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Abstract 
Quantum interference and exchange statistical effects can affect the momen-
tum distribution functions making them non-Maxwellian. Such effects may be 
important in studies of kinetic properties of matter at low temperatures and 
under extreme conditions. In this work we have generalized the path integral 
representation for Wigner function to strongly coupled three-dimensional 
quantum system of particles with Boltzmann and Fermi statistics. In sug-
gested approach the explicit expression for Wigner function was obtained in 
harmonic approximation and Monte Carlo method allowing numerical calcu-
lation of Wigner function, distribution functions and average quantum values 
has been developed. As alternative more accurate single-momentum approach 
and related Monte Carlo method have been developed to calculation of the 
distribution functions of degenerate system of interacting fermions. It allows 
partially overcoming the well-known sign problem for degenerate Fermi sys-
tems. 
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1. Introduction 

Computer simulation is one of the main tools in studies of thermodynamic 
properties of many-particle strongly coupled systems under extreme conditions. 
Some of the most powerful numerical methods for simulation of quantum sys-
tems are Monte Carlo methods, based on path integral (PIMC) formulation of 
quantum mechanics [1]. These methods use path integral representation for 
partition function and thermodynamic values such as average energy, pressure, 
heat capacity etc. PIMC methods are widely used for studying dense hydrogen 
plasma [2], electron gas in metal [3] [4] [5], electron-hole plasma [6] in semi-
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conductors, superfluidity [7] [8] [9] and even quark-gluon plasma [10] [11] [12]. 
Unfortunately PIMC methods cannot cope with problem of calculation of av-

erage values of arbitrary quantum operators in phase space or momentum dis-
tribution function, while this problem may be central in studies of kinetic prop-
erties of matter. Quantum effects may strongly disturb the momentum Maxwel-
lian distribution function [13] and are important in studies of kinetic properties 
of matter at low temperatures and under extreme conditions, when particles are 
strongly coupled and perturbative methods cannot be applied. The mentioned 
before PIMC methods or even recently developed “Configuration Path Integral 
Monte Carlo” approach [4] [5] [14] up to now cannot also solve kinetic problem. 

The Wigner formulation of quantum mechanics in phase space allows more 
natural considering not only kinetic but also thermodynamic problems. Methods 
for phase space treatment of single-particle quantum dynamics in Wigner ap-
proach in microcanonical ensemble were proposed in [15] [16] [17] [18] [19]. 
Recently a generalization of these one-body Wigner Monte Carlo methods to the 
many-body distinguishable particles has been done in [20]. Wigner dynamics of 
relativistic particle was studied in [21]. However for theoretical studies of kinetic 
properties the ab initio many particle approaches in phase space are required. 

In this paper we continue developing the ab initio path integral Monte Carlo 
approach in phase space by using the basic ideas suggested before in [22]. Here 
we have generalized the path integral representation for Wigner function to 
three-dimensional many-particle quantum system with Boltzmann and Fermi 
statistics. Here we present also alternative single momentum approach for cal-
culations of momentum distributions and quantum observables. This approach 
allows avoiding harmonic approximation at consideration of degenerate systems 
of interacting fermions and partially overcoming the well-known sign problem 
for degenerate Fermi systems. These two methods were tested on some simple 
models like particles in external potential field and ideal Fermi gas. 

2. Wigner Function in Canonical Ensemble 

Average value of arbitrary quantum operator Â  can be written as Weyl’s sym-
bol ( ),A p q  averaged over phase space with Wigner function ( ), ; ,W p q Vβ  
[23]:  

( )
( ) ( )

3 3

3

d dˆ , , ; , ,
2π

N N

N

p qA A p q W p q Vβ= ∫


              (1) 

where the Weyl symbol of operator Â  is :  

( )
( )

3

3

d ˆ, 2 2 .
2π

N
isq

N

sA p q e p s A p s= + −∫ 



            (2) 

Weyl symbols for common operators like p̂ , q̂ , 2p̂ , 2q̂ , Ĥ , 2Ĥ  etc. 
can be easily calculated directly from definition (2). The Wigner function of the 
many particle system in canonical ensemble is defined as a Fourier transform of 
the off-diagonal matrix element of density matrix in coordinate representation:  
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( ) ( ) ( )1 3, ; , , d 2, 2; ,N i pW p q V Z V e q qξβ β ξ ρ ξ ξ β−= − +∫        (3) 

where ( ),Z Vβ  is partition function of canonical ensemble of N particles, 
1 kTβ =  is inverted temperature, V—volume, ( )1 2, , , Np = p p p ,  
( )1 2, , , Nq = q q q , 1

N
a aapq

=
= ∑ p q  etc. Hamiltonian of the system consists of 

kinetic and potential parts: ˆ ˆ ˆH K U= + , where 2
1

ˆ ˆ 2N
aaK m

=
= ∑ p ,  

( )1 2
ˆ ˆ ˆ ˆ, , , NU U= q q q —potential energy of particles, interacting with each other 

and/or external field. For simplicity we will consider system containing identical 
particles of mass m . Generalization on systems with several kinds of particles is 
direct. The Wigner function ( ), ;W p q t  being the analogue of the classical dis-
tribution function in the phase space has a wide range of applications in quan-
tum mechanics and statistics. 

