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Abstract 
We review several recent theoretical and experimental results in the study of 
superconductor hybrids. This includes the recent experimental advances in 
the study of superconducting beamsplitters as well as more advanced super-
conductor hybrid systems including ferromagnets or Majorana fermions. In 
the same manner, theoretical studies have revealed that such superconductor 
hybrid systems pave the way towards electronic generation and detection of 
entanglement as well as possible use cases in quantum computing. We will re-
view the aspects in detail and illustrate the possible next steps to be taken. 
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1. Introduction 

Since their first observation in 1911 [1] superconductors have been the focus of 
interest of many theoretical and experimental studies. The interest became even 
greater when it was realized that superconductivity can be connected to a new 
ground state of the material with all electrons within an energy gap ±∆  around 
the Fermi energy condensing into Cooper pairs. In spite of interesting aspects of 
exotic and high cT  superconductors, we will confine ourselves to classical super-
conductors described by the Bardeen-Cooper-Schrieffer theory [2] in the follow-
ing. In this case, the ground state of the system becomes a Cooper pair of two elec-
trons forming a spin-singlet state. The investigation of this new ground state trig-
gered the whole investigation of superconductivity and its specific implications [3]. 

Moving to nanoelectronics, superconductors have regained interest experi-
mentally and theoretically [4] due to the fact that on a nanoscale superconduc-
tors can be effectively connected to other materials forming hybrids [5] [6] and 
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can be confined to one-dimensional structures [7]. These possibilities allow for 
hybrid nanoelectronic superconducting devices that have been studied in a 
number of ways. 

The first immediate observation is that as soon as the electrons originating 
from a spin singlet state can be coherently separated, they will form an entangled 
state [8] which gives rise to the possibility of creating and detecting electronic 
entanglement. 

Moving to the detection of entanglement and more involved nanoeletronic 
devices the interplay of superconductivity with the interactions on a quantum 
dot become of interest both for phonon [9] and electronic [10] interaction. In 
this case specifically the interplay of superconductivity with the Kondo effect 
[11] is of special interest. 

Finally the effect of interactions can be large enough to even create a new to-
pological ground state [7] in one-dimensional superconducting structures that 
may lead to interesting phenomena as emerging Majorana fermions. This paves 
the way towards electronic quantum computing. 

In this review, we will address these different areas in the following order. In 
Section 2, we will introduce the general concept of superconducting nanoelec-
tronic systems and will then deep-dive into the different subjects mentioned be-
fore. In Section 3, we will discuss the effects of interaction when connecting a 
superconductor to an interacting system. Section 4 will be concerned with the 
study of Cooper pair splitting and electronic entanglement and we will discuss 
the emergence and usage of Majorana fermions in superconducting hetero-
structures in Section 5. We will conclude in Section 6. 

2. General Theory of Transport in Superconducting  
Heterostructures 

As we want to confine ourselves to the study of classical superconductors, the 
possibility of creating electron-hole pairs and destroying them from the new 
ground state gives a finite expectation value to operators of the kind k kc c↑ − ↓

, 
where kc σ  refers to an annihilation operator for an electron with spin σ . We 
will use the mean-field Hamiltonian in the form 

( )S k k k k k k kk kH c c c c c cσ σσ ε
+ + +

↑ − ↓ − ↓ ↑= − ∆ +∑ ∑ ;             (1) 

where kε  describes the kinetic energy of the electrons and the so-called super-
conductor gap ∆  parametrizes the aforementioned finite expectation value.The 
reason for the singlet nature of the interaction is the fact that for classical super-
conductivity phonon-interaction between the electrons is responsible for form-
ing Cooper pairs which is symmetric with respect to the wave vector. This in 
turn leads to the singlet state being the favored ground state (for a review see 
[12]). Please mind that we use units such that 1Be k= = = . 

The resulting wave function of the two electrons can to be written as 

( )1
2

ψ = ↑ ↓ − ↓ ↑ .                   (2) 
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The state in Equation (2) is not entangled as the two electrons are indistin-
guishable. However, as soon as the electrons are split, the state becomes entan-
gled. 

