is obvious that the minimum α  satisfying 

( , , )rT r α = −∞/cap  is the minimum number of drivers to serve all the trips. 
Although we give a dynamic programming algorithm to compute the minimum 
number of drivers to serve all the trips, the algorithm can be easily modified to 
actually find an optimal ridesharing f. We thus show how to compute such all 
the tables on vertices v from leaves to the root in the remainder of this section. 

2.1. The Vertex v Is a Leaf in T 

In this case, since v is a leaf in T, there is no trips from v's descendants in vT . 
Therefore, by the definition of ( , , )vT v αcap , we trivially have the following 
lemma. 

Let v be an arbitrary leaf of T. Then ( , , ) 0vT v α =cap  for each 0α ≥ . 

2.2. The Vertex v Is an Internal Vertex in T 

In this case v is an internal vertex in T. Let 1 2, , , lv v v�  be the children of v 
ordered arbitrarily, and let je , 1 j l≤ ≤ , be the edge joining v to jv , as 
illustrated in Figure 1. The subtree 

jvT , 1 j l≤ ≤ , of T is rooted at jv  and is 
induced by all descendants of jv  in T. We denote by j

vT  the subtree of T 
which consists of the vertex v, the edges 1 2, , , je e e�  and the subtrees 

1 2
, , ,

jv v vT T T� . 1j
vT −  is indicated by a dotted line in Figure 1. Obviousely 

l
v vT T= . 
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Figure 1. Subtrees vT , 1j

vT −  and 
jeT  rooted at v. 

 
We first compute the function ( , , )

jeT v αcap  for all α  and j , 0 kα≤ ≤  
and 1 j l≤ ≤ , as in the following lemma 1, where 

jeT  is the subtree obtained 
from 

jvT  by adding the edge je , indicated by a dotted thick line in Figure 1. 
Let ( ) {( , , ) | }j i i i jR v i s c R s v= ∈ =  be the subset of R such that the start  

location is at jv , and let 

1 1
10 ( ( )), | |

( , , ) max ( , , ) max | ( ) | .
j j

j
e v j i jI I R v I i I

T v T v c R v
α α α α

γ α α
′ ′≤ ≤ ⊆ = − ′∈

 = + − 
 

∑cap  (1) 

Then 

( , , ) if ( , , ) 0;
( , , )

otherwise.
j j

j

e e
e

T v T v
T v

γ α γ α
α

≥= 
−∞

cap           (2) 

Furthermore, all ( , , )
jeT v αcap , 0 kα≤ ≤ , can be computed from all 

1( , , )
jv jT v αcap , 10 kα≤ ≤ , in time 2( )O k . 

Proof. We first prove 

( , , ) ( , , ).
j je eT v T vα γ α≤cap              (3) 

If ( , , )
jeT v α = −∞cap , then Equation (3) trivially holds. We thus assume that 

( , , )
jeT v α = −∞/cap , that is, there is a ridesharing f with the instance  

( , ( , ), )
j je eT R T v v  such that ( )f α≤driver  and ( , , ) ( )

jeT v fα =cap cap . Let f ′  
be a mapping from ( ( , ))

jv jI R T v  to ( ( , ))
jv jI R T v  such that ( ) ( )f i f i′ =  for 

each ( ( , ))
jv ji I R T v∈ . Then clearly f ′  is a ridesharing of 

jvT  with the 
instance ( , ( , ), )

j jv v j jT R T v v  since f is a ridesharing of 
jeT  and 

jvT  is a subtree 
of 

jeT . Let 1 ( )fα ′= driver , then by the definition of 1( , , )
jv jT v αcap , we have 

1( ) ( , , )
jv jf T v α′ ≤cap cap . Let 

1{ ( ( )) | ( ) }.jI i I R v f i−′ = ∈ =∅/  

Then the ( )fdriver  drivers in f consists of the ( )f ′driver  drivers from 
start locations in 

jvT  and the | |I ′  drivers from start locations at jv , and 
hence ( ) ( ) | |f f I′ ′= +driver driver . Therefore, we have 1 | |Iα α ′= +  and 

1

1 1

( ( , )), ( )

( ( , )), ( ) ( ( )), ( )

1

( , , ) ( ) ( , )

( , ) ( )

( ) | ( ) | ( , , ) | ( ) |

( , , ),

j j
e j

j
v j jj

j

j

e i e
i I R T v f i

i i v j j
i I R T v f i i I R v f i

i j v j i j
i I i I

e

T v f c R T v

c c R T v R v

f c R v T v c R v

T v

α

α

γ α

−

− −

∈ =∅/

∈ =∅ ∈ =∅/ /

′ ′∈ ∈

= = −

= + − −

′= + − ≤ + −

≤

∑

∑ ∑

∑ ∑

cap cap

cap cap
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verified Equation (3). 
We next prove that 

