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Abstract 
An accelerating charged particle exerts a force upon itself. If we model the 
particle as a spherical shell of radius R , and calculate the force of one piece 
of this shell on another and eventually integrate over the whole particle, there 
will be a net force on the particle due to the breakdown of Newton’s third law. 
This symmetry breaking mechanism relies on the finite size of the particle; 
thus, as Feynman has stated, conceptually this mechanism doesn’t make good 
sense for point particles. Nonetheless, in the point particle limit, two terms 
survive in the self-force series: 0R  and 1R−  terms. The 0R  term can al-
ternatively be attributed to the well-known radiation reaction but the origin of 

1R−  term is not clear. In this study, we will show that this new term can be 
accounted for by an inductive mechanism in which the changing magnetic 
field induces an inductive force on the particle. Using this inductive mechan-
ism, we derive 1R−  term in an extremely easy way. 
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1. Introduction 

As is well-known for more than a century, an accelerating charged particle exerts 
a force upon itself [1]. This self-force suffers from two notorious problems of 
runaway solutions and preacceleration [2] [3] [4] [5] [6] which have threatened 
the consistency of Maxwellian electrodynamics to the point that the some phy-
sicists have even tried to modify it [7]. For most practical situations, this 
self-force can be ignored [8] but from both theoretical and conceptual point of 
view, it has been a thorn in classical physics. The electromagnetic self-force has 
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not normally been part of standard undergraduate curriculum and even in 
graduate textbooks such as Jackson’s [8], its discussion has been postponed to 
the last chapter for the reasons mentioned above. In addition, a quick look at 
most reviews on self-force reveals that their most focus has been on its calcula-
tions and its problems, and less attention has been given to its underlying me-
chanisms [2] [6]. This study is an attempt to fill this gap, in addition to discuss-
ing the conventional mechanisms attributed to electromagnetic self-force in a 
pedagogical manner and showing how they are used to calculate it, we will also 
introduce an inductive mechanism for the divergent term of the self-force i.e. 

1R−  term. This mechanism, as it will turn out, not only gives a conceptually 
reasonable basis for self-force but also provides an easy and quick way for calcu-
lation of this term. 

2. Symmetry Breaking Mechanism 

Origin of electromagnetic self-force can be traced back to the breakdown of 
Newton’s third law for an accelerating charged particle [1]. To see this better, 
picture the particle as a spherical shell with charge uniformly spread over its 
surface. When it is moving with uniform velocity, the electric force of one part 
on another part gets canceled due to symmetry of the forces (Figure 1(a)) but 
when it accelerates, this symmetry of forces (Newton’s third law) or electric 
fields breaks down (Figure 1(b)) resulting in a net force. This mechanism makes 
good conceptual sense for finite-sized objects but in the point particle limit as 
Feynman stated [7] “it seems silly to allow the possibility of a point particle act-
ing on itself”. As we will see in the next section, the self-force for a point particle 
can be more easily understood using radiation and induction mechanisms. 

Using this symmetry breaking mechanism, we can calculate the self-force. The 
electromagnetic self-force for a continuous charge distribution is calculated by 
the integral form of Lorentz force law as follows: 

( )dself vρ= + ×∫F E v B                      (1) 

where ρ  is the charge density, v  is the velocity of the charged body, E  and 
B  are the electric and magnetic fields caused by the body itself, and the integra-
tion is over the extent of the charge body. The calculations of the self-force are 
pretty involved and the results are usually approximated and presented as series. 
For an accessible calculation of simple cases of self-force, refer to [9] [10], for a  
 

  
(a)                                            (b) 

Figure 1. A charged particle moving with uniform velocity (a) and with acceleration (b). 
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abf  denotes the force of part b on part a. In (a) ab baf f=  but in (b) ab baf f≠ . 

more rigorous and general case [6] and for a comparison of different calculating 
methods [11]. Here we just report the results for a particle modeled as spherical 
shell of radius R . For the nonrelativistic case ( )v c , this force can be written 
in a neat form as follows [12]: 

( )
2

0
2

2
12πself

q c Rt t
cR

µ   = − −    
F v v                (2) 

where 0µ  is the vacuum permeability, c is the speed of light, q is the charge of 
the particle and also SI units have been used throughout the whole paper. The  

term 2R
c

 in the velocity’s argument is the time it takes for light to cross the 

shell’s diameter so 2Rt
c

 − 
 

v  is the velocity of the particle this time earlier and  

considering the fact that the Equation(2) is the difference between velocities at 
an earlier time and now, we can infer that self-force is always opposite the acce-
leration. For a small R, we can expand this around 0R =  as follows: 

