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Abstract 
Environmental systems including our atmosphere oceans, biological… etc. 
can be modeled by mathematical equations to estimate their states. These eq-
uations can be solved with numerical methods. Initial and boundary condi-
tions are needed for such of these numerical methods. Predication and simu-
lations for different case studies are major sources for the great importance of 
these models. Satellite data from different wide ranges of sensors provide ob-
servations that indicate system state. So both numerical models and satellite 
data provide estimation of system states, and between the different estima-
tions it is required the best estimate for system state. Assimilation of observa-
tions in numerical weather models with data assimilation techniques provide 
an improved estimate of system states. In this work, highlights on the mathe-
matical perspective for data assimilation methods are introduced. Least square 
estimation techniques are introduced because it is considered the basic ma-
thematical building block for data assimilation methods. Stochastic version of 
least square is included to handle the error in both model and observation. 
Then the three and four dimensional variational assimilation 3dvar and 4dvar 
respectively will be handled. Kalman filters and its derivatives Extended, (KF, 
EKF, ENKF) and hybrid filters are introduced. 
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1. Introduction 

In general, models could be classified as [1] [2]: 
1) Process specific models (Causality Process) are based on conservation of 

laws of nature e.g.: Shallow water modeling, Navier Stokes Equation. 
2) Data specific models (correlation based) are based on developed experi-

mental models e.g.: Time Series models, Machine Learning, Neural Networks. 
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etc.  
Atmospheric and oceans models are process specific models which Navier 

stokes equations are the core of the solver to predict, simulate and estimate sys-
tem states. Process specific models have different classifications from different 
perspectives, time, space, and structure of the model, in addition to another clas-
sification which is deterministic and stochastic. 

It is assumed that the state of dynamical system evolves according to first or-
der nonlinear equation  

( )1K KX M X+ =                          (1) 

where KX  is the current state of the system; M(.) is the mapping function from 
the Current state X at time K to the next state X at K + 1 
• If the mapping function M(.) doesn’t depend on the time index K then it is 

called a time invariant or autonomous system  
• If the M(.) varies with time index k that is ( )1K K kX M X+ = , then it is called 

time-varying system (dynamic system) 
• If 1K KX MX+ =  for M non-singular matrix, then it is called time invariant 

linear system. 
• If matrix M varies with time, that is 1K K kX M X+ = , then it is called time va-

rying linear or non-autonomous system. 
• In the special cases when M(.) is an identity map, that is ( )M x x= , then it is 

called static system  
The mentioned above is the deterministic case; the Randomness in the model 

can enter in three ways: 
(A) Random initial conditions (B) Random forcing (C) Random Coefficients 
So, a random or a stochastic model is given by: 

( )1 1K K KX M X W+ += +                       (2) 

where the random sequences { }KW , denotes to the external forcing; typically 
{ }KW  captures uncertainties in the model including model error. 

So, the classes of models that are used in the data assimilation could be classi-
fied as: 

(1) Deterministic-Static  (3) Stochastic-Static 
(2) Deterministic-Dynamic  (4) Stochastic-Dynamic 
The paper is organized as follow: Section 2 states the mathematical foundation 

for data assimilations which describes linear and nonlinear least square in addi-
tion to weighted least square and Recursive Least square. Section 3 introduces 
the deterministic static model linear and nonlinear cases. Section 4 shows sto-
chastic static model: Both linear and nonlinear cases. Section 5 describes deter-
ministic dynamic linear case and the recursive case. Section 6 explains stochastic 
dynamic linear, nonlinear, reduced and hybrid filters.  

2. Mathematical Background 

Mainly all the data assimilation techniques are based on least square estimation, 
so classification of the estimation problems based on different criteria. The Es-
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timation problems can be underdetermined problem when number of observa-
tions (m) are less than number of state (n) (m < n). And can be over determined 
when number of observations (m) is larger than number of states (n) (m > n) [1]. 
Also the Estimation problem can be classified according to the mapping func-
tion from the state space to observation space which can be linear or nonlinear. 
and nonlinearity should be handled  

Other type of classification is offline or online problems. Where offline prob-
lems if the observations are known priori. In other words we have historical set 
of data and we treat with them. While Online/Sequential problems are compu-
ting a new estimate of the unknown state X as a function of the latest estimate 
and the current observation. So, online formulation is most useful in real time 
applications. The last type of classifications is Strong and Weak Constraints, The 
Strong Constraint is occurred when the estimation is performed under the per-
fect model assumption. While in case of allowing for errors in the model dy-
namics, it is considered Weak Constraint [1] 

Since, Data Assimilation based on Least Square Approach [1] [2] [3] [4]. First 
we introduce linear version of least square then will move to nonlinear version. 
After that weighted version for both linear and nonlinear will be introduced. 

2.1. Linear Least Square Method 
Let    Z HX=                                                      (3) 

Given the observation vector Z and the mapping function/Interpolation ma-
trix H (Full Rank) find the unknown state vector X.  