( , , ) ( , , )
j je eT v T vα γ α≥cap                  (4) 

if ( , , ) 0
jeT vγ α ≥ . By Equation (1) m choose 1α  and I ′  such that 

10 α α≤ ≤ , ( ( ))jI I R v′ ⊆ , 1| |I α α′ = −  and 

1( , , ) ( , , ) | ( ) | .
j je v j i j

i I
T v T v c R vγ α α

′∈

= + −∑cap            (5) 

Since ( , , ) 0
jeT vγ α ≥ , we have 1( , , )

jv jT v α = −∞/cap , and hence there is a 
ridesharing f ′  with the instance ( , ( , ), )

j jv v j jT R T v v  such that 1( )f α′ ≤driver  
and 1( ) ( , , )

jv jf T v α′ =cap cap . One can obtain a ridesharing f  with the 
instance ( , ( , ), )

j je eT R T v v  from f ′  using 1α  drivers in f ′  plus the new | |I ′  
drivers having the trip indices in I ′ . By Equation (5) we have 

( ) ( , , )
jef T vγ α=cap , and by the definition ( , , ) ( )

jeT v fα ≥cap cap , and hence 
we have ( , , ) ( , , )

j je eT v T vα γ α≥cap , verified Equation (4) . 
By Equations (3) and (4) m Equation (2) holds true. We finally show that for 

each α , 0 kα≤ ≤ , ( , , )
jeT v αcap , can be computed from all 1( , , )

jv jT v αcap , 

10 kα≤ ≤ , in time 2( )O k  as follows. 
By Equation (1) for a given 1α , clearly I ′  is the set of the 1α α−  indices 

( ( ))ji I R v∈  such that ic  is at least 1α α−  largest among all ic ′ ,  
( ( ))ji I R v′∈ . One can sorted all ic , ( ( )ji I R v∈ ), in non-increasing order, and 

compute all prefix sum of ic . This can be done in time ( log )O k k . Then, for 
any given pair of α  and 1α , 10 kα α≤ ≤ ≤ , 

1( ( )), | |=
max

j
iI I R v I i I

c
α α′ ′⊆ − ′∈
∑  

can be computed in (1)O  time. One thus can compute ( , , )
jeT vγ α  in time 

( )O k  for each α  since 1 kα α≤ ≤ , and hence ( , , )
jeT v αcap  for all α , 

0 kα≤ ≤ , can be computed from all 1( , , )
jv jT v αcap  in time 2( )O k .         

We finally compute the function ( , , )j
vT v αcap  for all α  and j , 0 kα≤ ≤  

and 1 j l≤ ≤ , as in the following lemma. 
For each α , 0 kα≤ ≤ , 

{ }
1 2 1 2

1
1 20 , ,

( , , ) max ( , , ) ( , , ) .
j

j j
v v eT v T v T v

α α α α α α
α α α−

≤ ≤ + =
= +cap cap cap  

Furthermore, all ( , , )j
vT v αcap , 0 kα≤ ≤ , can be computed from all 

1
1( , , )j

vT v α−cap  and 2( , , )
jv jT v αcap  in time 2( )O k . 

Proof. We first prove 

{ }
1 2 1 2

1
1 20 , , =

( , , ) max ( , , ) ( , , ) .
j

j j
v v eT v T v T v

α α α α α α
α α α−

≤ ≤ +
≤ +cap cap cap      (6) 

If ( , , )j
vT v α = −∞cap , then Equation (6) trivially holds. We thus assume that 

( , , )j
vT v α = −∞/cap , that is, there is a ridesharing f with the instance  

( , ( , ), )j j
v vT R T v v  such that ( )f α≤driver  and ( , , ) ( )j

vT v fα =cap cap . Let 1f  

be a mapping from 1( ( , ))j
vI R T v−  to 1( ( , ))j

vI R T v−  such that 1( ) ( )f i f i=  for 

each 1( ( , ))j
vi I R T v−∈ . Then clearly 1f  is a ridesharing of 1j

vT −  with the 
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instance 1 1( , ( , ), )j j
v vT R T v v− − . Let 1 1( )fα = driver . By the definition of  

1
1( , , )j

vT v α−cap  we have 1
1 1( ) ( , , )j

vf T v α−≤cap cap . Similarly, let 2f  be a 
mapping from ( ( , ))

jeI R T v  to ( ( , ))
jeI R T v  such that 2 ( ) ( )f i f i=  for each  

( ( , ))
jei I R T v∈ . Then clearly 2f  is a ridesharing of 

jeT  with the instance  

( , ( , ), )
j je eT R T v v . Let 2 2( )fα = driver . By the definition of 2( , , )

jeT v αcap  we 

have 2 2( ) ( , , )
jef T v α≤cap cap . Furthermore, 1 2( ) ( ) ( )f f f= +cap cap cap  and 

