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Abstract 
The multiplicity distribution (P(nch)) of charged particles produced in a high 
energy collision is a key quantity to understand the mechanism of multi-  
particle production. This paper describes the novel application of an artificial 
neural network (ANN) black-box modeling approach based on the cascade 
correlation (CC) algorithm formulated to calculate and predict multiplicity 
distribution of proton-proton (antiproton) ( andPP PP ) inelastic interactions 

full phase space at a wide range of center-mass of energy s . In addition, the 
formulated cascade correlation neural network (CCNN) model is used to em-
pirically calculate the average multiplicity distribution <nch> as a function of 

s . The CCNN model was designed based on available experimental data for 
s  = 30.4 GeV, 44.5 GeV, 52.6 GeV, 62.2 GeV, 200 GeV, 300 GeV, 540 GeV, 

900 GeV, 1000 GeV, 1800 GeV, and 7 TeV. Our obtained empirical results for 
P(nch), as well as <nch> for ( andPP PP ) collisions are compared with the cor-
responding theoretical ones which obtained from other models. This compar-
ison shows a good agreement with the available experimental data (up to 7 
TeV) and other theoretical ones. At full large hadron collider (LHC) energy 
( s  = 14 TeV) we have predicted P(nch) and <nch> which also, show a good 
agreement with different theoretical models. 
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1. Introduction 

Multiparticle production is an essential entity in high-energy proton-proton col-
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lisions. The hadron-hadron (hh) observables like charged particle multiplicity 
“ chn ” and pseudorapidity density “ d dchn η ” are essential key to characterize the 
properties of matter created in proton-proton (pp) collisions [1] [2], where, η   

(the pseudorapidity) ln tan
2
θ = −   

 and θ  are the polar angle with the beam  

axis. The dependence of these observables on collision energy (center-of-mass 
energy “ s ”) and the collision geometry are a key tool to understand the un-
derlying particle production mechanism [3] [4] [5]. The investigation of these 
observables has been used to improve, or reject, models of particle production 
which are often available as Monte Carlo event generators [6] [7] [8] [9]. The 
charged particles multiplicity is the simplest observables to understanding of 
multi-particle production in collisions of hadrons at high-energy [6] [7] [8] [9]. 

The charged particle multiplicity distributions ( )chP n  provide an indis-
pensable tool in the investigation of the dynamics of multi-particle production 
processes. Their measurements form an important part of the “hh” collision ex-
perimental activity. Some new experimental information on the multi-particle 
production has been reported in the recent past [6]. Consequently, a lot of ef-
forts have also been put forward to analyze and/or organize the experimental 
data by using various theoretical as well as phenomenological schemes [5]-[12]. 

There are several models (empirical models and deterministic models) at-
tempt to describe the multiplicity distributions [5] [6] [7]. The first step towards 
a successful understanding of the multiplicity distributions was done by Feyn-
man in 1969 [3]. Moving to higher energies, deviations from those first models 
were observed, and the ( )chP n  data were described using single Negative Bi-
nomial Distributions (NBD) [4], which successfully describe ( )chP n  in full 
phase up to s  = 540 GeV as in different η -intervals [4]. But there is a devia-
tion of ( )chP n  from NBD for large η -intervals for s  = 900 GeV, but Gi-
ovannini and Ugoccioni [1] [2] describe the measured ( )chP n ) for s  = 900 
GeV by the combination of the two weighted NBD [4]. However, this issue is 
still an open question of interest from the point of view of theoretical and expe-
rimental physicists. 

To alleviate this problem, we have developed a black-box modeling metho-
dology based on applying the artificial neural network (ANN) approach [13]. 
ANN Black-box models are powerful and promising tools for complex system 
modeling. Utilization of an ANN model is, in general, highly suitable for simu-
lating the nonlinear behavior of charged particles multiplicity distributions in 
proton-proton interactions. This is due to the formulations of neural network 
models being based on nonlinear functions and having a flexible mathematical 
structure. In recent years, there has been an increasing amount of applications of 
ANN models in the field of high energy physics (HEP) [14]-[19]. 

The most commonly used Neural Network model is the Back-propagation 
(BP) Network [13], which is a multi-layer feed-forward network trained accord-
ing to error back propagation algorithm. BP network can be used to learn and 
discover a mathematical equation that mapping the relation of input-output 
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model [13]. The disadvantage with multi-layer feed-forward networks using er-
ror back propagation is that the best number of hidden layers and units varies 
from task to task and so must be determined manually through trials and errors. 
One approach to automatically determine a good size for a network is to start 
with a minimal network and then add hidden units and connections as required 
like the Cascade Correlation Neural Networks (CCNN) [20]-[25]. CCNN have 
several advantages over the ANN, such as they are self organized (i.e. built au-
tomatically), less computation cost and complexity (can be obtained with little 
adjusting parameters) and the training is very fast. 