Then the error Vector which represents the difference between the Observa-
tions Z and the required estimated state X can be represented as follow  

–e Z HX=                              (4) 

The Previous term is called also error term or Innovation term. So we need to 
find the best estimate that minimizes the error. So the problem is converted 
from Estimation Problem to Optimization Problem. One of the basic classifica-
tions for problem is over determined Problem (m > n) or under determined 
problem (m < n) and we consider first over determined case (m > n). To measure 
The vector e using The Euclidean norm and the fact of Minimization of norm is 
equal to minimization of square norm. The cost function will be as follow 

( ) ( ) ( )2 T
2J x Z HX Z HX Z HX= − = − −                 (5) 

And minimization of X is Obtained under the following condition ( ) 0J x∇ = . 
This lead to  

( ) 1T TX H H H Z
−

=                           (6) 

And this equation was known as normal equation method. In case of over de-
termined problem m > n. While in case under determined case (m < n). The es-
timation for X will be as follow. 
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( ) 1T T  X H HH Z
−

=                          (7) 

And this undetermined problem where m number of observation is less than 
n, number of unknowns is known in geophysical (physical process physical 
properties of the earth and its surrounding space Environment) because of the 
cost of collection of the observation is high. And in case uniquely determined 
case (m = n) which mean that the error e is zero. The estimated state vector X 
will be  

1X H Z−=                              (8) 

As we can see from the above three formulation that minimization for the cost 
function ends to Solving system of linear equation, and solving the linear system 
(A = Xb) of equations can be done using: 
o Direct methods (Cholesky decomposition, Q-R decomposition, Singular 

Value decomposition, …) [5]. 
o Iterative methods (Jacobi Method, Gauss-Seidel Method, Successive 

Over-Relaxation method, …) [5]. 

2.2. Non Linear Least Square Method 

The problem here will be: Given set of observation Z and knowing the function 
form h which is nonlinear function. Find the state vector X as shown  

( )   Z h X=                             (9) 

And the Innovation term will be  

( )e Z h X= −                          (10) 

And the cost function will be  

( ) ( ) ( )( ) ( )( )2 T

2
J X Z h X Z h X Z h X= − = − −             (11) 

And so that, the idea here is extension for the linear case by replacing the non-
linear term h(x) with its Linear approximation of Taylor series expansion 
around an Operating Point let it cX  and in this case it is called first order ap-
proximation for nonlinear least square as follow 

( ) ( ) ( )( )   c h c ch X h X D X X X= + −                 (12) 

where ( )h cD X  is the Jacobin matrix of h which is an m n×  matrix given by:  

( ) ( ) where 1 ;1i
h c c

j

hD X h X i m j n
X

 ∂
= ∇ = ≤ ≤ ≤ ≤ 

∂  
.        (13) 

And by substitution of first order approximation of Taylor series expansion in 
the cost function and giving it name ( )1Q x  and the index one refer for first 
order  

( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( )( )

2
1 2

T
 –   – h c c h c c

Q x J X Z h X

z h X D X X X z h X D X X X=

= = −

− − − −
 (14) 

And simplifying the notation by define ( ) ( )( )–g X Z h X=  
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( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( )( )

2
1 2

T
           h c c h c c

Q x J X Z h X

g x D X X X g x D X X X

= = −

= − − − −
    (15) 

And by comparing the previous equation by the linear version. 

( ) ( ) ( )2 T
2J x Z HX Z HX Z HX= − = − −               (16) 

You will find that every Z was replaced by g(x) and every H is replaced by 
( )h cD X  also every X is replaced by ( )cX X−   

And if the gradient is 1 0Q∇ = ; we will obtain  

 ( ) ( ) ( ) ( )
1T T T

c h c h c h c cX X D X D X D X g X
−

   − =               (17) 

And this is iterative approach and given an initial value for cX  and solving 
the above equation using direct methods or iterative methods then iterate again 
until cX X−  < prescribed threshold 

And by similarity the second order algorithm for non Linear Least Square will 
be same steps except that Taylor series expansion will be full Quadratic approx-
imation 

( ) ( ) ( )( ) ( ) ( )( )( )221         
2c h c c h c c ch X h X D X X X D X X X X= + − + −     (18) 

where the ( ) ( )2 2
h cD X h X= ∇  is the hussian of ( )h X  and by substituting this 

second order expansion in the nonlinear cost function and giving it name 

( )2Q x  since the index 2 refer to second order approximation and Putting the 
gradient 2 0Q∇ =  equal zero you will get the following  

( ) ( ) ( ) ( ) ( ) ( )
1T T 2 T   c h c h c c h c cX X D X D X g X h X D X g X
−

   − + ∇  =     (19) 

And this is iterative approach and given an initial value for cX  and solving 
the above equation using direct methods or iterative methods then iterate again 
until cX X−  < prescribed threshold. All the above methods were for determi-
nistic least square where  

Z HX=  or ( )Z h X=                       (20) 

2.3. The Weighted Least Square Method 

If there additive random noise was V presented. Which mean the observation is 
noisy with as follow  

Z HX V= +  or ( )Z h X V= +                   (21) 

• Mean E(V) = zero which mean that the instrument is well calibrated Un-
biased and If it is ≠ zero which mean that there is bias (for example under or 
over reading). 

• Covariance ( )Cov V R= , The covariance matrix for the instrument. which it 
is property for the instrumentation.  