1 2( ) ( ) ( )f f f= +driver driver driver , and hence 1 2α α α= + . We thus have 

1 2
1

1 2

( , , ) ( ) ( ) ( )

( , , ) ( , , ),
j

j
v

j
v e

T v f f f

T v T v

α

α α−

= = +

≤ +

cap cap cap cap

cap cap
 

verified Equation (6). 
We next prove 

{ }
1 2 1 2

1
1 20 , , =

( , , ) max ( , , ) ( , , ) .
j

j j
v v eT v T v T v

α α α α α α
α α α−

≤ ≤ +
≥ +cap cap cap    (7) 

Choose 1α′  and 2α′  such that 1 20 ,α α α′ ′≤ ≤ , 1 2α α α′ ′+ =  and 

{ }
1 2 1 2

1 1
1 2 1 20 , ,

( , , ) ( , , ) max ( , , ) ( , , ) .
j j

j j
v e v eT v T v T v T v

α α α α α α
α α α α− −

′ ′
≤ ≤ + =

+ = +cap cap cap cap  

We may assume 1
1( , , )j

vT v α− ′ = −∞/cap  and 2( , , )
jeT v α′ = −∞/cap ; otherwise 

Equation (7) trivially holds. 
Since 1

1( , , )j
vT v α− ′ = ∞/cap , there is a ridesharing 1f  with the instance  

1 1( , ( , ), )j j
v vT R T v v− −  such that 1

1 1( ) ( , , )j
vf T v α− ′=cap cap . Similarly, since  

2( , , )
jeT v α′ = −∞/cap , there is a ridesharing 2f  with the instance  

( , ( , ), )
j je eT R T v v  such that 2 2( ) ( , , )

jef T v α′=cap cap . Let f  be a mapping such 
that for each ( ( , ))j

vi I R T v∈  
1

1

2

( ) ( ( , )),
( )

( ) , , ( ( , )).
j

j
v

e

f i if i I R T v
f i

f i otherwise that is i I R T v

− ∈=  ∈
 

Then clearly f  is a ridesharing of j
vT  with the instance ( , ( , ), )j j

v vT R T v v  
such that 1 2( ) ( ) ( )f f f= +cap cap cap  and 1 2( ) ( ) ( )f f f= +driver driver driver . 
By the definition of ( , , )j

vT v αcap , we have 

{ }
1 2 1 2

1 2
1

1 2

1
1 20 , ,

( , , ) ( ) ( ) ( )

( , , ) ( , , )

max ( , , ) ( , , ) ,

j

j

j
v

j
v e

j
v e

T v f f f

T v T v

T v T v
α α α α α α

α

α α

α α

−

−

≤ ≤ + =

≥ = +

′ ′= +

= +

cap cap cap cap

cap cap

cap cap

 

verified Equation (7). 

Furthermore, clearly ( , , )j
vT v αcap  for all α  and j , 0 kα≤ ≤ , can be 

computed in time 2( )O k  from all 1
1( , , )j

vT v α−cap  and 2( , , )
jeT v αcap .  

2.3. Algorithm 

From Lemmas 2.1—1 one can obtain the following algorithm to compute all 
( , , )vT v αcap , ( )v V T∈  and 0 kα≤ ≤ . 
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Algorithm Alg( capvRTv ,,, ) begin if v  is a leaf in T , then  
0=),,( αvTcap v  for all α , k≤≤α0 , by Lemm 2.1; else if v  is an 

internal vertex in T , then begin let lvvv ,,, 21 �  be the children of v  
ordered arbitrarily, and let je , lj ≤≤1 , be the edge joining v  to jv ; for 
each j , lj ≤≤1 , compute all ),,( αvTcap

je , k≤≤α0 , from all 
),,( 1αjjv vTcap m  k≤≤ 10 α , by Lemma 1; for each j , lj ≤≤1 ,  

compute all ),,( αvTcap j
v , k≤≤α0 , from all ),,( 1

1 αvTcap j
v
− ,  

k≤≤ 10 α , and all ),,( 2αvTcap
je , k≤≤ 20 α , by Lemma 1; let 

),,(=),,( αα vTcapvTcap l
vv  for all α , k≤≤α0 ; end end 

Clearly it runs in time 2( )O k n  since T has the n vertices. This completes to 
prove Theorem 2. 

3. Conclusion 

In this paper we gave a dynamic programming algorithm to solve the 
ridesharing problem for trees restricted with unique destination and zero detour. 
Our algorithm runs in polynomial time. However, it is still open whether or not 
there is a polynomial-time algorithm to solve the problem restricted with unique 
destination and zero detour for series-parallel graphs and graphs with bounded 
treewidth. 
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