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Abstract 
General relativity (GR) and gravitation in flat space-time (GFST) are covari-
ant theories to describe gravitation. The metric of GR is given by the form of 
proper-time and the metric of GFST is a flat space-time form different from 
that of proper-time. The source of GR is the matter tensor and the Einstein 
tensor describes the gravitational field. The source of GFST is the total ener-
gymomentum including gravitation. The field is described by a non-linear 
differential operator of order two in divergence form. The results of the two 
theories agree for weak gravitational fields to the order of measurable accu-
racy. It is well-known that homogeneous, isotropic, cosmological models of 
GR start from a point singularity of the universe, the so called big bang. The 
density of matter is infinite. Therefore, our observable big universe implies an 
expansion of space, in particular an inflationary expansion in the beginning. 
Doubts are stated because infinities don’t exist in physics. An explanation to 
the present, controversial discussion of expanding accelerating or non-acce- 
lerating universe as well as non-expanding universe is given. GFST starts in 
the beginning from a homogeneous, isotropic universe with uniformly dis-
tributed energy and no matter. In the course of time matter is created out of 
energy where the total energy is conserved. There is no singularity, i.e. no big 
bang. The space is flat and non-expanding. 
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1. Introduction 

Einstein’s general theory of relativity is at present the most accepted theory of 
gravitation. The theory gives for weak gravitational fields, agreement with the 
corresponding experimental results. But the results for homogeneous, isotropic, 
cosmological models imply difficulties. So, the universe starts from a point sin-
gularity, i.e. the universe starts from a point with infinite density of matter. The 
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observed universe is very big. Hence, the space of the universe must expand very 
quickly which implies the introduction of an inflationary universe in the begin-
ning. There are controversial discussions about the universe, e.g. is the universe 
accelerating or not. GFST uses a pseudo-Euclidean geometry and the proper 
time is defined similar to that of general relativity, i.e. space-time and proper 
time are different from one another. GFST starts from an invariant Lagrangian 
which gives by standard methods, the field equations of gravitation. The source 
is the total energy-momentum tensor including gravitation. The energy-momen- 
tum of gravitation is a tensor. The field is described by non-linear differential 
equations of order two in divergence form. The theory is generally covariant. 
The gravitational equations together with the conservation law of the total ener-
gy-momentum give the equations of motion for matter. The application of the 
theory implies for weak gravitational fields the same results as GR to experi-
mental accuracy, e.g. gravitational red shift, deflection of light, perihelion pre-
cession, radar time delay, post-Newtonian approximation, gravitational radia-
tion of a two-body system and the precession of the spin axis of a gyroscope in 
the orbit of a rotation body. But there are also differences of the results of these 
two theories. GFST gives non-singular, cosmological models. The covariance of 
GFST and the existence of non-singular cosmological models imply the possibil-
ity to interpret the solutions as expanding or as non-expanding space yielding an 
accelerating resp. non-expanding universe. GFST may e.g. be found in the book 
[1] and in the cited references. Additionally, non-singular, cosmological models 
are e.g. given in the articles [2] [3] [4] [5] [6]. 

Subsequently, homogeneous, isotropic, cosmological models will be summa-
rized. Let us use the pseudo-Euclidean geometry. The resulting universe is non- 
singular under the assumption that the sum of the density parameters is greater 
than one, e.g. a little bit greater than one. It starts without matter and without 
radiation and all the energy is gravitational energy. Matter and radiation emerge 
from this energy by virtue of the conservation of the total energy. The space is 
flat and the interpretation of a non-expanding space is natural. But it is also 
possible to state an expansion of space by a suitable transformation as conse-
quence of general covariance of the equations. Matter and radiation are gener-
ated from the beginning of the universe and the universe becomes hot. A certain 
time after the beginning matter and radiation decrease and the universe con-
verges to dark energy as time goes to infinity. Hence, a universe given by GFST 
appears more natural than that received by GR which gives singular solution 
with infinite densities. The geometry of GR is in general non-Euclidean but the 
observed universe implies a flat space. 

GR is well-known in contrast to GFST. Therefore, GFST and resulting cos-
mological models are shortly summarized in the next two sections. All these re-
sults can be found in the article [5]. 