For spinless bosons or fermions the density matrix in canonical ensemble 
looks like  

( ) ( ) ( )ˆ2 , 2; 1 2 2 ,P H

P
q q q e P qβρ ξ ξ β ξ ξ−− + = ± − +∑      (4) 

where symbol P  denotes particle permutations, 1+  corresponds to Bose sta-
tistics, 1− —to Fermi statistics. Since operators of kinetic and potential energy 
in Hamiltonian do not commutate, the exact explicit analytical expression for 
Wigner function does not exist. To overcome this difficulty let us represent 
Wigner function similarly to path integral representation of the partition func-
tion [1] [24]. So we represent statistical operator Ĥe β−  as product of large 
number ( )M  of operators Ĥe−  formally related to high temperature 
( )Mβ=  and write down Wigner function in form of multiple integral of the 
product of the high temperature density matrices:  

( ) ( )
( )

0

1 3 3 1 3 1

21 ˆ 1

0 2

, ; , , d d d

  .
M

N i p N N M

q P qM
m H m

m q q

W p q V Z V e q q

q e q

ξ

ξ

ξ

β β ξ− −

= +−
− +

= = −

=

 ×   

∫ ∫

∏






         (5) 

In the limit 0→  the high temperature density matrices can be easily cal-
culated with accuracy up to ( )2O   [1]:  

( ) ( )2ˆ 1 1 2 1exp π ,m H m m m mq e q q q U qλ λ− + − − + ≈ − − −  


          (6) 

where we use abbreviation ( ) ( )2 21 1
1

Nm m m m
a aaq q+ +

=
− = −∑ q q , and  

22π mλ =    is the thermal wavelength at high temperature M T⋅ . Thus 
expression for Wigner function takes the form:  

( ) ( ) ( )

( ) ( )
( )

( )

0

1 3 3 1 3 1

2
21 21

2
0

2

, ; , , d 1 d d

1  exp π ,
M

PN ip N N M

P

q P q
M

m m m

m
q q

W p q V Z V e q q

M q q U q
M

ξ

ξ

ξ

β β ξ

β
λ

− −

= +
−

+

=
= −

= × ±

   × − − +  
   

∑∫ ∫

∑





 (7) 

where 22π mλ β=   is the thermal wavelength at temperature T . In con-
tinuous limit M →∞  this expression turns into path integral over trajectories 
( )q τ  starting at point ( )2q ξ−  and ending at ( )2P q ξ+ , where τ  is di-
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mensionless parameter, which may be interpreted as “imaginary time” [1]:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )

1 21 3 3
0 2

2
1

20

, ; , , d 1

  exp π d .
π

q P qPN i p N
P q q

W p q V Z V e D q

q
U q

ξξ
ξ

β β ξ τ

τ βτ τ
λ

= +−

= −
= ±

   × − +  
    

∑∫ ∫

∫





    (8) 

Measure of the path integral depends on Fourier variables ξ  and positions 
q . To get rid this dependence we change variables from trajectories ( )q τ  to 
closed dimensionless trajectories ( )z τ :  

( ) ( ) ( )( ) ( )1 2 2 .q z q P qτ λ τ τ ξ τ ξ= + − − + +            (9) 

Taking into account new boundary conditions ( ) ( )0 1 0z z= =  we obtain the 
desired path integral representation of Wigner function:  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )( )

2
2

1
2

0

π 2 21 3

π d
π3

0 1 0

, ; , , d 1

  ,

P q qPN i p
P

z U q
N

z z

W p q V Z V e e

D z e

ξ ξ
ξ λ

βτ τ τ

β β ξ

τ

− + − −  −

 − +  
= =

= ±

×

∑∫
∫∫





   (10) 

where ( )q τ  is given by (9), symbol P  denotes permutation of identical par-
ticles and ( )Dz τ  means integration over trajectories. In fact, this expression 
means that Wigner function is Fourier transform over ξ  of symmetrized or 
antisymmetrized density matrix, which is represented by path integral. Unfor-
tunately this Fourier transform cannot be calculated analytically in general case 
even for non-interacting bosons or fermions. 