So, for the linear form of Least Square, the cost function will be for linear form 
will be  
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( ) ( ) ( )1
2 T 1
 RJ x Z HX Z HX R Z HX−

−= − = − −             (22) 

And the non Linear form  

( ) ( )( ) ( )( )1
T2 1

 RJ x Z HX Z h X R Z h X−
−= − = − −           (23) 

Also by the same methodology that used above, the best estimate form for 
Stochastic linear least square after equality for the Gradient to zero will be 

( ) 1T 1 T 1X H R H H R Z
−− −=                     (24) 

And for the stochastic nonlinear least square first order approximation will be  

( ) ( ) ( ) ( )
1T 1 T T 1

c h c h c h c cX X D X R D X D X R g X
−− −    − =           (25) 

And for the stochastic nonlinear least square Second order approximation will 
be  

( ) ( ) ( ) ( ) ( ) ( )
1T 1 T 2 T 1 c h c h c c c h c cX X D X R D X b X h X D X R g X
−− −   − = + ∇     (26) 

where ( ) ( )1
c cR g X b X− =  for simiplyifing the notation.  

2.4. The Recursive Least Square Estimation Approach  
(Offline/Online Approach) 

All the above analysis was assumed that the number m of observations is fixed. 
which mean by another term it is offline version of least square. So if we don’t 
know number observation m and they are arrive sequentially in time. There’re 
two ways to add this new observations: 
• The first approach is to solve the system of linear equation repeatedly after 

arrival of every new observation. But this approach is very expensive from 
Computational point of view  

• The second approach is to formulate the following problem which is based 
on Knowing the Optimal estimate ( )*X m  based on the m observations. we 
need to compute ( )* 1X m +  based on 1m +  observation. In more clear 
words we need to calculate to reach to formulation that can compute the new 
estimate function of the old estimate plus sequantional term. And this ap-
proach is called situational or recursive framework 

It was known as mentioned above that the optimal linear least square estimate 
for Z HX=  is ( ) ( ) 1* T T  X m H H H Z

−
= . Let 1mZ +  be the new observation then 

the Z HX=  can be expanded in the form of matrix-vector relation as: 

T
1 1m m

Z H
X

Z h+ +

 
=  


 
  

 
                       (27) 

So, the Innovation will be: 

( )1
1 1

 m
m m

Z Z
e X X

Z Z+
+ +

   
   
   

= −                     (28) 

So, the Cost function will be: 
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( ) T
1 1m mJ X e e+ +=                          (29) 

( ) ( ) ( ) ( ) ( )TT T T
1 1 1 1     m m m mJ X Z HX Z HX Z h X Z h X+ + + += − − + − −      (30) 

So, by taking the gradient and equal it to zero ( ) 0J x∇ = . We can get the fol-
lowing  

( ) ( ) ( )* * T *
1 1 1 11 m m m mX m X m K h Z h X m+ + + + + = + −            (31) 

where  
T T

1 1 1,m m m m mK H H K K h h+ + += = +                   (32) 

The cost of computation for the second term of this equation is less than 
solving the all system again. 

The basic building block for understanding the Data assimilation based on 
Least Square approach was introduced. 

3. Deterministic-Static Models 

In Atmospheric science, when we want to assimilate observation data to the 
model at time step, Two source of information are available, one of them after 
mapping the observation Z to X and the other source is the Prior information. 

The Linear/Non Linear Case 

The formulation for the problem, we need the best estimate for X given the two 
source of information  
• The first source is the given the Observation Z and mapping function H, 

where the innovation term was ( )e Z h X= −  
• The Second source is given the Prior or Background information BX  where 

the innovation term is Be X X= −  
So the cost function for this case will  

( ) ( ) ( )B oJ X J X J X= +                     (33) 

For linear Case ( ).h H=  

( ) ( ) ( ) ( ) ( )T T1 1    – 
2 2B BJ X X X X X Z HX Z HX= − − + −        (34) 

For Nonlinear case ( ) ( ).h h X=  

( ) ( ) ( ) ( )( ) ( )( )TT1 1
2 2B BJ X X X X X Z h X Z h X= − − + − −       (35) 

4. Stochastic-Static Models 

The formulation for the problem will be the same as in Deterministic/Static 
problem, we need the best estimate for X given the two source of information  
• The first source is the given the Observation Z and mapping function H, 

where the innovation term was ( )e Z h X= −  and the observation has noise 
with its covariance R 
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• The Second source is given the Prior or Background information BX  where 
the innovation term is Be X X= − , and the Background has its Covariance 
B  

So the cost function for this case will  

( ) ( ) ( )B oJ X J X J X= +                    (36) 

For linear Case: ( )  .h H=  

( ) ( ) ( ) ( ) ( )T T1 11 1   
2 2B BJ X X X B X X Z HX R Z HX− −= − − + − −      (37) 

For Nonlinear case: ( ) ( ).h h X=  

( ) ( ) ( ) ( )( ) ( )( )TT 1 11 1   
2 2B BJ X X X B X X Z h X R Z h X− −= − − + − −    (38) 

5. Deterministic-Dynamic 

The Dynamical models can be classified as: 
 

 
 
where KX  is the state of the dynamical system, so if OX  the initial condition 
is known, so computing the KX  is a forward problem  

It is assumed that OX  is not known. And Estimating OX  based on noisy 
indirect information is the inverse problem that it is required to solve. 