In order to study the separation of electrons the superconductor has to be 
connected to another system, which is modelled via the introduction of a tunne-
ling Hamiltonian [13] 

( ) ( ) 2
1 1 1 0, 0, . .i

TH x t c x t e H cϕ
σ σσ γ ψ = = = + ∑  ,          (3) 

where the operators 1σψ  refer to the electronic annihilation and creation oper-
ators in the adjacent material and we have deliberately assumed that tunneling is 
taking place at 0x =  (quantum point contact) with a strength that is parame-
trized by 1γ . A possible phase shift is described by ϕ . Scattering phase shifts 
will naturally disappear from the calculation except for topological cases which 
are treated in Section 5. The presence of this interface tunneling leads to the fact 
if a normal metal is connected to a superconductor the superconducting correla-
tions also emerge into the normal metal but decay exponentially with a length 
scale that is given by the Ginzburg-Landau length [14]. Specifically, when consi-
dering also ferromagnetic materials, however, there is no reason to believe that 
Equation (3) will capture all possible tunnel processes as also spin-dependent 
scattering potentials may occur giving rise an additional spin-flip contribution to 
the Hamiltonian [14] 

( ) ( )2 1 0, 0, . .T SH x t c x t H cσ σσ γ ψ −= = = +  ∑ .           (4) 

The transport between normal metals and superconductors is a well-studied 
problem [15] [16] [17]. Tunneling of single electrons is only possible for energies 
larger than the superconducting gap. In an electronic system this energy is either 
provided by temperature or an external voltage. For energies below the gap elec-
trons that enter the superconductor have to form a Cooper pair which means 
that they will be back-reflected as a hole. This process is known as Andreev ref-
lection and is suppressed in a typical tunneling environment as it is a second- 
order process in tunneling [18]. In a low-temperature environment this allows to 
use the normal-superconductor junction as a probe for the density of states of a 
superconductor [12] which can be expressed as a function of energy ω  

2 2
0S Sρ ρ ω ω= −∆ ,                     (5) 

where 0Sρ  is a constant reflecting the density of states in the normal conduct-
ing case and can be assumed constant in the wide-band limit (no dependency on 
ω ). As the density of states of a superconductor diverges at the gap-energy of 
the superconductor ∆ , the electrons form a bound state at the interface known 
as Andreev bound state at = ±∆ .  

Studying tunneling between superconductors and ferromagnets Equation (4) 
becomes important as the spin-active tunneling will also give rise to spin-flip 
tunneling processes to the ferromagnet as well as the presence of triplet correla-
tions [19] [20]. The different possible charge transport processes are summa-
rized in Figure 1.  
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Figure 1. Different processes in a superconductor-ferromagnet quantum point contact 
with spin-active scattering: in (a) we show the typical Andreev reflection and in (c) we 
show the typical single-electron transmission between a superconductor and a ferro- 
magnet. In (b) we show the spin-flipped Andreev process involving a spin-flip at the 
interface and giving rise to triplet correlations in the ferromagnet. Likewise also spin-flip 
transmissions occur as indicated in (d). 

 
These different tunnel processes emerge naturally in typical tunnel setups as 

[2], where a superconductor and a ferromagnet are connected on the nanoscale 
and single electron tunneling, Andreev reflection, spin-flip tunneling and spin- 
flipped Andreev processes can be observed [20]. 

Tunneling between superconductors is more complicated since Andreev 
tunneling may happen multiple times before the electron-hole pairs may over-
come the barrier of Andreev reflection [21]. This phenomenon of multiple An-
dreev reflection is well-known and is accompanied by the usual Josephson cur-
rent which is an AC voltage whose frequency is determined by the voltage ap-
plied across the junction [22] [23] [24]. 

In the next section we want to deep-dive into the topic of more involved 
tunneling setups where a quantum dot is positioned between the two leads of the 
electronic system. In this case the quantum dot provides an additional system to 
describe that is additionally subjected to electronic and phononic interaction. 
The study of these effects will be the topic of the next section. 