3. Harmonic Approximation 

Momenta p  in expression (10) for Wigner function are connected with other 
variables through 3N -dimensional Fourier transform, which is not integrable 
analytically or numerically in general case. Exclusions are the linear or harmonic 
potentials, when power of variable ξ  is not more than two. So let us take the 
approximation for potential ( )U q  arising from its expansion into series. For 
simple estimations let us consider only term related to identical permutation de-
scribing system with Boltzmann statistics. Thus in harmonic approximation we 
expand potential energy into Taylor series up to second order in ξ :  

( ) ( )( ) ( )( ) ( )
( )( )

( )
( )( )

,
,

2
2

, ,
, ,

1 2 1 2

1  1 2 ,
2

a i
a i

a i b j
a i b j

U z q
U z q U z q

q

U z q
q q

λ τ
λ τ ξ τ λ τ τ ξ

λ τ
τ ξ ξ

∂ +
+ + − ≈ + + −

∂

∂ +
+ −

∂ ∂

 (11) 

where we denote summation over repeated indices ,a b  from 1 to N  and ,i j  
over from 1 to 3. If we take expansion (11), the expression for Wigner function 
(10) takes form of generalized Gaussian integral over variable ξ  and expres-
sion for Wigner function in harmonic approximation can be written in the fol-
lowing form:  
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( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( )

1 3
0 1 0

2

, , , , , ,2

1 2

, , , ,

, ; ,

, exp π π ,

  exp , π , , ,
4π

  det , cos , , .

N
z z

a i ai bj b j a i ai bj b j

ai bj a i ai bj b j

W p q V

Z V D z K z P q z

p q z p J q z q z J q z

q z p q z J q z

β

β τ τ τ

λ χ τ τ χ τ τ

λχ τ χ τ τ

−

= =
= − −      

 
× − +               

 
 ×             

∫





 (12) 

Here we introduced scalar functionals K  and P , as well as functionals ,a iJ  
and ,ai bjχ  of first and second potential derivatives having form of 3N - dimen-
sional vector and matrix correspondingly. They depends on trajectories ( )z τ  
and positions q :  

( ) ( )1 2
0
d ,K z zτ τ τ=   ∫ 

 

( ) ( )( )1

0
, d ,

π
P q z U q zβτ τ λ τ= +   ∫

 

( ) ( ) ( )( )1
, 0

,

, d 1 2 ,
2πa i

a i

UJ q z q z
q

βλτ τ τ λ τ∂
= − +   ∂∫

 

( ) ( )
1

2 2
2

, 0
, ,

, d 1 2 .
2πai bj ab ij

a i b j

Uq z
q q

ββλχ τ δ δ τ τ
−

 ∂
= + −     ∂ ∂  

∫
 

Note that the first term in exponent (12) looks similarly to Maxwell distribu-
tion in classical statistics. The major difference is in matrix ( ), ,ai bj q zχ τ    and 
cosine which are equal to identity matrix and unit for non-interacting particles. 
This matrix and cosine provide correlation of particle momenta with each other 
and with their positions. 

The expression for Wigner function (12) is obtained under assumption that 
potential energy U  is expandable in Taylor series of second order ξ  with a 
good accuracy. Let us discuss the legality of such assumption in the simplest 1D 
case. Primarily, note that the exponent (10) contains variable ξ  in three posi-
tions. The first one is in Fourier term ( )ipξ  , which makes momenta corre-
lated with other dynamical variables. The second one is in gaussian-like term 

( )2 2πξ λ . The third one is in integral term, where ξ  is argument of potential:  

( ) ( )( )
1

0

d 1 2U q zτβ λ τ ξ τ+ + −∫ . Gaussian term provides rapid decaying when ξ   

increases, so main contribution comes from ξ  near 1 2π 0.6− ≈ . Argument of 
potential function contains ξ  multiplied on 1 2τ − , which is modulo less than 
0.5. Using mean value theorem, we can roughly get symbolic estimation of these 
integrals in exponent (10) as  

( ) ( )( )
( )

( )1
0 0

1
0

1 11 1 1d ,
! 2 ! 1 2

nnn n

n n n

U q U q
n nq n q

τ τ +

+ −∂ ∂ − = ∂ + ∂ ∫         (13) 

where 0x  is certain point of trajectory. Numerical value of this integral rapidly 
decreases: when 2,4,6n =  it equals 1 24 , 1 1920  and 1 322560 . Thus we 
expect negligible contribution of high order Taylor terms in potential expansion. 
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Numerical calculations for some potentials, done in this work, confirm this as-
sumption. 

For calculation of Â  we are going to use the harmonic approximation of 
the Wigner function in path integral representation (12). For making use of the 
Monte Carlo method (MC) [3] we have to represent path integrals in discrete 
form of multiple integral like (7). As a result we obtain expression for MC calcu-
lations in the following form:  

( ) ( ) ( )
( ) ( )

1 1 1 1

1 1 1 1

, , , , , , , , ,
ˆ .

, , , , , , , ,

M M

w
M M

w

A p q f p q z z h p q z z
A

f p q z z h p q z z

− −

− −

⋅ ⋅
=

⋅

 

 

      (14) 

Here brackets ( )1 1, , , , M

w
g p q z z −

  denote averaging of any function 

( )1 1, , , , Mg p q z z −
  with positive weight ( )1 1, , , , Mw p q z z −

 :  

( ) ( )
( )

1 1 3 3 1 1 1 1

1 1

, , , , d d d d , , , ,

  , , , , ,

M N N M M

w

M

g p q z z p q z z g p q z z

w p q z z

− − −

−

=

×

∫ ∫  



  (15) 

while  

( )

( )

( )

2
1 1

, , , , , ,2

1 1
, , ,

1 21 1
,

, , , , exp π π π ,
4π

, , , , cos ,

, , , , det .