The objective of this paper is to develop a mathematical model based on 
CCNN approach to calculate and predict the charged particle multiplicity dis-
tributions ( ( )chP n  and the energy dependence of the average multiplicity for 

andPP PP  inelastic scattering. The CCNN approach learns based on experi-
mental data for full phase space collected from several collaborations [26]-[34], 
to discover ( )chP n  as a nonlinear response function represented by the network 
parameters. The ( )chP n  is calculated and predicted by the discovered nonlinear 
function that representing the CCNN-model, as well as, the energy dependence 
of the average multiplicity chn  for a wide range of energies is calculated and 
predicted. The obtained results are compared with the ones from different theo-
retical models such as Dynamical Gluon Mass (DGM) model [35] [36]. 

The paper is organized as follows: Details of the CCNN black-box model for 
PP and PP  multiplicity distribution are described In Section 2. The results 
obtained are presented in Section 3. Finally, the main conclusions of this study 
are formulated in Section 4. 

2. CCNN Black-Box Model for ( )chP n  and chn  

Developing a mathematical model that can accurately describe the physical be-
havior of the complex physical problem is a challenging task. Meanwhile, neural 
networks are a very promising tool for empirical “black-box” modeling of com-
plex systems without going into mathematical details. An artificial neural net-
work (ANN) is a nonlinear empirical model that inspired on the biological 
neural networks [13]. ANN Black-box models do not need detailed prior know-
ledge of the structure and different interactions that exist between important va-
riables of the nonlinear system that under investigation. Therefore, ANN is a 
powerful and promising tool for complex system modeling. ANN can be trained 
with the Cascade-Correlation (CC) learning method to “learn” complex dynam-
ic behaviors of physical systems. A CCNN acts as a black box and learns to pre-
dict the value of specific output variables given sufficient input information. The 
cascade correlation neural network is capable of global function approximation, 
i.e. it represents a function in a whole data set [20]-[25]. 

In this paper, we explore the use of CCNN for developing mathematical black- 
box modeling from experimental data andPP PP  collisions. In the following 
subsection, we will give a brief introduction to the CCNN approach. 
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2.1. Overview on CCNN Approach 

Artificial neural networks (ANNs) are classified as intelligent computing systems 
because of their ability to learn. All Artificial neural networks were inspired by the 
human brain. ANNs consist of artificial neurons connected with each other, and 
they are termed as nodes. Each neuron has group of inputs, outputs and a transfer 
function. The mathematical model of a neuron can be described by the equation 

1
*

n

k k
k

y f w x
=

 
=  

 
∑                        (1) 

where y is the output value, xk is the kth input, wk is the weight of the connection 
related to the kth input and f is the transfer function which is usually the radial 
basis function or the sigmoid function [24] [25]. 

It’s known that a feed forward neural network (FFANN) with one hidden 
layer is an universal function approximator, so it can approximate any nonlinear 
function with arbitrary precision. Furthermore, any FFANN can be trained (in 
the supervised way) by the BP algorithm. The BP algorithm calculates the gra-
dient of the network according to the synaptic weights [13]. 

The main problem in ANN is the designing of the network with the appropri-
ate number of hidden layers and their units to learn a given concept. If a net-
work has too few hidden units, it will not have the computational power to learn 
the concept well. Given too many hidden units it will over-fit the training dataset 
and generalize poorly to new examples that not included in the training data. 
The CC approach which constructs neural network from bottom to top was 
proposed by “Fahlman and Lebiere, 1990” [24] in order to solve the problem of 
low convergence speed of traditional BP, the local minima problem, the step-size 
problem, the moving target program on and to avoid having to define the num-
ber of hidden nodes in advance. 

The cascade-correlation architecture supports a variety of learning algorithms, 
One of the most robust back-propagation variant, called “Quick prop”, was pub-
lished by Fahlman (1998) [25]. 

At first the learning algorithm begins with a minimal network (input/output 
units without hidden unit). The output layer weight was adjusted by the gradient 
descent algorithm. The error of the network was measure, if the network’s per-
formance was not satisfactory, generate and train a candidate unit. 

This candidate neuron is trained by maximizing the magnitude of the correla-
tion between the candidate’s output and the error term to be minimized. Gra-
dient descent is used to minimize the network’s output error, while a gradient 
ascent is employed to maximize the correlation. 

