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Abstract 
An initial value boundary problem for system of diffusion equations with delay ar-
guments and dynamic nonlinear boundary conditions is considered. The problem 
describes evolution of the carrier density and the radiation density in the semicon-
ductor laser or laser diodes with “memory” and with feedback. It is shown that the 
boundary problem can be reduced to a system of difference equations with conti-
nuous time. For large times, solutions of these equations tend to piecewise constant 
asymptotic periodic wave functions which represent chain of shock waves with finite 
or infinite points of discontinuities on a period. Applications to the optical systems 
with linear media and nonlinear surface optical properties with feedback have been 
done. The results are compared with the experiment. 
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1. Introduction 

We consider semiconductor lasers or laser diodes [1]-[11]. The laser is inverted carrier 
density system. There exist carrier generation and recombination that is when electrons 
interact with hole, they recombine. The energy released can be produced by thermal 
recombination or optical photon recombination which is used in semiconductor lasers. 
An electronic oscillator is an electronic circuit that produces a periodic signal. Oscillators 
convert direct current to an alternative current signal. We use the feedback oscillator 
which can increase amplitudes of signal. 

We consider “surface” oscillator which can be described mathematically by the 
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functional or dynamic boundary conditions with feedback of the following form: 

or ,out
out input input

uu u u
t

∂   = Φ = Ψ   ∂
                   (1) 

where inputu  is the corresponding amplitude of input signal, and outputu  is the am- 
plitude of output signal. Here, , : I IΦ Ψ →  are given nonlinear functions which 
model the transform of signal with help of laser diodes or bipolar junction transistor. 
Next, we can use semiconductor laser with nonlinear layer which produces the process 
of recombination of electrons and holes, and the density of radiation. For surface 
inverse system, this process of recombination can be given by nonlinear function with 
feedback. Such nonlinearity may be produced by heating. 

There are different physical mechanisms which can convert an optical signal. We 
consider an “deal” resonator when conversion of signal with feedback takes place at 
walls which confines the resonator. It will be shown that nonlinear surface optical 
properties of material produce in the volume of ideal resonator asymptotic periodic 
piecewise constant wave structures with finite or infinite number of “jumps” of am- 
plitude. Such distributions of electron, holes and radiation together represent shock 
waves. If a number of “jumps” are finite on a period, we have dealt asymptotic dis- 
tributions of relaxation type as time t →∞ . If this number is infinite countable or 
infinite uncountable on a period, we get limit shock waves of pre-turbulent and 
turbulent type, correspondingly. Such periodic shock waves take place in n p− -type 
semiconductor lasers. 

A corresponding mathematical model can be described for semiconductors with 
“memory” by a system of diffusion equations with delay arguments with dynamic 
nonlinear boundary conditions. To be more precise, the structure of shock waves 
depends not only on surface structure of material, which is described mathematically by 
the boundary conditions, but also from the initial data of the boundary problem that is 
from initial distribution of electrons, holes and density of radiation in the semi- 
conductor laser. 

In last years, in physics studied the nonlinear interaction of light which can mimic 
the physics at so called an event horizon. As shown in [6], this analogue arises when a 
weak probe wave is unable to pass through an intense soliton, despite propagating at a 
different velocity. These dynamics arise as a soliton-induced refractive index barrier. In 
all papers this barrier characterizes the volume optic properties of linear boundary 
conditions. In this paper, we consider the opposite problem when the optical medium 
is ideal or linear, but boundaries of the medium have the nonlinear optic properties, 
and describe, for example, the all-optical transistor [5]. It may be also a case when a 
bright soliton is passing through the soliton. In this case, the intensity of light depends 
on the refractive index. Thus, the soliton creates a moving refractive index’s 
perturbations which passage through the another soliton [1] [8]. This interaction 
between such surface solitons plays the main role of distributions of the light in the 
linear medium with nonlinear surface interaction. Thus for the ideal medium the main 
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role plays the surface nonlinear refractive index. In ([5], Figure 1) has been mimicked 
two spectral modes of solitons when the mode-locked laser diode generate picosecond 
solitons. This generation will be described as a functional boundary conditions with 
feadback generated these solitons. As noted in [1], “intense pulse of light may be used 
to create an effective flowing medium which mimics certain properties of black hole 
physics”. Of course, analogues models can be realized in very different physical 
systems. 

In this paper, an initial value boundary problem (IVBP) of system of two linear wave 
equations with nonlinear boundary conditions has been considered. Solutions of this 
problem describes the propagation of density of optical radiation (on a given frequency) 
and electron carriers in one-dimensional in the ideal semiconductor rod with optical 
defects at the ends. For example, the corresponding mathematical model describes the 
wave distributions of the density of radiation of photons and electron density in an 
ideal semiconductor. The semiconductor is confined by two flat walls which emit or 
absorb light. The probability of absorption or emission of photons depend on the 
surface density of the radiation and the surface density of electrons in a nonlinear 
manner. Diffusion in semiconductors is one-dimensional and one is directed 
orthogonal to the flat walls. Thus, the initial boundary value problem for the two linear 
wave type equations with nonlinear boundary conditions will be considered. This 
problem models different optical phenomena as white and black solitons, propagation 
of light in resonator with feedback connection between beams at walls and so on. 