M
a i ai bj b j a i ai bj b j

M
a i ai bj b j

M
ai bj

w p q z z p p J J K P

f p q z z p J

h p q z z

λ χ χ

λ χ

χ

−

−

−

 
= − + − − 

 
 =  
 

=











 (16) 

4. Single-Momentum Approach  

Now we are going to introduce another approach to calculation of momentum 
distribution functions and quantum averages. As it was discussed above, precise 
path integral representation (10) is useless for practice due to 3N -dimensional 
Fourier transform, which cannot be calculated even for a few particles. However 
we can overcome this difficulty in many important cases. 

Let us consider some operator A , whose Weyl symbol is a sum of equal sin-
gle-particle symbols: ( ) ( )1, ,N

a aaA p q a
=

= ∑ p q . Due to the fact that all particles 
are identical, average values on ensemble of â  for arbitrary particles a  and 
b  are equal: ˆ ˆa ba a= . Therefore we can use Weyl symbol ( ) ( )( )1 1,N a p q⋅  
instead of ( )1 ,N

a aa a
=∑ p q  and integrate Wigner function over other momenta. 

Thus in single-momentum formalism:  

( )
( ) ( )

3
3 31

1 1 1 13

dˆ d d , , , ; , .
2π

N sm N
pA q q N A W Vβ= ⋅∫ p p q q 



     (17) 

Here we introduce single-momentum Wigner function as integral of 
( ), ; ,W p q Vβ  over all momenta except 1p , which we will denote by p  fur-

ther:  

( ) ( )3 3
1 2 1 1, , , ; , d d , , , , , ; , .sm N N N NW V W Vβ β= ∫p q q p p p p q q       (18) 
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As momenta in definition of Wigner function appear only in Fourier trans-
form a aie ξp  , integrals on them gives delta functions ( )aδ ξ  for 2, ,a N=  . 
This exterminates all aξ  except 1ξ , which now is denoted as simple ξ . Thus 
formula for single-momentum Wigner function is  

( ) ( )3
1 1, , , ; , d ; , , ; , ,i

sm N NW V e Vξβ ξ ρ ξ β= ∫ pp q q q q

         (19) 

i.e. it is 3-dimensional Fourier transform of single-momentum density matrix:  

( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ){ }

1
1

3
0 1 0

; , , ; , , ,

  exp π π , , .
N

N
z z

V Z V D q

D z K z P q z

ρ ξ β β ξ

τ τ ξ τ

−

= =

=

× − −      ∫

q q

 (20) 

Here K  is the same functional on trajectories as in (13), P and D are poten-
tial functional and determinant of permutations:  

( ) ( ) ( )( )

[ ] ( ) ( )( )
0

2

2

, , d 1 2 ,
π
π, det 2 2 .a b

P q z U q z

D q q q

ββξ τ τ λ τ ξ τ

ξ ξ ξ
λ

= + + −  

= − + − −

∫
         (21) 

Such reasoning would not change if we calculate average value of operators of 
the form ( )11

ˆ , , ,N
a NaC c

=
= ∑ p q q  or ( )1

ˆ , , NB B= q q . To summarize, in sin-
gle-momentum approach we are able to deal with quantum operators of partic-
ular form only:  

( ) ( )1 1
1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
N

a N N
a

A c B
=

= +∑ p q q q q 
              (22) 

so average value of it is:  

( )
( ) ( )

3
3 3

1 1 1 13

dˆ d d , , , , , , ; , ,
2π

N N sm N
pA q q A W Vβ= ∫ p q q p q q  



  (23) 

with Weyl symbol depending only on first particle’s momentum  
( ) ( ) ( )1 1 1: , , , , , , , ,N N NA N c B= ⋅ +p p q q p q q q q   . In fact many quantum 

operators being interesting for statistical physics have such single-momentum 
form: Hamiltonian, kinetic and potential energy, pair correlations and correla-
tions between position and momentum, momentum distribution function etc. 

Now let us apply the basic ideas of this approach to the degenerate system of 
interacting fermions. In degenerate system average distance between fermions is 
lesser than the thermal wavelength λ  and trajectories in path integrals (see 
(10), (9)) are strongly entangled. This is the reason that permutations can not 
strongly affect the potential energy ( ) ( )( ) ( )( )1 2 2U z q P qβ λ τ τ ξ τ ξ+ − − + +  
in comparison with the case of identical permutation. 

So ( ) ( )( ) ( )( )1 2 2U z q P qβ λ τ τ ξ τ ξ+ − − + +  can be presented as energy 
related to identical permutation ( ) ( )( )1 2U z qβ λ τ ξ τ+ + −  and small differ-
ence ( ) ( )( ) ( )( ) ( ) ( )( )1 2 2 1 2U z q P q U z qβ λ τ τ ξ τ ξ β λ τ ξ τ+ − − + + − + + − , 
which, for example, for 1D Coulomb system is of order  

( )( ) ( ) ( )
π

U n Ryn n
q

β λ λ βλ λ λ
∂

≈
∂

, where n  is 1D density of particles. Then  

for the first terms of the perturbation series on this parameter one can obtain the 
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following simplification:  
( ) ( )( ) ( )( ) ( ) ( )( )1 2 2 1 2U z q P q U z qλ τ τ ξ τ ξ λ τ ξ τ+ − − + + ≈ + + − .  