By maximizing the correlation C between the candidate’s output and the net-
work output. Once a neuron is finally added to the network (activated), its input 
connections become frozen and do not change anymore. Train the network (in-
put/output/hidden unites) until the residual error of the network is minimized 
(minimize the overall error of the net). This process of optimizing the output 
weights, creating a hidden neuron, optimizing the hidden neuron weights, con-
necting it to the output neurons, and adjusting the output neuron weights is 
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repeated until an acceptably small error is produced or a maximum number 
of nodes are reached. The following lines summarize the main steps of the 
CCNN algorithm. 

The Cascade Correlation algorithm cycles through two phases an output phase 
in which weights entering units are trained in order to reduce network error, 
and an input phase in which weights entering candidate recruits are trained in 
order to correlate with network error [23] [24] [25]. The connection weights 
should be adjusted in the two phases to maximize the correlation and minimize 
the network error: 

In the first phase: 
• Initialize the CCNN network (2 layers) 

• Calculate the actual output 
1

*
n

k k
k

y f w x
=

 
=  

 
∑  

• The output weights are adjusted until no further progress is made using 
quick propagation (QuckProp). 

( )2

,
op op

o p
E y t= −∑  Minimize the error (-ve gradient descent of the gradient 

E
W
∂
∂

) where opy  is the observed value of the output for training pattern output 

and top is the desired output value. 
In the second phase: 

• Add candidate. 
• Initialize (weights and learning constant). 
• Calculate its output. 
• Train candidate to maximize C (by gradient method QuickProp) by “+ve 

gradient ascent” 
• Calculate the correlation between the candidate unite and the residual error 

of the network. 

( )( )kj p op o
p

C O O E E= − −∑ ∑ , where O  and oE  are the average value of 

candidate hidden units output pO  and the original network’s output units re-
sidual error opE  overall the training samples. 

When C reach Max 
C
W
∂
∂

 it weights freeze 

• Add to the main net 
We use the QuickProb algorithm to compute and update the network “w” the 

iteration t 

( ) ( )
( ) ( ) ( )1

1

p
nj p

n xj n xjp p
nj nj

S t
w t S t

S t S t− −

∇
∆ = ∆ −

∇ − −
          (2) 

orC ES
W W
∂ ∂

∇ =
∂ ∂

                               (3) 

where, S is the derivative of the function being optimized (E in the case of the 
output phase should be minimized, C for the input phase should be maximized) 

Weight change computed by: 
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( ) ( ) ( )1w t w t w t+ = + ∆                       (4) 

• The first phase is started again to train the main net output. 
These two phases are repeated until either the training pattern has been 

learned to a predefined level of acceptance or a preset maximum number of 
hidden units have been added, whichever occurs first. For more details see Ref. 
[22] [23] [24] [25]. The following subsections discuss the development of CCNN 
model based on the collected experimental data (which collected from many ha-
dron collider experiments [26]-[34]). 

2.2. ( )chP n  and chn  Model Development 

The objective of this paper is to develop a mathematical model based on CCNN 
approach to calculate and predict for andPP PP  scattering. The mathematical 
model is based on numerous experiments conducted on different Labs [26]-[34], 
and a neural network approximate method which is employed to predict or 
extrapolate the experimental results. 

To train and test the proposed model, the CCNN program code was devel-
oped by using MATLAB language [The Math works Inc. USA]. CCNN has the 
disadvantage of over-fitting the training data. Due to this, the accuracy values 
are quite high in case of training data, but low in testing data. So, for preventing 
the over-fitting of the training data the CCNN model is validated as it grows us-
ing the 3-fold cross validation. 

To compute the performance of CCNN model, we have examined the perfor-
mance indices ( 2R  and RMSE) until no significant improvement occurred. 
Once the training is complete, the CCNN model would have learned to ap-
proximate ( )chP n  and n  i.e. reproduce, interpolate and extrapolate the data 
that are not included in the training data. 

3. Results and Discussion 

In this section, we have applied the CCNN model to calculate and predict 
( )chP n  and chn  using the available experimental data [26]-[34]. 
In the present CCNN, we have obtained R2 = 0.998 and RMSE = 0.000137. 

The following network training parameters are used: Minimum neurons in hid-
den layer: 2; Maximum neurons in hidden layer: 200; Hidden neuron kernel 
function: Gaussian, Output neuron kernel function: Linear and Over-fitting 
protection control = 3-fold cross-validation. 

In this regard, we have modeled the ( )chP n  at a wide range of available ex-
perimental data for center-of-mass energy: s  = 30.4 GeV, 44.5 GeV, 52.6 
GeV, 62.2 GeV, 200 GeV, 300 GeV, 540 GeV, 900 GeV, 1000 GeV, 1800 GeV, 
and 7 TeV (From ISR energies in the 1970’s to the highest LHC for andPP PP  
scattering). We have compared the obtained results with the recently published 
experimental, empirical and/or phenomenological results. We also, provide pre-
dictions of the ( )chP n  in pp collisions at the full LHC energies (14 TeV). 