The observations also can be classified as: 
 

 
 
And assume the KV  is White noise, has zero mean and Known covariance 

matrix R, which depend on the nature and the type of instruments used 
So, formulation for statement of problem is: given set of noisy observations 

and the model equations, it is required to estimate the initial  
Condition OX  that give best fit between the background states and noisy 

observations 
To conclude there are four different types of problems: 
1) Linear Model-Linear observation 
2) Linear model-non Linear observation 
3) Nonlinear model-linear observation  
4) Non linear model-Non linear observation  
We will consider only one case only the which is the simplest formulation 

with both model and observations are linear and the other cases could be 
checked in [1] [2]. 
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The Definition of the cost function which is weighted sum of the squared er-
rors is given as:  

For linear case 

( ) ( ) ( )T 1
1

1
2

N
Ki Ki Ki KiiJ X Z HX R Z HX−

=
= − −∑             (41) 

For nonlinear case  

( ) ( )( ) ( )( )T 1
1

1  
2

N
Ki Ki Ki KiiJ X Z h X R Z h X−

=
= − −∑           (42) 

Depend on the whether the observations are linear or not linear. And the goal 
is to minimize the J(X) w.r.t oX  

In case there background will be included for linear case  

( ) ( ) ( ) ( ) ( )TT 1 1
1

1 1 
2 2

N
B B Ki Ki Ki KiiJ X X X B X X Z HX R Z HX− −

=
= − − + − −∑  (43) 

And for nonlinear case 

( ) ( ) ( ) ( )( ) ( )( )TT 1 1
1

1 1 
2 2

N
B B Ki Ki Ki KiiJ X X X B X X Z h X R Z h X− −

=
= − − + − −∑  (44) 

There are two approaches for minimization of this cost functions  
 

 

5.1. Deterministic-Dynamic Linear Case  
5.1.1. Linear Case-Method of Elimination 
This method is mainly based on substitute the following equation K K oX M X=  
in the cost function J(X) then, get the following equation  

( ) ( ) ( )T 1
1

1   
2

N
o Ki K o Ki K oiJ X Z HM X R Z HM X−

=
= − −∑          (45) 

Then we get the gradient for the ( ) 0oJ X∇ =  
For simplicity 

( ) T T1
2o o o oJ X X AX b X C= − +  and it is quadratic in oX              (46) 

T T 1
1

N
K KiA M H R HM−

=
= ∑                     (46-a) 

T T 1
1

N
K Kib M H R Z−

=
= ∑                      (46-b) 

T 1
1

1
2

N
K KiC M R Z−

=
= ∑                       (46-c) 

So, the gradient is ( ) 0o oJ X AX b∇ = − =  which leads to 
1

oX bA−=                             (47) 
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But, this approach is not practical, since it involves matrix-matrix products in 
the computation of A and b, so there is need to another way 

5.1.2. Linear Case-Lagrangian Multipliers Formulation 
Define Lagrangian L: 

( ) ( ) ( ) ( )T 1 T
11 1

Objective func

1,

tion Mo l
2

de

N N
o K K K K K K Ki iL X Z HX R Z HX X MXλ λ−

−= =
= − − + −∑ ∑  (48) 

And the Necessary conditions for the minimum  

0
oX L∇ =                            (49-a) 

0
KX L∇ =                            (49-b) 

0
K

Lλ∇ =                            (49-c) 

So 1 10 0
K K K K KL X MX X MXλ − −∇ = → − = → =                    (50-a) 

[ ]T 1 T
10 0

KX K K K KL H R HX Z Mλ λ−
+∇ = → − + − =          (50-b) 

[ ]T 10 0
NX N N NL H R HX Z λ−∇ = → − + =               (50-c) 

Defining: 

[ ]T 1 normalized forecast error viewed from model ce  spaK K Kf H R Z HX−= − =  (51) 

And substitute it in the last two equations  
T

1 10T
K K K K K Kf M M fλ λ λ λ+ +− + = → = +−             (52-a) 

0N N N Nf fλ λ− + = → =                     (52-b) 

So, as shown that the formulation for calculate λ  is backword relation. we 
can iterate backward starting from Nλ  to Compute 1λ . And this technique is 
known as backword adjoint dynamics. Then after getting 1λ  substitute in 

( ) T
1   

oX oJ X M λ∇ = −  and get the gradient then use any minimization algorithm 
to get oX , The 4-D Var Algorithm (First order adjoint method) can be summa-
rized as follow: 

1) Start with an arbitrary oX , and compute the model solution using 

1K KX MX+ =   
2) Given the observation { }KZ  where 1 K N≤ ≤  
3) Set → N Nfλ =  and Solve T

1 K K KM fλ λ += +  to find 1λ  
4) Compute the gradient ( ) T

1 
oX oJ X M λ∇ = −  

5) Use this gradient in minimization algorithm to find the optimal oX  by 
repeating the steps 1 through 4 until convergence. 

5.2. Recursive Least Squares Formulation of 4D Var  
(Online Approach) 

In the previous part of 4Dvar section the solution for off-line 4Dvar problem of 
assimilating given set of observations in deterministic-dynamic model using 
classical least square method. 
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Now there is need to develop an online or recursive method for computing 
the estimate of the state as new observations arrive. which mean we need to 
compute the 1NX +  in terms of NX  and the new observation 1NZ + . 