Now all permutations in (10) are connected with variables q  and ξ  and 
can be beared out of the path integral ( )3ND z τ . Moreover, one can gather all 
permutations into Slater determinant of N N×  matrix:  

( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

1
2

0

21 3
2

π d 1 2
π3

0 1 0

π, ; , , d det 2 2

.

N i p
a b

z U z q
N

z z

W p q V Z V e q q

D z e

ξ

βτ τ λ τ ξ τ

β β ξ ξ ξ
λ

τ

−

 − + + + −  
= =

= − + − −

×

∫

∫∫





 (24) 

In conclusion of this section we consider practical application of the ap-
proach. Making use of the Monte Carlo again we have to represent path integral 
for single-momentum density matrix (20) in discrete form, i.e.  
( )1; , , ; ,N Vρ ξ βq q  in form of multiple integral over “intermediate quantum 

coordinates” 1 1, , Mz z −
 . Firstly, by standard Monte-Carlo procedure we are 

able to calculate Fourier preimage of averaged single-momentum operator Â  
of form (22):  

( )
( ) ( )

( )
1 1

1

, , , , , ,
ˆ , ,

, , ,
sm

sm

N sm N w

sm N w

A f
A

f

ξ
ξ

ξ

⋅
=

p q q q q
p

q q

 



         (25) 

which depends on momentum p  by Weyl symbol and ξ  only. Here brackets 

( )1 1, , , , ,
sm

M

w
g q z zξ −p   denote averaging of any function g  with positive 

weight ( )1 1, , , , M
smw q z zξ −

 :  

( ) ( )
( )

1 1 3 1 1 1 1

1 1

, , , , , d d d , , , , ,

  , , , , ,
sm

M N M M

w

M

g q z z q z z g q z z

w q z z

ξ ξ

ξ

− − −

−

=

×

∫ ∫p p  



  (26) 

while  

( )
[ ] ( ) ( ) ( ) ( ) ( ){ }
( ) [ ]

1 1

3
0 1 0

1

, , , ,

, exp π π , , ,

, , , sign , .

M
sm

N
z z

sm N

w q z z

D q D z K z P q z

f D q

ξ

ξ τ τ ξ τ

ξ ξ

−

= =

=

= − −      

=

∫
q q





    (27) 

So we obtain ( )ˆ ,A ξp  in form of ξ  distribution function. Then we can do 
Fourier transform over variable ξ  numerically, using Fast Fourier Transform 
algorithms. After that it is easy to average expression over momenta to obtain 
desired average value Â . 

To calculate average values of simpler quantum operators like Hamiltonian 
containing single-momentum operator as separate term we can use easier way. 
The terms which do not depend on momentum can be calculated by averaging 
(25) over ξ  without Fourier transform. The terms which are functions of p  
can be calculated from single-momentum distribution function:  

( ) ( )3
1d , , , ; , ,N

p sm NW qW Vβ= ∫p p q q               (28) 

obtained by Fourier transform of single-momentum density matrix  
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( )1; , , ; ,N Vρ ξ βq q
 integrated over all positions q . 

5. Numerical Results 

Let us consider some results obtained by both approaches described above. To 
test the limits of applicability of harmonic approximation we have carried out 
calculation of thermodynamic values for single quantum particle in some 
strongly unharmonic potential fields. We have considered 1D  and 3D  cases 
and applied single momentum approach to calculations of momentum distribu-
tions. Finally, we tested single momentum approach on systems of non-inte- 
racting strongly degenerated fermions.  

Single particle in one dimension As the first example we consider one par-
ticle in 1D -power potential of the fourth order, i.e. unharmonic oscillator:  

( ) 2 4
2 4 ,V x ax cx− = +                      (29) 

where a  and c  are adjusted parameters of potential. When 0c =  this po-
tential describes harmonic oscillator and formula (12) is exact. If c  does not 
equal zero, oscillator is unharmonic and can be used for verification of the har-
monic approximation. The Figure 1 shows potentials (29) for 20.5a mω=  and 
different values of parameter c  when anharmonicity is significant.  

Left plot of Figure 2 shows dependence of full energy on inverted temperature 
for potential ( )2 4V x− . Results of harmonic approximation are marked by sym-
bols, while results of usual PIMC method are represented by curves. Results of 
both methods agree well with each other. When temperature is low (from 

1.5β ω =  to 5β ω = ) the energy tends to constant value, namely to the 
ground state energy 0E .  