Figures 1(a)-1(c) shows our calculated and predicted results of ( )chP n  as a  
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(a) 

 
(b) 



E.-S. A. El-Dahshan 
 

1405 

 
(c) 

Figure 1. (a)-(c). Multiplicity distribution ( )chP n  of charged particles in pp and pp  inelastic collisions at 30.4 GeV ≤ s  ≤ 7 

TeV. Figure 1(c) (Bottom-Right panel) prediction of ( )chP n  for pp at s  = 14 TeV. ___DGM model, * CCNN model (our 

model) and o experimental data of the five Collaborations [26]-[34]. 

 
function of chn  and s . Also, this figure shows the comparison between our 
calculated and predicted ( )chP n  values and the other theoretical and experi-
mental values [25]-[34]. In this comparison, our model results show closer agree- 
ment with the experimental data and the theoretical ones. Figures 1(a)-1(c) 
emonstrates that, the predicted ( )chP n  spectra values are very close to the ac-
tual values (experimental data) which indicates that CCNN can be used as an ef-
fective tool for modeling the ( )chP n  based on the chn  and s . 

Figure 1(c) (Bottom-Right panel) manifests the prediction of multiplicity dis-
tribution of the produced particles at LHC energy ( s  = 14 TeV) which is 
compared with those distributions obtained by other models [26]-[34]. Accord-
ing to our CCNN model, the prediction of ( )chP n  at 14 TeV having the same 
trend as the theoretical one [35] [36]. In addition, the chn  energy dependence 
was modeled (calculated and predicted at a wide range of s ) (from 30 GeV to 
7 TeV) and as well as predicted at the highest LHC energy (14 TeV). 

The probability of production of particles decreases with the increase of s  
as well as shifted towards the increase of chn . Also, we notice that the width of 
the distribution is broadened with the increase of s  as shown in Figure 2. 
This figure shows the multiplicity distributions ( )chsp n  of charged particles 
in pp and pp  collisions “full phase space” from 30 GeV to 14 TeV. 
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Figure 2. Multiplicity distributions ( )chs

p n  of charged particles in pp and pp  collisions from 30 GeV to 14 TeV “full phase 

space”. 
 

Based on the proposed CCNN model, the values of energy dependence of the  
average charged multiplicity in pp collision are calculated ( ( )ch ch ch

n
n n P n= ∑ )  

and compared with corresponding experimental and theoretical results. Figure 3 
shows the energy dependence of the average charged multiplicity in pp collision 
for s  ranging from 30 Gev to 14 TeV. The calculated values are compared 
with the corresponding experimental and theoretical results. Also, from Figure 3 
we notice that chn  increases with the increase of s  which shows the same 
trend as the experiment [26]-[34]. The results of the present open the route into 
applying modern soft-computing procedures such as neural network into the 
modeling of HEP. 

4. Conclusions 

The charged-particle multiplicity belongs to the simplest observable that pro-
vides important insights into the mechanisms of particle production. In the 
present work we have used CCNN network for modeling the multiplicity distri-
bution of charged particles produced in pp and pp  interactions at Cen-
ter-of-mass energy s  = 30.4 GeV,44.5 GeV, 52.6 GeV, 62.2 GeV, 200 GeV, 
300 GeV, 540 GeV, 900 GeV, 1000 GeV, 1800 GeV, and 7 TeV. In this regard, we 
have developed the CCNN mathematical black-box models to calculate and pre-
dict the multiplicity distribution of charged particles ( )chP n  produced in pro-
ton-proton collisions as a function of chn  and s , as well as the energy de-
pendence the energy dependence of average multiplicity chn . The results in-
dicate that the proposed CCNN model shows a good correspondence between 
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Figure 3. Shows the comparison between our calculated and predicted values for the energy dependence of the average charged 
multiplicity and the corresponding experimental and theoretical data [25]-[34]. 

 
the experimental data and our calculated results according to the statistical per-
formance. We have also compared our results for ( )chP n  and chn  with the 
models that based on Monte Carlo model, which successfully explains multiplic-
ity distribution. In addition, the predictions for ( )chP n  and chn  of charged 
particles in pp interactions at s  = 14 TeV are found to be in agreement with 
Dynamical Gluon Mass model [35] [36]. The obtained results confirm the relia-
bility of our model and will encourage physicists to apply other ANN techniques 
to calculate and predict other problems in mutliparticle production investiga-
tion. 
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