Section 2 contains GFST; Section 3 contains cosmological models; Section 4 
contains GR and Section 5 states GFST. Cosmological models of GR and GFST 
are compared with one another. 
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2. GFST 

The theory of GFST is shortly summarized. The metric is the flat space-time 
given by 

( )2d d i
ijs xη= −                          (1) 

where ( )ijη  is a symmetric tensor. Pseudo-Euclidean geometry has the form 

( ) ( )1,1,1, 1 .ijη = −                        (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct= . Let 

( )det .ijη η=                           (3) 

The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  
be defined by 

kj j
ik ig g δ=                              (4) 

and put similarly to (3) 

( )det .ijG g=                            (5) 

The proper time τ  is defined by 

( )2d d di j
ijc g x xτ = − .                      (6) 

The Lagrangian of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −  −   
        (7) 

where the bar/denotes the covariant derivative relative to the flat space-time me-
tric (1). 

The Lagrangian of dark energy (given by the cosmological constant Λ ) has 
the form 

( )
1 2

Λ 8Λ GL
η

 −
= −  − 

.                         (8) 

Let 
44πk cκ =                            (9) 

and of matter of a perfect fluid are where κ  is the gravitational constant. Then, 
the mixed energy-momentum tensor of gravitation, of dark energy and of matter 
of a perfect fluid are 

( ) ( )
1 2

/ / / /
1 1 1

8 2 2
i ir km ln kl mn i

kl mn j r j r jj

GT G g g g g g g g L Gδ
κ η

  −  = − +   −     
    (10a) 

( ) ( )1Λ Λ
16

i i
jjT Lδ

κ
=                         (10b) 

( ) ( ) 2.i k i i
jk jjT M p g u u pcρ δ= + +                    (10c) 

Here, , pρ  and iu  denote density, pressure and four-velocity of matter. It 
holds by (6) 
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2 .i j
ijc g u u= −                          (11) 

Define the covariant differential operator 
1 2

/

/

i kl mi
j jm l

k

GD g g g
η

  −
=   −   

                 (12) 

of order two. Then, the field equations for the potentials ( )ijg  have the form 
1 4
2

i i k i
j j k jD D Tδ κ− =                       (13) 

where the total energy-momentum is the sum of the energy-momentum tensors 
of matter, gravitation and cosmological constant, i.e., 

( ) ( ) ( ) .Λi i ii
j j j jT T G T M T= + +                    (14) 

Define the symmetric energy-momentum tensor 

( ) ( ) .ij jik
kT M g T M=                      (15) 

Then, the equations of motion in covariant form are 

( ) ( )//

1
2

.k kl
kl ii kT M g T M=                      (16) 

In addition to the field Equations (13) and the equations of motion (16) the 
conservation law of the total energy-momentum holds, i.e. 

/ 0.k
i kT =                            (17) 

The field equations of gravitation are formally similar to those of GR where 
i
jT  is the energy-momentum without that of gravitation since the energy-mo- 

mentum of gravitation is not a tensor for GR. Furthermore, the differential op-
erator is the Einstein tensor which may give a non-Euclidean geometry. 

The results of this chapter may be found in the book [1] and in many other 
articles of the author, as e.g. in [5]. 

3. Homogeneous, Isotropic, Cosmological Models 

In this chapter GFST is applied to homogeneous, isotropic, cosmological models. 
The pseudo-Euclidean geometry (1) with (2) is used. The matter tensor is given 
by perfect fluid with velocity 

( )0 1, 2,3iu i= =                       (18) 

and pressure p  and density ρ  with 
,m r

m r

p p p
ρ ρ ρ
= +

= +
                   (19) 

where the indices m  and r  denote matter and radiation. The equations of 
state for matter (dust) and radiation are 

1
3

.0,m r rp p ρ= =                        (20) 

The potential are by virtue of (18) and the homogeneity and isotropy 

( ) ( )
( ) ( )

( )

2 1, 2,3

1 4

0 .
ij

a t i j

g h t i j

i j

 = =
− = =
 ≠

=



                  (21) 
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The four-velocity is by Equation (18) and Equation (6) 

( ) ( )1 20,0,0, .iu ch=                        (22) 