3. Interactions in Superconductor Heterostructures 

Quantum dots experimentally are small electronic islands. These represent small 
potential boxes with a large but roughly constant energy spacing of Eδ  for the 
spin-degenerate electronic levels. The capacitance C  of such small islands can 
be very small such that the occupation of both spin levels of the same energy 
needs the large energy cost for adding one electron (charging energy)  

2U e C= . Typically the experimental situation is such that ,BE U k T Vδ > > . 
Capacitive coupling of a gate electrode at a certain voltage gV  to the quantum 
dot allows to vary the electronic levels on the quantum dot [12]. 

The quantum dot in this case can be simplified to the description of just a sin-
gle electronic level with the additional of the relevant interaction. The quantum 
dot without interaction in the presence of a magnetic field B is given by 

( )2 :D D DH h d d d dσ σ σ σ σ
σ σ

ε σ + += + =∑ ∑               (6) 
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where Dε  is the bare quantum dot energy and h  refers to the strength of the 
magnetic field B rescaled in the typical units. 

The above model involving a superconducting and a normal conducting lead 
can be solved exactly [25] [26] [27] [28] and lead to the same transport pheno-
mena as described in Figure 1. In this case, however the transport is related both 
to the energy-dependence of the density of states of the superconductor as the 
density of state of the quantum dot which is an electronic level peaked around 
the bare energy. 

Introducing interaction leads to a more complicated setup as we now need to 
keep track of the repulsive interaction between the electrons of the opposite spin 
on the quantum level which is described by  

DH Ud d d d+ +
↑ ↑ ↓ ↓= ,                       (7) 

where the interaction is described by U and the local dot electrons are described 
by annihilation and creation operators dσ

+ , where σ is referring to the local spin. 
Likewise we have to consider that the quantum dot may have additional degrees 
of freedom as vibration which is most prominent when contacting the system to 
DNA molecules, nanowires of carbon nanotubes. These vibrational degrees of 
freedom typically have one prominent frequency 0ω  and the local phonons are 
described by bosonic operators ,b b+  

( )0 1 2PhH b bω += + ,                      (8) 

and the interaction is given by  

( )0PhH d d b bσ σ
σ

λ+ += +∑                     (9) 

The general solution of the system involving interactions is not reached so far 
but quantitatively good approaches to all situations covered in experiments [29] 
[30] have been found. We first want to discuss the electronic interaction de-
scribed in Equation (7). 

The non-interacting case is typically not realized but when treating interac-
tions exactly but to lowest order in voltage and for the case with even population 
of electrons on the quantum dot, it emerges that interaction only leads to a re-
normalization of the tunneling efficiency [31] so that the non-interacting case 
with effective tunneling rates is a good approximation for the interacting case 
with even population. 

In the same way the situation of odd occupation can be treated. In this case 
the quantum dot obtains a localized magnetic moment of spin 1/2. At energy 
scales below a characteristic temperature KT  the Kondo effect comes into play. 
The electron forms a magnetic impurity that is antiferromagnetically screened 
leading to the formation of a singlet which is a much more effective scatterer 
than the impurity itself [32]. The scattering amplitude in this case is strongly in-
creased leading to an increased and even perfect conductance for voltages 
around the level energy of the impurity which has been observed in many expe-
riments [33].  

In the case of a superconductor-quantum dot-normal conductor junction and 
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if the Kondo resonance whose resonance width KΓ  is smaller than the super-
conducting pairing energy ∆  the Kondo effect on the superconducting side is 
strongly suppressed which is the usual situation for superconductors [10]. In this 
case, the Kondo effect can be taken into account by describing the dot-lead 
transmission as a resonant level with the normal-conductor and the interaction 
with the superconductor can be treated as a simple tunneling contact (meaning 
that it will have no energy-dependence). The transmission coefficients of the 
single-electron tunneling superconducting tunnel contact therefore have to be 
dressed with the relevant Kondo density of states ( )22 2

K KVω Γ − + Γ   whereas 
the Andreev transmission coefficient has to be dressed with  

( ) ( ){ }2 24 2 2
K K KV Vω ω   Γ − + Γ + + Γ     in order to properly take holes and 

elec- trons into account. This treatment has been verified when comparing to 
experiment [22]. 