 

 
Figure 1. Potential ( )2 4V x−  for 2 2a mω=  and different values of unharmonic para-

meter : 0c c =  (1), 2 3 6c m ω=   (2), 2 3 2c m ω=   (3) and 2 38 3c m ω=   (4).  
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Right plot of Figure 2 shows dependence of squared energy on inverted tem-
perature for potential ( )2 4V x− . From analysis of this figure it follows that har-
monic approximation gives correct enough values of 2H  even for the 
ground state. Weyl’s symbol of 2Ĥ  is polynomial of the 8 order, so the main 
contribution to 2H  comes from “wings” of Wigner function calculated with 
larger statistical error. This is the reason of some deviation of obtained results 
especially at low temperature. However ground state is reached earlier and this 
deviations are not important. 

Dependencies of average kinetic and potential energies on inverted tempera-
ture are represented on the left and right plots of Figure 3. Note that usual 
PIMC method has encountered difficulties at calculation of these val-  

 

 

Figure 2. Left plot: Dependence of average energy Ĥ  on inverted temperature 1 kTβ =  for potential ( )2 4V x− . Parameters 
2 2a mω=  for all cases, 0c =  (1,2), 2 3 6c m ω=   (3,4), 2 3 2c m ω=   (5,6) and 2 38 3c m ω=   (7,8). Symbols refer to har-

monic approximation calculations, curves—to usual PIMC method. Right plot: The same for average square of energy 2Ĥ .  

 

 

Figure 3. Left plot: Dependence of average kinetic energy 
2ˆ

2
p
m

 on inverted temperature 1 kTβ =  for potential ( )2 4V x− . 

Parameter 2 2a mω=  for all cases, 0c =  (1), 2 3 6c m ω=   (2), 2 3 2c m ω=   (3) and 2 38 3c m ω=   (4). Right plot: The 

same for average potential energy 2Ĥ . Results have obtained by harmonic approximation method and PIMC.  
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ues as it calculates derivatives of partition function ( )Z β . 
As a second example we consider 1D -potential of the fourth order:  

( ) ( ) ( )( )3 4
3 4 ,V x E b x xσ σ− = +                 (30) 

where 2 2E mσ=   is characteristic energy of potential. Dimensionless para-
meter b  specifies contribution of the cubic term. Figure 4 shows potentials 
(30) for different values of this parameter. With gain of b  the depth of the po-
tential well rapidly increases and the potential well becomes asymmetric.  

Left plot of Figure 5 shows dependence of average energy on inverted tem-
perature. As before symbols relate to harmonic approximation, while curves re-
late to usual PIMC method. Good agreement between results of these methods is 
evident. With increasing parameter b  the average energy becomes lower and 
approaches ground state energy, which is of order of the potential minimum (see 
Figure 4). 

Right plot of Figure 5 shows dependence of average squared energy 2Ĥ  
on inverted temperature. Dependencies of average kinetic and potential energies 
on inverted temperature are represented on left and right plots of Figure 6. One 
can see weak influence of parameter b  on kinetic energy, while the potential 
energy rapidly decrease when b  gains. Thus contribution of potential energy 
into the full energy is dominant at low temperature. At very low temperatures 
some points on left plot of Figure 5 are missed for large values of parameter b  
when expression below for the most trajectories ( )z τ  becomes negative:  

( )

( )

2 212

2
0

11 d 0,
π 2

y x z

V y
y

λ τ

βλ τ τ
= +

∂ + − ≤  ∂ ∫              (31) 

 

 
Figure 4. Power potential ( )3 4V x−  for different values of parameter : 0b b =  (1), 

5 3b =  (2), curve (3)— 7 3b =  (3), curve (4) — 6b =  (4).  
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Figure 5. Left plot: Dependence of average full energy Ĥ  on inverted temperature 1 kTβ =  for different values of parame-

ter : 0b b =  (1, 2), 5 3b =  (3, 4), 7 3b =  (5, 6) and 6b =  (7, 8). Right plot: The same for average square of energy 2Ĥ . 

Results have been obtained by harmonic approximation method and PIMC.  
 

 

Figure 6. Left plot: Dependence of average kinetic energy 
2ˆ

2
p
m

 on inverted temperature 1 kTβ =  for different values of 

parameter : 0b b =  (1), 5 3b =  (2), 7 3b =  (3) and 6b =  (4). Right plot: The same for potential energy Û . Results have 

obtained by harmonic approximation method and PIMC.  
 

and functional [ ],x zχ  can be imaginary. This situation occurs at low temper-
atures for potentials with negative second derivative like in potential (30). How-
ever this happens at very low temperature when the system is already in the 
ground state. 

As the third example we consider one-dimensional soft-core Coulomb poten-
tial (SCC):  

( )
2

scc 2 2
0

.eV x
x x

= −
+

                     (32) 

Here e  is electrical charge, while parameter 0x  is characteristic length of 
potential. Sometimes the SCC potential is used in numerical calculations instead 
of true Coulomb potential to avoid Coulomb divergency [25]. Figure 7 shows 
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SCC potential for different values of 0x . Curves refer to 0 0x a= , 0 02x a=  and 

0 03x a= , where 2
0a me=   is Bohr radius. It coincides with Bohr radius in 

three dimension [25]. Left plot of Figure 8 shows dependence of average energy 
on inverted temperature for SCC potential. Results of both methods are in good 
agreement with each others. The same agreement takes place for average squared 
energy 2H  represented on right plot of Figure 8. At high-temperatures 
functions Ĥ  and 2H  are not affected by parameter 0x , while at low- 
temperature the strong dependence on 0x  is evident. 