Let 0 0t =  be the present time and assume as initial conditions at present 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0 1, 0 ,0 0 0,, m m r ra h a H h h ρ ρ ρ ρ= = = = = = 

     (23) 

where the dot denotes the time derivative, 0H  is the Hubble constant and 0h  
is a further constant, 0mρ  and 0rρ  denote the present densities of matter and 
radiation. It follows from (16) under the assumption that matter and radiation 
do not interact 

( )1 2 1 2
0 03 .,m m r r rh p ahρ ρ ρ ρ= = =                  (24) 

The field Equation (13) implies by the use of (21) the two nonlinear differen-
tial equations 

3
3 1 2 4

2 1 2
d 1 12 ,
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

 Λ  = + +  
   



           (25a) 

( )
3

3 1 2 4
2 2 1 2

d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  



       (25b) 

where 

( )
22

3 1 2
2

1 16 6 .
2

a a h hL G a h
a a h hc

    = − + +        

 

 

               (26) 

The expression ( )1
16

L G
κ

 is the density of gravitation. The conservation law  

of the total energy gives 

( ) ( )
3

2 2
1 2

1 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =                   (27) 

where λ  is a constant of integration. Equations (25), (26) and (27) give by the 
use of the i initial conditions (23) 

4
0

4 2
0

46 2
2 1

c th a
h a c t t

κ λ ϕ
κ λ ϕ

+
= − +

+ +



                      (28) 

with 

0
0 0

0

13 1 .
6

hH
H

ϕ
 

= + 
 



                       (29) 

Integration of (28) yields 
1

3 4 22
02 1.a h c t tκ λ ϕ= + +                         (30) 

Equation (27) gives for the present time 0 0t =  by the use of the initial con-
ditions (23) 

( )
2

4 2 2
0 0 0 0

1 8 Λ8 4 π .
3 3 8πkm r

cc k Hκ λ ϕ ρ ρ
  

− = + + −  
  

            (31) 
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It follows from (27) by the use of the standard definition of the density para-
meters of matter, radiation and the cosmological constant with the abbreviation 

( )0 m r mK Λ= Ω +Ω +Ω Ω                        (32) 

the differential equation 

( )
2 2

2 3 60
024 2

0

.
2 1

m r m
Ha K a a a

a c t tκ λ ϕ
Λ

   = −Ω +Ω +Ω +Ω     + +



   (33a) 

The initial condition is by (23) 

( )0 1a = .                             (33b) 

The solution of (33) with (30) describes a homogeneous, isotropic, cosmolog-
ical model by GFST. 

Relation (31) can be rewritten in the form 
24

0
02

00

8 2 .1 m
c K

HH
ϕκ λ  

− = Ω 
 

                      (34) 

A necessary and sufficient condition to avoid singular solutions of (33) is 

0 0K >                               (35) 

which yields 
4 2

02 1 0c t tκ λ ϕ+ + >                        (36) 

for all t∈ . Hence, condition (35) implies a non-singular solution for all 
t∈ , i.e. we get a non-singular cosmological model. It exists a 1 0 0t t< =  such 
that 

( )1 0.a t =                               (37) 

Put ( )1 1a a t=  then it follows from (33a) with 1t t=  
2 3 6
1 1 1 0.r m m ma a a KΩ +Ω +Ω = Ω                        (38) 

It holds for all t∈  

( ) 1 0.a t a≥ >                            (39) 

Subsequently assume 

( )1 0 1.a a =                             (40) 

Then we get by virtue of (38) 

0 1.K                               (41) 

It follows from (32) by virtue of (41) 

01 ,r m mKΛΩ + Ω +Ω = +Ω                         (42) 

i.e. the sum of the density parameters is a little bit greater than one. Hence, ( )a t  
starts from a positive value, decreases to a small positive value, and then in-
creases for all t∈ . 

The proper time from the beginning of the universe till time t  is 

( ) ( )1 21 d .
t

t h t tτ
−∞

= ∫                        (43) 
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The differential Equation (33a) is rewritten by the use of (30) in the form 
2

2 0
0 6 4 3

1 .m mrKa H
a h a a a Λ

Ω ΩΩ   = − + + + Ω      

                 (44) 

Hence, the differential equation for the function 𝑎𝑎 by the use of the proper 
time is 

2
2 0
0 6 4 3

1 d .
d

m mrKa H
a a a aτ Λ

Ω ΩΩ   = − + + + Ω      

              (45) 

This differential equation is by virtue of (41) and a not too small function 
( )a t  identical with that of GR for a flat homogeneous, isotropic universe. 