Consider linear deterministic dynamical system without model noise  

1K KX MX+ =                             (53) 

where the initial condition oX  is random variable with ( )o oE X m=  and 
( )o oCov X P= . and the observations KZ  for 1,2,3,K =   are given as  

K K K KZ H X V= +                          (54) 

where KH  is full rank and KV  is the observation vector noise with the fol-
lowing known properties  

( )  0kE V =  and ( )K KCov V R=                   (55) 

So, the objective function that  
 P o

N N NJ J J= +                           (56) 

where  

( ) ( )T 11     
2

P
N o o o o oJ m X P m X−= − −                   (57) 

( ) ( )T 1
1

1
2

No
N K K K K K K KKJ Z H X R Z H X−

=
= − −∑             (58) 

Since, our goal to find an optimal NX  that minimize the NJ , it is needed to 
express om  and KX  

In tem of the corresponding N values NX  and Nm . So, 

Since, ( )1 2 1:N N N K K KX M M M X M N K X− −= = −
                 (59) 

Then ( ) ( )1 1: 1:K N NX M N K X B N K X−= − = −                     (60) 

Since ( )1 : 0K K K om M m M K m+ = =                                (61) 

Hence, the trajectory of the model starting from ( )1: 0o Nm B N m= −  
Substitute for KX  and om  into NJ   

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

T T 1
0

T 1
1

1   1: 0 1: 0
2

1   1: 1:
2

N N N N N N

N
K K N K K K NK

J X m X B N P B N m X

Z H B N K X R Z H B N K X

−

−
=

 = − − − − 

+ − − − −∑
 (62) 

And differentiate ( )N NJ X  w.r.t NX  twice to get the gradient and Hessian. 
Then setting the gradient to zero and simplifying the notation  

( ) ( )p o p o
N N N N NF F X f f+ = +                       (63) 

where  

( ) ( )T 1
01: 0 1: 0p

NF B N P B N−= − −                    (64) 

( ) ( )T T 1
1 1: 1:No

N K K KKF B N K H R H B N K−
=

= − −∑              (65) 

p p
N N Nf F m=                             (66) 

( )T T 1
1 1:No

N K K KKf B N K H R Z−
=

= −∑                   (67) 
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By induction the minimization for 1NX +  of ( )1 1N NJ X+ +  is given by  

( ) ( )1 1 1 1 1
p o p o

N N N N NF F X f f+ + + + ++ = +                    (68) 

The goal of the recursive framework is to express 1NX +  as function of NX  
and 1KZ + . this calls when expressing 1

p
NF + , 1

o
NF + , 1

p
Nf + , 1

o
Nf +  in terms of p

NF , 
o

NF , p
Nf , .o

Nf  
So using equations from (61) to (64) and 1

K KB M −=  and the following equa-
tion 

( ) 1 1  , , if
:

if
j j I IM M M M j i

M j i
j i

− + ≥= 
≥



             (69) 

Then N + 1 formula in terms of N can be get 
T T 1

1 1 1 1 1
p o p o

N N N N N N N N NF F B F F B H R H−
+ + + + + = + + +            (70) 

T T T 1
1 1 1 1 1 1

p o p o
N N N N N N N N N N Nf f B F B m B f H R Z−
+ + + + + ++ = + +           (71) 

And since  

( ) 1
  1 1 1  p o
N N NP F F−
+ + ++=                       (72) 

( ) 1
    p o
N N NP F F− = +                        (73) 

  1N N N N N NB m B M m m+ = =                     (74) 

1
f

N N NX M X+ =  or 1
f

N N NX B X +=                  (75) 

( ) 1T T 1
1 1 1 1 1 1 p o f

N N N N N N N N Nf f B P B X H R Z− −
+ + + + + +=+ +             (76) 

By combining Equations (70) and (76) into Equation (68) and defining 

( ) ( )
1 1T

1 N
f

N N NP B P B
− −

+ =  after combination 

( ) ( )
11 1T 1 T 1

1 1 1 1 1 1 1 1 1
f f f

N N N N N N N N NX P H R H P X H R Z
−− −− −

+ + + + + + + + +
 = + +  

 
  

    (77) 

The right hand side of this equation is sum of two terms the first one is  

( ) ( )
11 1T 1

1 1 1 1 1 1
f f f

N N N N N NP H R H P X
−− −−

+ + + + + +
 
  

 +   
             (78) 

So adding and subtracting T
1NH +  1

1NR−
+  1NH +  1

f
NX +  this term is equal to  

( ) ( )
11 1T 1 T 1 T 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

f f f
N N N N N N N N N N N N

f f
N N N N

P H R H P H R H H R H X

X K H X

−− −− − −
+ + + + + + + + + + + +

+ + + +

   + + −      
= −

 (79) 

where  

( )
11 T 1 T 1

1 1 1 1 1 1 1
f

N N N N N N NK P H R H H R
−− − −

+ + + + + + +
 =  +
 

 is called kalman gain matrix and  

combine it with Equation (77). The desired recursive expression will be gained  

1 1 1 1 1 1–f f
N N N N N NX X K Z H X+ + + + + += +                    (80) 

6. Stochastic-Dynamic Model  

This type of data assimilation problems is same as deterministic/dynamic prob-
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lems, except that, this type introduces an additional term in the forecast equa-
tion which is noise vector that associated with the model (i.e. model error). 