Finally, dependencies of average kinetic and potential energies on inverted 
temperature are represented on left and right plots of Figure 9. To the contrary 
of the potential energy the kinetic energy is not significantly affected by parame-
ter 0x . 

It should be noted, that some points are missed when 7Haβ ≥ . The reason is 
the same as for potential 3 4V − . This happens at very low temperature, when sys-
tem is already in ground state. However when 0 00.8x a≤  harmonic approxi-
mation fails to calculate ground state, as the second derivative of potential sccV  
takes a large value near origin of coordinates.  

Single particle in three dimensions Let us consider one particle in spheri-
cally symmetrical fourth order potential, i.e. unharmonic oscillator:  

( ) 2 4
2 4 ,V r ar cr− = +                       (33) 

where a  and c  are adjusted parameters of potential, r  is length of ra-
dius-vector ( ), ,x y z . When 0c =  this potential describes symmetrical 3D - 
harmonic oscillator and harmonic approximation (12) is exact. If c  does not 
equal zero, oscillator is unharmonic and can be used for verification of the devel- 

 

 
Figure 7. Soft-core Coulomb potential sccV  for different values of 0 0 0:x x a=  (1), 

0 02x a=  (2), 0 03x a=  (3). Here 2 2
0a me=   is Bohr radius, 2

0Ha e a= -Hartry 
energy.  
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Figure 8. Left plot: Dependence of average full energy Ĥ  on inverted temperature 1 kTβ =  for potential ( )sccV x  when: 

0 0x a=  (1, 2), 0 02x a=  (3, 4), 0 03x a=  (5, 6). Here 2 2
0a me=   is Bohr radius, 2

0Ha e a= —Hartry energy. Symbols refer 
to harmonic approximation calculations, curves—to usual PIMC method. Right plot: The same for average square of energy 

2Ĥ .  

 

 
Figure 9. Left plot: Dependence of average kinetic on inverted temperature 1 kTβ =  for potential ( )sccV x  when 0 0x a=  (1), 

0 02x a=  (2), 0 03x a=  (3). Here 2 2
0a me=   is Bohr radius, 2

0Ha e a= —Hartry energy. Results were obtained by harmonic 
approximation method. Right plot: The same for average potential energy.  
 

oped approach. The Figure 10 shows potentials (33) for 20.5a mω=  and dif-
ferent values of parameter c . Solid curve corresponds to 0c = , i.e. harmonic 
oscillator. Another curves correspond to values of c  equals to 2 3 2m ω 

 and 
2 32m ω 

 respectively. As it follows from analysis of this figure an harmonicity 
can be significant.  

The Figure 11 shows dependence of full energy on inverted temperature. As 
before reference results of usual PIMC method are represented by curves, while 
results of harmonic approximation are marked by turned triangles. Let us stress 
that results of proposed above single-momentum method are marked by straight 
triangles. Results of all methods agree well with each other.  

Next Figure 12 presents results obtained by the single-momentum method 



A. S. Larkin, V. S. Filinov 
 

406 

discussed above. Momentum distributions for unharmonic oscillator with 
2 3 2c m ω= 

 (3) calculated by single-momentum method are shown on Figure 
12. When 1Haβ ≤ , distribution is quite Maxwellian. However when tempera-
ture is lower, distribution is much wider than Maxwell one. Results of harmonic 
approximation for momentum distributions are the same and are not shown 
here.  

 

 
Figure 10. Spherically symmetrical potential ( )2 4V r−  for 2 2a mω=  and different val-

ues of unharmonic parameter: 0c =  (1), 2 3 2c m ω=   (2), 2 32c m ω=   (3).  
 

 

Figure 11. Dependence of average energy Ĥ  on inverted temperature 1 kTβ =  for 

potential ( ) 2 4V r ar br= + . Parameter 2 2a mω=  for all cases, 0c =  (1), 
2 3 2c m ω=   (2), 2 32c m ω=   (3). Curves refer to usual PIMC method, up-triangles— 

to harmonic approximation method, down-triangles—to single momentum method.  
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Figure 12. Momentum distribution for spherically symmetrical potential with 

2 3 2c m ω=   on different values of temperature. Dotted yellow line corresponds to 
Maxwell distribution.  