Therefore, away from the beginning of the universe, the result for the universe 
agrees for GFST with that of GR. Under the above stated assumptions and 

0rΩ =  the differential Equation (33) can analytically be solved. It follows that 
( )a t  starts from a small positive value at −∞  and then it decreases for in-

creasing 𝑡𝑡to 1 0a >  at 1t . Finally it increases for 1t t>  to infinity as t  goes 
to infinity. Relation (30) gives positive values ( )h t  for all t . ( )h t  starts from 
infinity at −∞  , decreases to a positive value and then it increases to infinity as 
t  goes to infinity. The longer calculations are omitted and they can be found in 
the article [3]. 

The differential Equations (44) and (45) show that the condition (35) is im-
portant to avoid singularities. GR gives 0 0K =  which yields the singularity of 
the model (big bang). We introduce in addition to the proper time τ  the ab-
solute time t′  by 

( ) ( ) ( )1 2
1 1d d d .t t

a ta t h t
τ′ = =                    (46) 

This gives for the proper time in the universe 

( ) ( ) ( )22 2 2d d dc a t x ctτ  ′= − −                   (47) 

where dx  denotes the Euclidean norm of the vector ( )1 2 3d d ,d ,dx x x x= . 
Relation (47) implies that the absolute value of the light-velocity is equal to 

vacuum light-velocity c  for all times t′ . 
The introduction of the absolute time t′  in the differential Equation (45) 

gives 

( )
2 2

2 3 60
02

d .
d m r m

Ha K a a a
t a Λ

  = −Ω +Ω +Ω +Ω ′ 
           (48) 

Assume that a light ray is emitted at distance r  at time et′  resp. at time 
de et t′ ′+  and it is received by the observer at time t′  resp. at time dt t′ ′+ . Then, 

it follows 

( )

( )d

d

d ,

d d d .
e

e

e

t
et

t t
e et t

r c t c t t

r c t c t t t t

′

′

′ ′+

′ ′+

′ ′ ′= = −

′ ′ ′ ′ ′= = + − −

∫

∫
 

These two equations imply 
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d d .et t′ ′=  

The age of the universe since the minimal value of ( )a t  measured with ab-
solute time t′  till now 

( )

( )( )

0

1 1 1

1

1 21 1 2 3 6
0

0

1 21 2
0

0 0

d 1d 1 d d
d

1 1d Ω .

t
m r mt a a

m r ma

at t a a a K a a a
t H

a a K a
H H

′

Λ′

Λ

 ′ ′∆ = = = −Ω +Ω +Ω +Ω ′ 

≥ − + Ω +Ω +Ω ≈

∫ ∫ ∫

∫
 

Therefore, the age of the universe measured with absolute time is greater than 

01 H  independent of the density parameters, i.e. there is no age problem. 
We will now calculate the red shift of light emitted from a distant object at 

rest and received by the observer at present time. It is useful to introduce the 
absolute time. Assume that an atom at a distant object emits a photon at time et′ . 
It follows from relation (46) 

( )d d .ea t tτ ′ ′=                    (49) 

Therefore, the energy of the emitted photon is 

( )44 0
d~ ~
d

.e
tE g a t E
τ
′

′−  

The energy of the photon moving to the observer in the universe is constant 
by virtue of (47), i.e. by the constant light velocity. Then, the corresponding re-
ceived frequency is 

( ) 0ea tν ν′=                              (50) 

where 0ν  is the frequency emitted at the observer from the same atom. The red 
shift is given by 

( )0 1 1 1.ez a tν ν ′= − = −                      (51) 

Light emitted at distance r  at time et′  and received at 0r =  at time 0t′  
has by the constant velocity of light the relation 

( )0 .er c t t′ ′= −  

This gives by Taylor expansion of ( )ea t′  in relation (51) 

( ) 22
0

0 02 2
0 0

1 1
2 d

.
d

1
a tr rz H H

c cH t
 ′  = + −   ′   

 

Differentiation of equation (48) yields by neglecting small expressions 

( )2
2
02

d 11 .
2d

e
m

e

a t
H

t Λ

′  ≈ − Ω +Ω ′  
 

This gives the red shift formula 
2

0 04
.3

m
r rz H H
c c

 = + Ω  
 

                     (52) 

The detailed calculations of Formula (52) can be found in the book [1]. 
Higher order Taylor expansion gives higher order red shift approximations. 