This simple picture, however only holds true as long as long as correlation ef-
fects can be neglected. Correlations effects (except for the Kondo effect and su-
perconductivity itself) can typically not be observed from simple measurements 
of the current or conductance but require more involved measurements of higher- 
order cumulants like the noise [34]. 

In this case perturbation theory [35] shows that the interaction of the dot 
leads to enhanced correlations between the electrons. These correlations emerge 
as two electrons may transfer to the quantum, dot, and feel their Coulomb re-
pulsion so that they are coherently backreflected to one of the leads attached 
[36]. In the case of superconductors these correlations may not only lead to en-
hanced two-particle tunneling but due to Andreev reflection may infer three- 
and four-particle coherent tunneling terms. As these additional tunneling terms 
are true effects of interaction they may not be observed in typical limiting cases 
as the U →∞  [37] or ∆ →∞  [38] limit. 

Finally in such situations also phonon interactions can be taken into account 
referring to typical situations as e.g. a nanowire being coupled to a normal con-
ductor and a superconductor as shown in Figure 2. 

The treatment of superconducting systems including phonon-interaction is 
particularly cumbersome due to the various energy-scales which are present in 
the problem [39] [40] [41] [42]. 

 

 
Figure 2. Sketch of the system: a quantum dot with strong onsite Coulomb interaction is 
assumed to be in the Kondo regime and its resonance width is given by KΓ . It is coupled 
to a normal conductor and a superconductor. The quantum dot is subjected to a finite 
bias voltage and coupled to a phonon mode. 
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In the case of a quantum dot in the Kondo regime which is additionally 
affected by phonon-interaction the most prominent effect is the emergence of 
much more prominent Andreev conductance steps due to the additional inter- 
action with the phonons [39]. 

The interaction effects which have been discussed before can not only be 
observed in the typical normal conductor-superconductor heterostructures but 
also in ferromagnet-superconductor heterostructures [6]. In these heterostructures 
we typically see the different processes that we have indicated in Figure 1 [20]. 

The most prominent feature in these setups is the fact that in the case of a 
quantum dot in the Kondo regime not just a single Kondo peak is observed but 
two. This feature can be attributed to the fact that the the two states withn spin- 
up and spin-down are split with respect to the exchange field of the ferromagnet. 
This exchange-field induced splitting of the resonance peaks is a very effective 
spin-filter in such setups as just by tuning the voltage the preferred spin-direc- 
tion can be chosen. Indeed, even for typical polarisations of the ferromagnet as 
46% is has been experimentally shown that spin polarisations of the current of 
up to 70% can be reached (see Figure 3). 

This spin-filtering mechanism is extremely relevant for the discovery of 
entanglement in superconducting heterostructures which will be the topic of the 
next section. 

4. Cooper Pair Splitters 

In Equation (2), we have mentioned the possbility of generating entangled elec- 
tron pairs by splitting the two electrons of a Cooper pair. Indeed this feature has 
been identified as a possible source of electronic entanglement early-on [43]. 
However, the actual recipe for performing high-efficiency Cooper pair splitting 
has been a focal point of research [30].  

A basic splitting device is a three-terminal system with a central superconductor 
and two normal terminals which are attached to the device. If the electrons can 
be split as in Figure 4(a) the pair represents an entangled electron pair. However, 
as soon as a typical splitting device is operated at finite bias the process in (a) has  

 

 
Figure 3. Calculation of the quality factor of spin-filtering q(ratio of the conductances per 
spin direction over the the sum of the conductances) with using the experimental para- 
meters as in [6]. Andreev reflections have been neglected since under these conditions 
they do not contribute strongly. The quality factor reaches about 70% even at finite 
temperature as in the experiment. The blue line indicates the quality factor of a simple 
tunneling junction to a ferromagnet with equal polarisation. 
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Figure 4. (a) Illustration of Cooper pair splitting in a Y-junction geometry with the 
superconductor. The superconductor acts as a source of entangled electron pairs in the 
normal drains. (b): Process of elastic cotunneling that becomes possible at finite bias 
between the normal leads. (c) Local Andreev reflections transfer pairs of electrons to the 
same lead. 

 
to compete with the process of elastic cotunneling (b) and local Andreev reflec- 
tion (c). 