 
Ideal Fermi gas Finally we consider application of single-momentum ap-

proach to system of non-interacting degenerated spinless fermions, i.e. ideal 
Fermi gas with Fermi-Dirac momentum distribution [26]:  

( ) ( )2 3

1 ,
2π 1kT

gn p
e µ−

=
+


                   (34) 

where 2 2p m=  is energy, µ  is chemical potential, 2 1g s= +  is statistical 
weight equal to unity in spinless case. Chemical potential connects implicitly 
density and temperature by integral equation [27], which can be easily numeri-
cally solved:  

( )3 2

2 3 0

d .
12π z kT

g mkTN z z
V e µ

∞

−=
+∫



                  (35) 

Thermodynamical state of ideal Fermi gas is defined by single dimensionless 
parameter 3nχ λ= , where n  is density and λ  is the thermal wavelength. 
Degree of degeneracy is reflected by this parameter called as degeneracy para-
meter. When 1χ  thermal wavelength is much lesser than average distance 
between particles, so gas is far from degeneracy. In opposite case degeneracy and 
exchange effects are significant. We have carried out our calculations for dege-
neracy parameter χ  from 1 to 7. 

Left plot of Figure 13 shows dependencies of spherically symmetric sin-
gle-momentum density matrix (20) ρ  on Fourier variable ξ . When density of 
Fermi gas is low, density matrix has form of Gaussian exponent, i.e. Fourier prei-
mage of Maxwell distribution. When gas is degenerate, density matrix becomes 
oscillating function of ξ  with weak decaying. Momentum distribution functions 
shown on the right plot of Figure 13 by dashed lines can be numerically 
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Figure 13. Left plot: Dependence of single-momentum density matrix (20) ρ  on ξ  for different values of degeneracy: 1.3χ =  
(1), 2χ =  (2), 3χ =  (3), 5χ =  (4), 7χ =  (5). Right plot: Fermi momentum distributions ( )n p . solid lines—analytics 

(34), dashed lines—single-momentum numerical method, dotted line—Maxwell density matrix and distribution.  
 

obtained through sine Fourier transform of single-momentum density matrix. 
Solid semi-transparent lines correspond to theoretical Fermi distribution (34). 
When degeneracy parameter χ  is small then distribution is close to Maxwel-
lian. However it tends to the “shelf” form in degenerate Fermi gas.  

One can note that in cases 5χ ≤  agreement of single-momentum Monte- 
Carlo with explicit theoretical result (34) is very good with error about some 
percents. However it increase significantly for greater values of χ , especially at 
large momenta. The main source of this discrepancy is finite size of basic Monte 
Carlo cell. In simulations the thermal wavelength has to be much lesser than size 
of Monte-Carlo cell as in this case the surface effects are negligible ( )Lλ . 
For example, when in our simulations number of particles in Monte-Carlo cell is 
about 100, for 1.3χ =  the ration 0.25Lλ ≈  and influence of boundary con-
ditions is small. However for 10χ =  this ratio is more than 0.5, so influence of 
surface effects becomes significant. One has to increase Monte-Carlo cell and 
number of particles in it. Left plot of Figure 14 shows influence of boundary 
conditions on result for Fermi gas at 3χ = . We change the number of particles 
N  in basic Monte-Carlo cell while density was constant. One can see that result 
for small numbers N  differs significantly from the others. With increasing N  
the momentum distributions tend asymptotically to unit not depending on N  
more. This behavior is expected as increasing N  at constant density leads to 
increasing size of Monte-Carlo cell. So to obtain better results we have to in-
crease number of particles in Monte Carlo cell and, as a consequence, to increase 
the available computing power or improve algorithm of calculations. This work 
is now in progress. 

However this limitation affects mainly on momentum distribution at high 
momentum values, but less essential for calculation of integrals such, for exam-
ple, as average full energy Ĥ , which is shown on right plot of Figure 14. Re-
sults of single momentum method agree well with analytic approaches. 
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Figure 14. Left plot: Single-momentum density matrix: influence of boundary conditions on result for Fermi gas with 3χ =  
under constant density. N  is number of particle in Monte-Carlo cell. Right plot: Energy of ideal Fermi gas with different values 
of χ . Up-triangles corresponds to single-momentum calculation, down-triangles —to analytical formula 34.  

6. Conclusions 

In this paper we have generalized path integral representation of Wigner func-
tion for canonical ensemble on many-particle non-relativistic quantum systems. 
Using this representation we have obtained explicit expression of Wigner func-
tion in harmonic approximation resembling the Maxwell distribution on mo-
mentum variable but with corrections depending on the second derivatives of 
potential field. We also propose new single-momentum approach based on 
Wigner function integrated over momenta of some particles. 

We have developed quantum Monte-Carlo method based on harmonic ap-
proximation for Wigner function for calculating average values of arbitrary 
quantum operators and momentum distributions for non-ideal many-particle 
systems. We have tested this method on some simple systems in potential field. 
Obtained results have shown very good agreement with results of usual path- 
integral method Monte-Carlo and proved that harmonic approximation gives 
practically exact results even for potentials, which have no matter with harmonic 
potential. 

Also we have developed new quantum Monte-Carlo method based on sin-
gle-momentum approach. It is able to calculate momentum distributions and 
average values of single-particle operators without approximation. This method 
is suitable for non-ideal systems of fermions. We have tested it on degenerate 
ideal Fermi gas. Results are in good agreement with available analytical and nu-
merical data. 
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