The red shift is already derived in the article [11] without Doppler Effect but 
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only by gravitation. 

4. General Relativity 

The theory of general relativity as well as the resulting cosmological models is 
well-known. Astronomical observations show that the universe is flat. Therefore, 
only flat space of general theory is stated. The curvature of the universe must be 
zero by the cosmological principle. This means that the sum of the density pa-
rameters is equal to one. The strong gravitational field in the neighbourhood of 
the singularity implies a high curvature which contradicts to a flat universe, i.e. 
with curvature zero. This problem is solved partly by the introduction of an in-
flationary expansion. Hence, either general relativity is not correct or the cos-
mological principle is not valid. 

5. Field theory of Gravitation 

GFST is a field theory which describes gravitation as a field in flat space-time. 
The theory is covariant and it is studied in the book [1], in the cited references 
there in and in the articles [2] [3] and [4]. This theory gives for weak gravita-
tional fields to the lowest order of accuracy (measurable accuracy) the same re-
sults as general relativity. But there are differences to general relativity for strong 
gravitational fields, e.g. for the universe in the beginning. The source of the field 
equations of gravitation is the total energy-momentum including that of gravita-
tional field which is a tensor for this theory. The universe starts without matter 
in the beginning and consists only of (gravitational) energy. In the course of 
time matter and radiation are created where the total energy is conserved. Sin-
gularities don’t exist under the assumption that the sum of the density parame-
ters is greater than one (at least a little bit greater which is subsequently as-
sumed). Hence, there is no big bang. Models with and without cosmological 
constant are studied in the book [1]. By the use of the pseudo-Euclidean geome-
tryas metric the solution yields a non-expanding universe. The red shift of dis-
tant objects in a non-expanding universe was already given in article [11]. It is 
worth to mention that by virtue of the covariance of the theory the non-singular 
results can be interpreted in a non-expanding and in an expanding space. The 
space of the theory is flat independent of the density parameters. The presently 
assumed density parameter of matter is ≈0.3. To avoid singular solutions of the 
cosmological model the density parameter of the cosmological constant must be 
≈0.7 such that the sum of the two values is a little bit greater than one. 

The present discussion of the universe about non-expanding or expanding 
with acceleration can be solved by GFST because non-expanding space seems to 
be the natural interpretation but the interpretation as expanding space is also 
possible. GR demands by virtue of the point -singularity an acceleration of the 
universe. 

Article [10] contains further differences of the two theories. 
A theory of gravitation in flat space-time (GFST) is given. The field is a tensor 

of rank 2 which is described on a flat space-time metric, e.g. the pseudo-Euclid- 
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ean geometry. The field equations have as source the total energy-momentum 
tensor inclusive that of gravitation which is a tensor. The conservation of the to-
tal energy-momentum tensor implies the equations of motion and reverse. The 
theory is generally covariant and the results of GFST and general relativity (GR) 
agree for weak fields to the lowest order of approximation. Homogeneous, iso-
tropic, cosmological models of GFST are studied in the pseudo-Euclidean ge-
ometry. Assuming that the sum of the density parameters is a little bit greater 
than one the resulting cosmological models are non-singular. In the beginning 
of the universe no matter exists, i.e. all the energy is gravitation. In the course of 
time matter and radiation are generated from gravitational energy. The total en-
ergy is conserved. The space is flat and non-expanding. Certain time after the 
beginning the results of the two theories highly agree with one another under the 
assumption that the universe is flat. The general covariance of the theory gives 
the possibility to interpret the results in a non-expanding or in an expanding 
universe.  