( ) ( ) ( ) ( )
22

0
2

2 1 2
212πself

q c R Rt t t t
c cR

µ   = − + + −  
   

F v v v v
        (3) 

The relativistic self-force can be most easily obtained by using Lorentz trans-
formation of acceleration and its derivative from S frame, in which Equation (3) 
is derived, to Ś frame in which the body is moving with velocity  v . These 
transformations will yield the correct answer for the electromagnetic self-force,  

for a proof of this see [6]. Denoting  ( )
1

2 21γ β
−

= −  with 
 v

c
β = , the transfor-

mations are: 

 3γ=a a
 

                         (4a) 

 2γ⊥ ⊥=a a                         (4b) 

 6 24
2

3
c
γγ= +a a a v

  

                     (4c) 

 ( )
5

3
2

3
c
γγ⊥ ⊥ ⊥= + ⋅a ava a 

                  (4d) 

where   and ⊥  symbols show the components parallel and perpendicular to 
velocity respectively, the dot shows the time derivative and a  is the accelera-
tion. Dividing Equation (3) into parallel and perpendicular components and 
substituting them with Equations (4) and finally combining the parallel and 
perpendicular components and removing their primes, we will have: 

( ) ( ) ( )

2
30

2 2 2 2 2
20

2 2 2

6π
3 3

6π

self
q
R
q

O R
c c c c

µ
γ

µ γ γ γ γ

= −

   + + ⋅ + ⋅ + ⋅ +  
   
 

F a

a v a a v a v a v
 (5) 

We have written the terms proportional to nR  as ( )nO R  ( )1, 2,3,n =  . 
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We can recover (3) from (5) in 1β   limit by keeping the terms first order in 
β . This is the self-force for relativistically rigid spherical of shell meaning that 
the shell is spherical in its instantaneous rest frame but contracts in the velocities’ 
direction in an inertial frame. Simplifying the Equation (3), we will have:  

( ) ( )
2 2

20 0

6π 6πself
q q O R O R
R c

µ µ
= − + + +F a a            (6) 

In the point particle limit 0→ , only the first two terms remain: the 1
R

 term  

which goes to infinity and the second term which is independent of the shape of 
the body. Unfortunately, both these terms have troubled many physicists for the 
past century. Writing the equation of motion in the point particle limit we will 
have: 

2 2
0 0

06π 6πext
q q m
R c

µ µ
− + =F a a a                  (7) 

In which 0m  is the bare mass and extF  the external force .The first term of 
the self-force which goes to infinity in the point particle limit is normally put to 
the right side and absorbed into the bare mass and together they are known as  

the physical mass. This is known as renormalization process i.e. although 1
R

  

term becomes infinite but the physical mass is kept finite by some mechanism, 
for example, this infinity can get canceled by the negative bare mass of attractive 
gravitational force [10]. The renormalization was first considered by Dirac more 
than 70 years ago [13] serving as an inspiration for this process in quantum field 
theory. Renormalizing the mass we will have:  

2
0

6πext
q m
c

µ
+ =F a a                     (8) 

In which 
2

0
0 6π

qm m
R

µ
= + −  is the physical (observed) mass. This equation  

suffers from two problems: runaway solutions and preacceleration, for an ac-
count of these problems see [6] [14]. These difficulties also remain in the relati-
vistic form of self-force. To just shortly explain these problems, if 0ext =F , it 
admits solutions in which velocity starts increasing exponentially (it runs away 
so the term runaway solutions) violating the conservation of energy. This can be 
avoided by the appropriate initial conditions (for example by putting initial ac-
celeration zero) unfortunately by doing so another problem arises; the particle 
starts to accelerate even before the force is applied. This is the so-called preacce-
leration problem which violates the causality. Many attempts have been made to 
clarify and solve these problems. For example, these problems will disappear if 
we replace this equation with an approximate or alternative one (see [12] for ar-
gument on which one is better) known as Landau–Lifshitz equation which basi-
cally expresses the acceleration perturbatively in terms of external force [3] and 
also another way to get rid of these problems is to throw away point particle 
model and put a lower bound on its radius. For example, if electron’s radius is 
bigger than electron classical radius ( )classR R>  [4], these problems will disap-
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pear, but the electron radius is known to be smaller than this [15]. 