For Stochastic-dynamic model we can divide the filters to Linear and Nonli-
near filters Linear filter has evolution function ( ).M  in the model and the 
mapping function ( ).h  is linear while in Nonlinear filters those two functions 
are nonlinear  

6.1. Linear Filters 
Kalman Linear Filter 
Kalman filter approach was first introduced at reference [6] [7] 

Problem formulation: 
This section will show how model and observation with error will be pre-

sented then will formulate the algorithm: 
A1-Dynamic model: it will be assumed linear, non autonomous, dynamical 

system that evolves according to  

1 1K K K KX M X w+ += +                          (81) 

where KM  is nonsingular system matrix that varies with time K and Kw  de-
note to model error. It is assumed that oX  and Kw  satisfy the following con-
ditions (A) oX  is random variable with known mean vector ( )o oE X m=  and 
known covariance matrix ( )( )T

o o o o oE X m X m P − − =   (B) The model erro is 
unbiased, mean ( ) 0KE w =  for all k, and temporally uncorrelated (white noise) 

( )T
K j KE w w Q=  when if j k=  and ( )T 0K jE w w =  otherwise (C) The model 

error Kw  and the initial state is uncorrelated ( )T 0K oE w X =  for all k 
B1-Observations: The observation KZ  is the observation at time k and re-

lated to KX  via  

K K KKZ H X V+=                           (82) 

where KH  represent the time varying measurement system and KV  represent 
the measurement noise with the following properties (A) KV  has mean zero 
( ) 0KE V =  (B) KV  is temporary uncorrelated: ( )T  K j KE V V R=  if j k=  while 

otherwise ( )T 0K jE V V = . (C) KV  is uncorrelated with the initial state oX  and 
the model error Kw  which mean ( )T 0o KE X V =  for all 0K >  and  

( )T 0K jE V W =  for all K and j 
C1-statement of the filtering problem: Given that KX  evolves according 

to equation 81 and set of observations. Our goal to find an estimate KX  that 
minimize the mean square error  

And the following is the summary of the Kalman filter procedure (Covariance 
Form)  

Model 1 1k k k kx M x w+ += +  

( ) 0kE w = , ( )k kCov w Q=  

0x  is random with mean 0m  and ( )0 0Cov x P=  
Observation k k k kz H x v= +  

( ) 0kE v = , ( )k kCov v R=  
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Model Forecast ( )0 0x̂ E x= , 0 0P̂ P=  

1 1ˆf
k k kx M x− −=  

T
1 1 1

ˆf
k k k k kP M M QP− − −= +  

Data Assimilation 

ˆ f f
k k k k k kx x K z H x= + −    

1T T T 1ˆf f
k k k k k k k k k kK P H H P H R HP D

− −  = + =  

[ ]1T Tˆ f f f f f
k k k k k k k k k k k k kP P H H P H R H P I K HP P

−
 = − + = −  

The computation of the covariance matrices 1
f

kP +  and 1kP +  is the most 
time-consuming part since in many of the applications n > m. so that reduced 
order filters has been introduced [1].  

6.2. Non Linear Filters 
6.2.1. First Order Filter/Extended Kalman Filter (EKF) 
The extended kalman filter is an extension for kalman filter idea in case the evo-
lution function ( ).M  in the model and the mapping function ( ).h  is non li-
near  

For nonlinear model  

( )1 1K K KX M X w+ += +   

For nonlinear observation 

( )K K KZ h X V= +  

The main idea for First order filter/extended kalman filter is to expand the 
( )KM X  around  

KX  and ( )1Kh X +  around 1
f

KX +  in first order taylor series expansion. when 
( )M X  and ( )h X  are linear it reduces to kalman filter. The following is the 

summary steps for Extended Kalman filter  
Model ( )1 1k k kx M x w+ += +  
Observation ( )k k kz h x v= +  
Forecast Step ( )1 ˆf

k kx M x+ =  
T

1 1
ˆf

k M k M kPP D D Q+ += +  

Data Assimilation Step 

( )1 1 1 1ˆ f f
k k k kx x K z h x+ + + +

 = + −   

1T T
1 1 1

f f
k h h k h kK P D D P D R

−

+ + + = +   

( )1 1
ˆ f
k h kI KDP P+ += −  

6.2.2. Second Order Filter  
The second order filter is the same idea of the first order filter except that the 
expansion of ( )KM X  around KX  and ( )1Kh X +  around 1

f
KX +  in Second 

order Taylor series expansion. And the following is summary of the second or-
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der nonlinear filter  
Model ( )1 1k k kx M x w+ += +  
Observation ( )k k kz h x v= +  
Forecast Step 

( ) ( )2
1 ˆ

2
ˆ1 ,f

k k kx x PM M+ = + ∂  

T
1 1

ˆf
k M k M kPP D D Q+ += +  

Data Assimilation Step 

( ) ( )2
1 1 1 1 1

1ˆ ,
2

f f f
k k k k kx x K z h x h P+ + + + +

 = + − − ∂  
 

1T T
1 1 1

f f
k h h k h kK P D D P D R

−

+ + + = +   

( )1 1
ˆ f
k h kI KDP P+ += −  

6.3. Reduced Rank Filters 
Ensemble Kalman Filter  
The ensemble Kalman filter [8] originated from the merger of Kalman filter 
theory and Monte Carlo estimation methods. It was introduced the basic prin-
ciples of linear and nonlinear filtering but these are not used in day by day oper-
ations at the national centers for weather predictions. Because of the cost of the 
updating the covariance matrix was very high. 

