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Abstract 
In this paper, multidimensional weakly singular integrals are solved by using 
rectangular quadrature rules which base on quadrature rules of one dimen-
sional weakly singular and multidimensional regular integrals with their Eu-
ler-Maclaurin asymptotic expansions of the errors. The presented method is 
suit for solving multidimensional and singular integrals by comparing with 
Gauss quadrature rule. The error asymptotic expansions show that the con-

vergence order of the initial quadrature rules is ( )1i
iO hα + , where 1 0iα− ≤ ≤ . 

The order of accuracy can reach to ( )4
0O h  by using extrapolation and split-

ting extrapolation, where h0 is the maximum mesh width. Some numerical 
examples are constructed to show the efficiency of the method. 
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1. Introduction 

It is well known that multidimensional singular integrals are models arising in 
diverse engineering problems and mathematical applications. For example, in 
the boundary element fracture analysis problem, elasticity problem [1], bima-
terial interfacial cracks [2] and wedge-sharped bimaterial interface [3], etc. Few 
of these integrals and equations can be solved explicitly, it is necessary to find a 
good numerical method. At present, there are many numerical techniques to 
calculate one-dimensional singular integrals or integral equations, such as collo-
cation method [4], Gaussian quadrature method [5] [6], mechanical quadrature 
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method [7] [8]. The Gauss-quadrature rules are considered to be a good choice 
for solving high dimensional integrals because they were accurate for polynomial 
approximation and the cost is low. However, Gaussian formula is not suitable 
for dealing with more than five-dimensional problems. So, we give a new algo-
rithm for solving the following integral  
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The structure of this paper is as follows: In Section 2, we give quadrature rules 
for weakly singular integral with multivariate errors asymptotic expansions. In 
Section 3, we construct the splitting extrapolation algorithm. In Section 4, some 
examples are given to illustrate the validity of the proposed method. Section 5 
concludes the paper with a brief summary. 

2. Multi-Parameters Asymptotic Expansions of the Errors 
for Weakly Singular Integrals 

In this part, we mainly consider multidimensional weakly singular integrals. We 
give the corresponding results of multidimensional weakly singular integrals ac-
cording to the quadrature formula and asymptotic expansions of the errors of 
one-dimensional integrals. 
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I F F x x x= ∫ ∫  x , 0 1iα< < . Then we have the following 

asymptotic expansions of the errors  
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Proof: We prove the theorem by the mathematic induction method. First, the 
conclusion is obvious right for 1k = . Now, we assume that the result also holds 
when 1k s= − . Next, we just need to prove the case of k s=   
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where ( )2 , , sh h= h , ( )1A xμ , ( )1B xμ  are functions which are independent 
of h . The integral can be written as  
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we consider 1I   
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then 11I  can be represented as  
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We need to consider the following formula  
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we know the above equation is obviously right by induction. Next, we calculate 

12I   
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The same as 12I  we can easy obtain  
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Now, we consider 2 3 4, ,I I I   
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Now, we obtain the following equation by taking the 1 2 3 4, , ,I I I I  and 11 12, ,I I  

13 14,I I  into Equation (4)  
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where ,A B  are constant which are independent of ( )1, , sh h= h . The proof 
has been completed.                                                 

3. Splitting Extrapolation Algorithm 

Now, we introduce the splitting extrapolation algorithm  
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First, we have to eliminate the minimum term of the errors expansions. Ac-
cording to (2), we can easily find that 1i

ihα + , 1, ,i s=   are low order terms 
when 0=μ . Assuming that { }11 min 1i j s jα α≤ ≤+ = + , and we use splitting extra- 
polation in the direction of ix   
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constants which are unrelated to h . We can obtain higher accuracy and con-
vergence order by repeating the above process. 

4. Examples 

In this section, we give some examples to illustrate the efficiency of the proposed 
method. 

Example 1. We consider the following s -dimensional integral [9]  

( ) ( )1 1
1 10 0

exp d d 1 .s
s sx x x x e+ + = −∫ ∫                 (18) 

We give the numerical results of the splitting extrapolation of types 1 and 2 
and Gauss quadrature methods. Table 1 gives the relative error (RE) and CPU 
time for different dimension ( s ) and splitting times ( m ). From the Table 1, we 
can find that the splitting extrapolation method is suit for solving high dimen-
sional integrals, and Gauss quadrature rule is difficult for solving more than five 
dimensional problems.  

Example 2. we consider the following integral  
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This is a high dimensional weakly singular integral which can be solved by 
splitting extrapolation algorithm. In Table 2, we give the absolute errors and 
convergence orders for splitting extrapolation of each step. From the table, we 
can find that the convergence order can reach to ( )4

0O h  by using splitting 
extrapolation twice, and the orders are coincide with the theoretical analysis. In 
Figure 1, we give the curves of absolute errors for each splitting extrapolation. 
From the Vertical direction, the images sink and the slopes of the curves increase 
with the increasing of the splitting times, which indicates that the errors decrease 
and the convergence orders increase. From the horizontal coordinate, the errors 
are reduced with the increasing of the node numbers. This shows that the split-
ting extrapolation not only enhance the numerical precision but also the order of 
accuracy. 
 
Table 1. Numerical results with errors and orders of accuracy for Example 2. 

N1 = ∙∙∙ = N7 22 23 24 25 

ε0 1.26e+01 8.86e+00 6.14e+00 4.23e+00 

r0 * 20.50 20.53 20.54 

ε1 * 1.66e−02 4.15e−03 1.04e−03 

r1 * * 22.00 22.00 

ε2 * * 1.26e−05 7.99e−07 

r2 * * * 24.00 
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Table 2. The compare between SE and Gauss quadrature method. 

s m 
Type 1 Type 2 Gauss 

RE CPU(s) RE CPU(s) RE CPU(s) 

5 
7 8.6e−13 335 5.0e−9 336 1.0e−8 42 

8 1.9e−13 947 1.2e−8 656 1.0e−9 >9 h 

8 
5 3.7e−7 618 3.7e−7 502 4.1e−8 11,283 

6 9.7e−9 4056 9.4e−9 3092   

9 
4 2.1e−5 176 2.1e−5 144 1.0e−3 >8 h 

5 8.5e−7 1544 8.6e−7 1197   

 

 
Figure 1. The absolute errors of splitting extrapolation. 

5. Conclusion 

In this paper, we give the quadrature formula with the asymptotic expansions of 
errors for solving multidimensional integrals with arbitrary points weakly sin-
gular. According to the asymptotic expansions of errors, we construct splitting 
extrapolation algorithm to improve the accuracy and the convergence order of 
the numerical results. By comparing the numerical results of our method with 
Gauss quadrature method, we can conclude that the splitting extrapolation me-
thod is efficient for solving high dimensional integral and weakly singular inte-
grals. Next, we consider how to use the method to deal with boundary integral 
and differential equations.  
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