Under adequately chosen experimental conditions the process of Cooper pair 
splitting can indeed be observed also in simple structures connecting a super- 
conductor to two normal conductors [26] but the efficiency of this process is 
limited due to the limited number of scalable parameters in this setup. When 
connecting the superconductor to two ferromagnets the possibility of spin-flip- 
ping at the interface also allows observing entangled pairs of electrons with equal 
spin (p-wave splitting) as e.g. 

( )1
2 A B A B

±Φ = ↑ ↑ ± ↓ ↓ .                (10) 

The different charge transfer processes in this case are also summarized in the 
picture below. (Figure 5) 

As discussed above superconductor-ferromagnet interfaces inherently allow 
for spin-active scattering at the interface so that ferromagnet-superconductor 
hybrid structures will allow to generate split p-wave Cooper pairs even if no 
p-wave superconductor is present. This process has been referred to as spin- 
flipped crossed Andreev reflection [26]. 

In addition the possbility of Andreev reflection between the superconductors 
allows for another process driving positive correlations. In case of a voltage close 
to the superconductor gap being applied across the two normal conductors the 
dominant charge transfer process becomes an Andreev reflection with one nor- 
mal conductor and as consecutive Andreev reflection to the second normal 
conductor via the superconductor. This is the process of Andreev reflection 
enhanced transmission [25]. 

However, splitters realized using just a single quantum dot do have a limited 
set of parameters to really allow for high effiency splitting. In thie case one has to 
go over to a double-dot setup as depicted in Figure 6.  

Cooper pair splitters can also be analyzed in the general interacting case. In 
this case the general Hamiltonian for a double quantum dot system with a super- 
conducting leads and onsite interaction needs to be applied following Equation 
(6) and Equation (7). The system can be solved exactly in the non-interacting 
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Figure 5. Summary of the possible charge transfer processes in a superconductor ferro- 
magnet device. The superconductor (blue) and the ferromagnets (red, are assumed to be 
fully polarized) are coupled via a quantum dot. The polarisation is indicated by green 
arrows. In the upper part, the situation for a s-wave SC is shown. The Cooper pair may 
split if the two FMs are antiparallely polarized—In the lower part the situation for spin- 
polarized p-wave SCs is depicted. The Cooper pair may now only split if the two FMs are 
equally polarized. 

 

 
Figure 6. Schematics of the generic model for a typical Y-junction: a SC is connected via 
two quantum dots to two normal leads possibly at a different chemical potential. The two 
quantum dots have tunable levels and may be coupled either via a the superconductor or 
directly. 

 
case. The onsite Coulomb-interaction can be approximately dealt with assuming 
that on-resonance the interaction only leads to a renormalization of the coupling 
as described above [44]. 

Indeed such an approach allows for a description of the experimental results 
in the case of carbon nanotubes and InAs nanowires. The key differences 
between the two setups can also be traced back to the material properties re- 
sulting in InAs nanowires having a Cooper-pair splitting transmission amp- 
litude with a specific dependency on the spatial separation of the two leads and 



H. Soller 
 

615 

the superconducting density of states [31] whereas the transmission amplitude 
in case of carbon nanotubes is just constant [45]. 

This general solution to Cooper pait splitters also allows to move forward with 
the real problem at hand which is to show that the generated electron pairs are 
indeed entangled. Entanglement can be proven using the Bell parameter in the 
typical CHSH inequality [46]  

( ) ( ) ( ) ( ), , ,A B A B A B A BE E E Eε ′ ′ ′ ′= + + −m m m m m m m m ,      (11) 

where the correlator is given by ( ) , , , ,, mm mm mm mmE P P P P′ ′ ′ ′++ −− −+ +−′ = + − −m m  
denotes the probability of observing an electron pair in detectors with directions 

, ′m m  with spin detectors ,  σ σ ′= ± = ± . In our case ferromagnetic leads act as 
spin detectors with a certain polarisation or efficiency P , which is typically 
quite limited on the nanoscale. 