So, there are mainly two ways to avoid the high cost of computing the cova-
riance matrix 

1) The first method was the Parallel computation which mainly dependent on  
a) The Algorithm  
b) The number of Processors 
c) The topology of the interconnection of the network 
d) How the tasks of the algorithm are mapped on the processor  
2) The second method which became more popular which to compute low/ 

reduced rank approximation to the full rank covariance matrix. and most of low 
rank filters differs only in the way in which the approximation are derived. Ex-
cellent review on the Ensemble Kalman filter was introduced 

Formulation of the problem  
It is assumed that the model is nonlinear and observations are linear functions 

of the state 

( )1 1K K KX M X w+ ++=  

( )K K KZ h X V+=  

And it is assumed that  
1) The initial conditions ( )0 ,~ o oX m PN   
2) The dynamic system noise wk is white Gaussian noise with ( ),~ 0K Kw N Q  
3) The observation noise KV  is White noise with ( ),~ 0K KV N R  
4) oX , { }Kw , { }  KV  are mutually uncorrelated 
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Model ( )1 1k k k kx M x x w+ += +  
Observation k k k kz H x v= +  
Initial ensemble 

• Create the initial ensemble  
Forecast step 
1) Create the ensemble of forecasts at time ( )1k +  using the following  
The N  members of the ensemble forecast at time ( )1k +  are generated
( ) ( )( ) ( )1 1

ˆf
k k ki M i w iξ ξ+ += +  where ( ) ( )1 1~ 0,k kw i N Q+ +  
2) Compute ( )1

f
kx N+  and ( )1

f
kP N+  using  

( ) ( )
1T T

1 1 1 1 1 1
f f

k k k k k kK P N H H P N H R
−

+ + + + + + = +   

( ) ( ) ( )
T

1 1 11

1
1

Nf f f
k k kiP N e i e i

N+ + +=
  =

− ∑  

Data assimilation step 
1) Create the ensemble of estimates at time ( )1k +  using 

( ) ( ) ( ) ( )1 1 1 1 1
ˆ .f f
k k k k ki i K z i H iξ ξ ξ+ + + + + = + −   

and 

( ) ( )
1T T

1 1 1 1 1 1
f f

k k k k k kK P N H H P N H R
−

+ + + + + + = +   

2) Compute ( )1ˆkx N+  and ( )1k̂P N+  using  
The sample mean of the estimate at time ( )1k +  is then given by 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 11

1 ˆˆ   N f f
k k k k k kix N i x N K N H xz N

N
ξ+ + + + + +=

 = = + − ∑  

where 

( ) ( ) ( ) ( )1 1 1 1 11 1

1 1N N
k k k k k ki iN z i z v i

N
z v Nz

N+ + + + += =
= = + = +∑ ∑  

where  

( ) ( ) ( )( ) ( )T T
1 1 1 1 1

f
k k k k kP N I KH P N I KH KR N K+ + + + += − − +  

where for large N 

( ) ( ) ( ) ( ) ( ) ( ) T
1 1 1 1 11 1k k k k kR N N v i v N v i v N+ + + + += − − −        

All summaries, derivation and details could be checked in reference [1] [9]. 
and full review on ensemble kalman filter for atmospheric data assimilation is 
inteoduced by P. L. Houtekamer and Fuqing Zhang, 2016 [10]. 

6.4. Hybrid Filters 

3DVar uses static climate Background error while 4DVar uses implicit flow de-
pendent information but still start with static background error. And since. The 
B-matrix affects the performance of the assimilation heavily [11] it is important 
to use a B-matrix that is a realistic representation of the actual forecast error co-
variance [12]. So many proposed hybrid filters were introduced. they are to use 
flow dependent background error in vartional data assimilation system by com-
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bining the 3Dvar climate background error covariance and error of the day from 
ensemble. 

In Equation (37) replace the B by weighted sum of 3Dvar B and the ensemble 
covariance as follow [13]: 

1 1 2 2B a B a B= +   

where  

1 21a a= −  

The Ensemble covariance is included in the 3DVAR cost function through 
Augmentation of control variables [14] and the following formula is mathe-

matically equivalent to [13]. 
This is well known hybrid 3DVar-EnKF method. While 4DVar-EnKF method 

has the same idea if we substitute by Equation (43) by the same methodology in 
3DVar-EnKF part. More advanced hybrid filters are highlighted in ref [15] [16]. 

7. Conclusions 

This paper shows the mathematical perspective for the basic foundation of data 
assimilation modules starting from least square to advanced filters that used in 
data assimilation as journey. This work is the first of its type to summarize the 
mathematical perspective for data assimilation in extensive way and highlights 
both classical and advanced data assimilation methods. This paper could be used 
as reference to understand the mathematics behind data assimilation. It started 
by least square method and their different versions then explains on the classical 
method 3Dvar. 4DVar also is introduced. Advanced filters such kalman filter 
and its families were highlighted. The idea of hybrid filter was introduced finally.  

For future work, detailed hybrid filters should be highlighted, since there are 
different hybrid filters structure were introduced. Generic case studies the eva-
luate performance of the different assimilation techniques. 