6. Conclusions 

GFST is a field theory like Electrodynamics and GR is geometry. For weak fields, 
the two theories give approximately the same results under the assumption that 
the universe is flat. Astrophysical observations show that the universe is flat. 
Cosmological models of GR imply a singularity in the beginning of the universe 
with infinite matter density (big bang). Hence, in the neighbourhood of the sin-
gularity, there is a high curvature, i.e. space is not flat in the neighbourhood of 
the singularity. The cosmological principle implies that space is everywhere flat. 
Hence, we get a contradiction to GR or to the cosmological principle. The uni-
verse starts from a point-singularity. Therefore, space must expand or even in-
flationary expand by virtue of the big observed universe. 

GFST is generally covariant, i.e. the space can be interpreted as non-expand- 
ing or as expanding. The density parameter of matter is at present assumed to be 

0.3. ≈  Therefore, the density parameter of dark energy is 0.7≈  with the as-
sumption that the sum of the density parameter is a little bit greater than one to 
imply non-singular cosmological models. Cosmological models of GR have a flat 
space under the assumption that the sum of the density parameters is equal to 
one. Therefore, GR and GFST give about the same values for the density pa-
rameters. But in the beginning of the universe, the solutions of GR and GFST are 
quite different. There exists a singularity (big bang) by GR and the solution of 
GFST is everywhere defined and regular, i.e. no bang. It is worth to mention that 
singularities are physically not allowed. 

References 
[1] Petry, W. (2014) A Theory of Gravitation in Flat Space-Time. Science PG 2014. 

[2] Petry, W. (1981) Cosmological Models without Singularities. General Relativity and 
Gravitation, 13, 1057-1071. https://doi.org/10.1007/BF00756365 

[3] Petry, W. (1990) Nonsingular Cosmological Model with Matter Creation and En-

https://doi.org/10.1007/BF00756365


W. Petry 
 

872 

tropy Production. General Relativity and Gravitation, 22, 1045-1965.  
https://doi.org/10.1007/BF00757815 

[4] Petry, W. (1997) On the Hubble Law in a Nonexpanding Nonstationary Universe 
with Cosmological Constant. Astrophysics and Space Science, 254, 305-317.  
https://doi.org/10.1023/A:1000938931517 

[5] Petry, W. (2013) Cosmology with Bounce by Flat Space-Time Theory of Gravitation 
and a New Interpretation. Journal of Modern Physics, 4, 20-25.  
https://doi.org/10.4236/jmp.2013.47A1003 

[6] Petry, W. (2014) Gravitation in Flat Space-Time and General Relativity. Journal of 
Applied Mathematics Physics, 2, 50-54. 

[7] Lerner, E. (2005) Evidence for a Non-Expanding Universe: Surface Brightness Data 
from HUDF. AIP Conference Proceedings, 822, 60. arXiv: astro-ph/0509611  
https://doi.org/10.1063/1.2189123  

[8] Petry, W. (2013) Modified Hubble Law. Physics Essays, 26, 315-320.  
https://doi.org/10.4006/0836-1398-26.2.315 

[9] Petry, W. (2015) Creation of a Non-Expanding, Non-Singular Universe. Journal of 
Modern Physics, 6, 1085-1094. https://doi.org/10.4236/jmp.2015.68113 

[10] Petry, W. (2016) Comparing Gravitation in Flat Space-Time with General Relativ-
ity. Journal of Modern Physics, 7, 1492-1499.  
https://doi.org/10.4236/jmp.2016.712135 

[11] Petry, W. (2007) Is the Universe Really Expanding? arXiv: 0705.4359 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jamp@scirp.org 

https://doi.org/10.1007/BF00757815
https://doi.org/10.1023/A:1000938931517
https://doi.org/10.4236/jmp.2013.47A1003
https://doi.org/10.1063/1.2189123
https://doi.org/10.4006/0836-1398-26.2.315
https://doi.org/10.4236/jmp.2015.68113
https://doi.org/10.4236/jmp.2016.712135
http://papersubmission.scirp.org/
mailto:jamp@scirp.org

	Gravitation as Geometry or as Field
	Abstract
	Keywords
	1. Introduction
	2. GFST
	3. Homogeneous, Isotropic, Cosmological Models
	4. General Relativity
	5. Field theory of Gravitation
	6. Conclusions
	References