In order to obtain the probabilities of certain two-particle processes from the 
conductances in a typical experiment we can use the general relation 

ij
ij

kl

G
P

G
=
∑

                         (12) 

where ijP  refers to the probability of the process involving the specifics of the 
electrons i and j and we have measured the corresponding conductances. Since 
we can immediately deduct from our analysis that the probabilities do only de- 
pend on the pairwise alignment of the superconductors the measurements can 
also be performed in the typical Cooper pair splitter geometry (see Figure 7). 

Even more, one can show that the conductance has a characteristic form 
(independent of the specifics of the Cooper pair splitter) 

 

 
Figure 7. Sketch of the experimental setups. (a) A central superconducting finger S (blue) 
is contacted to two InAs nanowires (brown). These in turn are contacted by four fer- 
romagnetic electrodes (brown). These in turn are contacted by four ferromagnetic elec- 
trodes (red) and the direction of magentization of which are indicated by arrows here for 
the configuration of the magnetization directions. Alice and Bob are represented by the 
spin detectors consisting of electrodes F1, F2 and F3, F4 respectively. The emerging 
quantum dots between the superconducting finger and the four ferromagnetic electrodes 
are tunable by top gates G1-G4. (b) Using our analysis the setup can be considerably 
simplified to a Y-junction geometry. 
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( )( ), , 1ij i jG f V rδ= Σ − g g ,                  (13) 

With the ( ), ,f V rδ Σ  a function of the applied bias voltage V, the width rδ  
of the superconductor and a possible on-site interaction on the quantum dot 
described by a self-energy Σ  as well as the magnetisation vectors of the fer- 
romagnets described by unit vectors in the direction of magnetisation and their 
polarisation P. This function drops out of the calculation once we calculate the 
actual Bell parameter 

2
0 0, A B A B A B A BP ′ ′ ′ ′∈= ∈ ∈ = + + −m m m m m m m m



          (14) 

Therefore one can measure the violation of Bell’s inequality also from a typical 
Cooper pair splitter setup. However, the interesting question is whether we will 
be able to prove that entanglement exists as typical polarisations are only of the 
order of 40%. Given that the maximal value of 0∈  is 2 2  polarisations re- 
quired to violate Bell’s inequality are typically not within reach. 

However, we can still overcome this by using two effects. First, we have shown 
already that operating the ferromagnet-quantum-dot junction in the Kondo 
limit we can reach effective polarisations of ~70%. Furthermore, we do not have 
to violate Bell’s inequality to prove the existence of entanglement. The maximal 
value of 0∈  for a separable quantum state is only 2  and therefore we only 
need to reach 

2 22 2 2 70%P P≥ → ≈                    (15) 

This means that proving the generation of entanglement should be possible 
within the usual beamsplitter setups and would represent the natural next step. 

5. Majorana Fermions in Superconducting Heterostructures 

With this we want to move away from interactions on a quantum dot and 
approach interactions in one-dimensional structures. It is well-known that p- 
wave superconductors with a single spin species have two different topological 
phases that are illustrated in Figure 8. 

In the case of two single electrons at the ends these electons are still part of the 
condensate of Cooper pairs so that they represent zero-energy bound states. As 
they have zero energy this makes them fermions which are their own antiparticle 
and therefore Majorana fermions. 

The interesting question which emerges is whether the situation of single  
 

 
Figure 8. Sketch of the two topological phases of a p-wave superconductor. In the first 
phase all electrons are paired in Cooper pairs. In the second phase one pair is broken and 
single electrons appear at the end of the superconductor. 
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electrons at the ends can actually be realized as a stable state in reality and 
indeed this has been recently shown in [7]. 