References 
[1] Lewis, J.M. (2009) Dynamic Data Assimilation: A Least Square Approach. Cam-

bridge University Press.  

[2] Dynamic Data Assimilation: An Introduction Prof S. Lakshmivarahan, School of 
Computer Science, University of Oklahoma. http://nptel.ac.in/courses/111106082/# 

[3] Gibbs, B.P. (2011) Advanced Kalman Filtering, Least-Squares and Modeling: A 
Practical Handbook. Wiley.   

[4] Bjorck, A. (1996) Numerical Methods for Least Squares Problems, Linköping Uni-
versity, Linköping, Sweden. https://doi.org/10.1137/1.9781611971484    

[5] Kreyszig, E. (2011) Advanced Engineering Mathematics.  
https://www-elec.inaoep.mx/~jmram/Kreyzig-ECS-DIF1.pdf   

[6] Zarchan, P. and Musoff, H. (2000) Fundamentals of Kalman Filtering: A Practical 
Approach. American Inst of Aeronautics & Astronautics, United States, 2.   

[7] Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems. 
Journal of Basic Engineering, 82, 35-45. https://doi.org/10.1115/1.3662552   

https://doi.org/10.4236/jamp.2017.58131
http://nptel.ac.in/courses/111106082/
https://doi.org/10.1137/1.9781611971484
https://www-elec.inaoep.mx/%7Ejmram/Kreyzig-ECS-DIF1.pdf
https://doi.org/10.1115/1.3662552


M. Eltahan   
 

 

DOI: 10.4236/jamp.2017.58131 1606 Journal of Applied Mathematics and Physics 
 

[8] Evensen, G. (1994) Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic 
Model Using Monte Carlo Methods to Forecast Error Statistics. Journal of Geo-
physical Research, 99, 10143-10162.  
https://doi.org/10.1029/94JC00572   

[9] Evensen, G. (2003) The Ensemble Kalman Filter: Theoretical Formulation and 
Practical Implementation.   

[10] Houtekamer, P.L. and Zhang, F. (2016) Review of the Ensemble Kalman Filter for 
Atmospheric Data Assimilation. Monthly Weather Review, 144. 
https://doi.org/10.1175/MWR-D-15-0440.1    

[11] Bannister, R.N. (2008) A Review of Forecast Error Covariance Statistics in Atmos-
pheric Variational Data Assimilation. I: Characteristics and Measurements of Fore-
cast Error Covariances. Quarterly Journal of the Royal Meteorological Society, 134, 
1951-1970. https://doi.org/10.1002/qj.339    

[12] Bannister, R.N. (2008) A Review of Forecast Error Covariance Statistics in Atmos-
pheric Variational Data Assimilation. II: Modelling the Forecast Error Covariance 
Statistics. Quarterly Journal of the Royal Meteorological Society, 134, 1971-1996.  
https://doi.org/10.1002/qj.340    

[13] Hamill, T.M. and Snyder, C. (2000) A Hybrid Ensemble Kalman Filter-3D Varia-
tional Analysis Scheme. Monthly Weather Review, 128, 2905-2919.   
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2   

[14] Lorenc, A.C. (2003) The Potential of the Ensemble Kalman Filter for NWP: A 
Comparison with 4D-Var. Quarterly Journal of the Royal Meteorological Society, 
129, 3183-3203. https://doi.org/10.1256/qj.02.132   

[15] Nawinda, et al. (2016) A Hybrid Ensemble Transform Particle Filter for Nonlinear 
and Spatially Extended Dynamical Systems.    

[16] Laura, S., et al. (2015) A Hybrid Particle-Ensemble Kalman Filter for High Dimen-
sional Lagrangian Data Assimilation.    

 
 
 
 
 
 
 
 

 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jamp@scirp.org 

https://doi.org/10.4236/jamp.2017.58131
https://doi.org/10.1029/94JC00572
https://doi.org/10.1175/MWR-D-15-0440.1
https://doi.org/10.1002/qj.339
https://doi.org/10.1002/qj.340
https://doi.org/10.1175/1520-0493(2000)128%3C2905:AHEKFV%3E2.0.CO;2
https://doi.org/10.1256/qj.02.132
http://papersubmission.scirp.org/
mailto:jamp@scirp.org

	Review on Mathematical Perspective for Data Assimilation Methods: Least Square Approach
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Background
	2.1. Linear Least Square Method
	2.2. Non Linear Least Square Method
	2.3. The Weighted Least Square Method
	2.4. The Recursive Least Square Estimation Approach (Offline/Online Approach)

	3. Deterministic-Static Models
	The Linear/Non Linear Case

	4. Stochastic-Static Models
	5. Deterministic-Dynamic
	5.1. Deterministic-Dynamic Linear Case 
	5.1.1. Linear Case-Method of Elimination
	5.1.2. Linear Case-Lagrangian Multipliers Formulation

	5.2. Recursive Least Squares Formulation of 4D Var (Online Approach)

	6. Stochastic-Dynamic Model 
	6.1. Linear Filters
	Kalman Linear Filter

	6.2. Non Linear Filters
	6.2.1. First Order Filter/Extended Kalman Filter (EKF)
	6.2.2. Second Order Filter 

	6.3. Reduced Rank Filters
	Ensemble Kalman Filter 

	6.4. Hybrid Filters

	7. Conclusions
	References