3. Radiation Reaction Mechanism 

In the point particle limit 0R → , only the first two terms of the electromag-
netic self-force (6) survive: 1R−  and 0R  terms. The mechanism responsible 
for the 0R  term is well-known. When a particle accelerates, it emits radiation. 
For nonrelativistic velocities the total power radiated is given by Larmor formula  

2 2
0

6π
q aP

c
µ

= . This radiation in turn causes a recoil force on the particle much  

like a gun shooting a bullet. This radiation reaction force for nonrelativistic case 
is known as the Abraham-Lorentz force i.e. 0R  term. The reason to believe that 
this radiation mechanism is responsible for the 0R  term is that it can be ob-
tained independently using Larmor formula and conservation of energy. The de-
rivation can be found in any standard electrodynamics textbook. The energy lost 
by radiation is equal to the work done by radiation reaction force. But to include 
the effects of the non-radiated field we calculate this energy for system which has 
the same state at 1t  and 2t  (to see why refer to [10]) as follows:  

2 2

1 1

2 2
0d d
6π

t t
radt t

q at t
c

µ
⋅ = −∫ ∫F v                  (9) 

Integrating this by parts and dropping the boundary term we will have: 

2

1

2
0 d 0
6π

t
radt

q a t
c

µ 
− ⋅ = 

 
∫ F v



                 (10) 

This is always true if the expression in the parentheses is zero which is equiv-
alent to the 0R  term and using the Equations (4c) and (4d), we can easily ob-
tain the relativistic form of this radiation reaction force. 

4. Induction Mechanism 

The mechanism behind the 1R−  is different. When a charge particle accele-
rates, there seems to appear an induced electric field opposing the particle’s ac-
celeration. To see this better, consider a charged particle q moving in ẑ  direc-
tion with constant velocity v  (Figure 2) and also consider an imaginary circle 
just above the particle. The direction of the magnetic fields is out of the page. If 
we apply a force on this particle in ẑ  direction increasing its speed, according 
to Biot-Savart law, the magnetic fields inside the circle will increase and in turn 
using the Faraday and Lenz’s Laws, we can see that there will be an induced 
electric field opposite the direction of particle’s movement just like a solenoid 
resisting the change in current. Because of the symmetry of the situation, the 
forces in other directions get cancelled and there will just remain a net force ˆ−z  
direction if the speed increases and ẑ  direction if it decreases. 

We can derive this self-force which is applied by the particle’s own induced 
electric field by calculating the induced electric field and multiplying it by q. The  

equations for induced electric field are 0∇ ⋅ =E  and 
t

∂
∇× = −

∂
BE . Compar- 

ing these with magnetostatics equations, we immediately find the answer [10]: 
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Figure 2. A particle moving with uniform velocity. The six dots represent the magnetic 
fields of this particle inside the imaginary dotted circle. 
 

 ( ) ( )
2

ˆ ˆ1 d
4π

v
t

× −∂
= −

∂ −∫
B r r r

E
r r

                (11) 

In which  r  the source point and r  is the field point. Note that in this 
integral the magnetic field is the source and due to the symmetry of the system 
only the ẑ  component of it survives. We solve this integral for a point particle 
which while moving with a constant velocity is acted upon by a force. For a  

nonrelativistic point particle we have 0=r  and  0
2

sin ˆ
4π

q v
r

µ θ
=B


ϕ  and using 

ˆ ˆ ˆsinθ× = −r zϕ  and dropping the prime we will have: 
2

20
4

1 sin sin d d d
4π 4πz

q vE r r
t r

µ θ θ θ ϕ∂
= −

∂ ∫            (12) 

Integrating and taking the time derivative we will have 0

6πz
qaE
R

µ
= −  in which 

a is the magnitude of acceleration and 0R → . Multiplying this by q, we have: 
2

0 ˆ
6π

q aF
R

µ
= − z                        (13) 

This is the 0R  term easily derived by the induction mechanism, for a two- 
page derivation of this term refer to [6]. Using Equation (4a) the relativistic form 
for this particular motion can be easily derived: 

2
30 ˆ

6π
q a
R

µ γ= −F z                       (14) 

5. Conclusion 

In this study, we have discussed the conventional symmetry breaking mechan-
ism of the electromagnetic self-force in a pedagogical manner. We argued that 
this mechanism doesn’t make good sense for a point particle limit and should 
disappear in this limit, but in this limit two terms remain of which one is attri-
buted to radiation and the other one as we have shown can be accounted for by 
an induction mechanism. As shown above, this induction mechanism provides 
an extremely easy way to derive this force compared with other conventional 
methods. In addition, a better understanding of the underlying mechanisms of 
electromagnetic self-force may also be helpful for other self-forces e.g. gravita-
tional self-force. Here we have only considered the point particle limit but fur-
ther studies are needed to examine the effects of these mechanisms most espe-
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cially induction mechanism for finite-sized particle model. 
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