Let us assume that we have a quantum wire on top of a spin-polarized p-wave 
superconductor. The superconductor would induce p-wave correlations in the 
quantum wire described by an order parameter p∆  so that the tight-binding 
Hamiltonian for the wire at finite length at chemical potential wireµ  can be 
written as  

( )
1

wire wire 1 1
1 1

. .
N N

x x x x p x x
x x

H c c t c c c c H cµ
−

+ +
+ +

= =

= − + − + ∆ +∑ ∑          (16) 

where wiret  refers to the local tunneling strength. For simplicity let us assume 

wire wire wire0,  tµ µ= = , in which we can write 

( )
1

wire 1 wire 1
1

. .
N

x x x x
x

H t c c t c c H c
−

+
+ +

=

= − + +∑               (17) 

Here the fermionic operators can be written in terms of Majorana operators 

, , ,  ,x x A Bα αγ γ α+= =  via  

( ) ( ), , , ,
1 1,  
2 2x B x A x x B x A xc i c iγ γ γ γ+= + = −              (18) 

Then from Equation (17) we find 
1

wire , , 1
1

N

B x A x
x

H it γ γ
−

+
=

= − ∑                      (17) 

Which is a simple tight-binding Hamiltonian for Majorana fermions. A 
similar mapping can be achieved at wirep t∆ ≠ , which is, however, more 
complicated. Two of the Majorana fermions always combine into one ordinary  

fermion ( ), 1 ,
1
2x A x B xd γ γ+= + . The formation of a fermion costs wire2 2p t∆ =   

of energy due to the presence of the superconductor so that the Majorana 
fermion picture survives up to wire wire2tµ = . 

As discussed above, two Majorana fermions will remain uncoupled ,1 ,,A B Nγ γ . 
These two are therefore the uncoupled Majorana fermions we were looking for. 

From here two directions of research have emerged. One is focussed on the 
detection of Majorana fermions and the other is focussed on the generation of 
an appropriate situation for the emergence of a Majorana fermion. 

For the former line of research the most apparent feature is perfect trans- 
mission through a Majorana fermion at 0 voltage. This phenomenon is related to 
a scattering phase shift that is undergone during Andreev reflection from the 
superconductor hosting a Majorana fermion. Equation (3) acquires a phase shifft 
ϕ ϕ= ±  for electrons/ holes. In the topological phase the shift is πϕ =  [47]. In 
this case the Andreev bound states at = ±∆  merge into one bound state at 

( ) ( )cos 2 cos π 2 0ε ϕ= ±∆ = ±∆ =                (18) 

The emergence of this bound state is the reason for perfect conductance 
through a Majorana fermion at zero voltage [48]. Additionally the phase shift 
can be recognised in a characteristic noise behavior of Majorana devices. 
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Second, research has focussed on creating systems that mimic the behavior of 
the p-wave superconductor setup described above. This mimicking includes 
several possible suggestions of systems which all need to have both a p-wave gap 
as well as a superconduting gap with the p-wave gap dominating the behavior. 
Identified candidates of this kind are strongly spin-orbit coupled quantum wires 
proximity coupled to superconductors in a magnetic field [49] [50], exciton 
condensates proximity coupled to p-wave superconductors [51] and ferromagentic 
wires proximity coupled to superconductors [52]. The analysis of these system 
thereby always proceeds via denoting the full Hamiltonian and identifying non- 
trivial bound states of the system that could represent Majorana fermions. 

The beauty of Majorana fermions fundamentally lies in their applicability for 
quantum computing as their state is topologically protected (due to the neces- 
sary shift in their topological state) [53]. As long as they are not contacted by the 
outside world the different quantum states they can be in 
• Both are electrons. 
• Left hole, right electron. 
• Left electron, right hole. 
• Both are holes. 

Can be protected and read out by connecting them to an electronic lead [54]. 
However, also the interactions with an external environment can be exploited 
allowing for efficient preparation of an initial state of the Majorana fermion sys-
tem [54]. 

6. Conclusions 

To conclude we have reviewed several aspects of the latest research on supercon-
ductor hybrids including the setup of superconducting point contact as well as 
more complicated structures. This has been accompanied by studying interactions 
in such systems as well as the possible generation of entanglement. Finally, we 
have reviewed the latest results for generation and detection of Majorana fermions. 

In conclusion, superconductor hybrids still provide a very relevant and inter-
esting field of research specifically for the study of electronic entanglement. They 
pave the way towards truly electronic quantum computing and offer a wide va-
riety of electronic building blocks to allow for implementation of more compli-
cated electronic devices. 

However, the general drawback of necessarily low temperatures remains which 
also demonstrates the need for finding technologically appropriate solutions in-
cluding exciton condensates [55] [56]. 
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