In this paper, we study the structure of attractor of the IVBP. The IVBP admits a  
 

 
Figure 1. Solutions of turbulent type with the limit cantor set of points of discontinuities on a 
period. Phase portrait for simplest solutions of relaxation type (white and black solitons). 
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reduction to a differential-difference equations (DDE). We restrict ourselves to the case 
when the corresponding DDE are completely integrable. Indeed, among the differential- 
functional equations [12]  

( ) ( ) ( )( ) ( )( )1: , , , , 0,1, 2, ,nA u t D u t u t u t nτ τ = =     
           (2) 

where A is a differential operator, ( ) , 1,n k k nτ =  are delay arguments, there are a class 
of equations which admit decomposition on the finite product of differential and 
functional operators. Such equations are called equations with splitting operators [12]. 
The study of such equations reduces to a serial study of differential and functional 
equations. To this class belong to the so-called completely integrable equations [12] 
such that A DJ= , where D  is a differential operator and J  is a functional op- 
erator. For example, the equation  

( ) ( ) ( )1u t f u t u t′ ′+ =                             (3) 

is a completely integrable. Here, : d dD t=  and ( ) ( ) ( )J u t u t F u t= −       , where F  
is some primitive of the function f. By integrating this equation can be reduced to 
one-parameter family of difference equations (DE) with continuous time:  

( ) ( )1u t F u t c+ = +                            (4) 

where c is some integrating constant. In general, the completely integrable equation  

( ) 0DF u t =                               (5) 

can be reduced to the family of functional non-autonomous equations  

( ) ( )F u t tγ=                              (6) 

where ( )tγ  is a solution of the ODE  

( ) 0.D tγ =                               (7) 

We consider distributions ( ) ( )( ), , ,n x t I x t  in a semiconductor in the region 
0 , 0x l t< < > , where :I Iω=  is the density of radiation on a given frequency ω . The 
boundary conditions at have the form:  

( ) ( ), , 0 at 0t tP n I n Q n I I x+ = =                    (8) 

where , ,P Q R  are continuously differentiable functions. Define ( ),n Iµ  one of the 
integrating factor of Equation (8). Then, after multiplying on µ , Equation (8) can be 
written as:  

d 0.
d

R
t
ϖ µ+ =                              (9) 

Since all the integrating factor described by the formula ( )1
R

ϖΨ , where Ψ  is  

smooth function, there is a function F such that R Fµ− = . Then from (9) it follows 
that  

d at 0.
d

F x
t
ϖ

= =                           (10) 
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Let’s consider at the initial boundary value problem  

( ) ( ) ( )
2

2, , , ,n n
n nx t D x t n x t
t t

τ α∂ ∂
+ = +

∂ ∂
                  (11) 

( ) ( ) ( )
2

2, , , ,I I
I Ix t D x t I x t
t t

τ β∂ ∂
+ = +

∂ ∂
                  (12) 

with the boundary conditions  

( ) ( ) ( ) ( )1 1
1 2, , at 0, , , at , 0.n I F n I x n I F n I x l t

t t
ϖ ϖ∂ ∂

= = = = >
∂ ∂

     (13) 

and the initial conditions  

( ) ( ) ( ) ( )0 0, 0 , , 0 , 0 .n x n x I x I x x l= = < <               (14) 

Here, nτ  and Iτ  are response times of the carrier density radiation density corre- 
sponding to external perturbations in the semiconductor. α  is an absorption 
coefficient, β  is an emission coefficient; nD  and ID  are diffusion coefficient. Such 
approach previously applied to the study of binary alloys on the example of Kahn- 
Hilliard equation with delay argument to applications to binary mixtures [13]-[16] and 
to binary polymer blends [17]-[19]. Such problem describes by hyperbolic equations. 
Evolution of distributions satisfies to the so-called Non-Fickian diffusion and and this 
distributions represent “tau approximation” for numerical turbulence [20]. Below these 
idea will be applied to the modelling of carriers distributions in semiconductor lasers. 
At first, such approach has been considered by Maxwell (see, [21]). 

Thus, we consider asymptotic behavior of solutions for this of linear uncoupled 
equations with nonlinear dynamic boundary conditions. We define conditions on 
parameters, boundary functions and the initial conditions where there are asymptotic 
periodic piecewise constant solutions with finite or infinite points of discontinuities on 
a period. The paper is organized as follows. 

2. Formulation of Problem  

Consider a uniform rod such that the axis (Oz-axis) extends monochromatic radiation, 
characterized by the frequency ω  so that so that the density of the radiation is 

:I Iω= . Let ( )S x  be a density of the light flow at a point x and let the rod has an 
active and nonactive centers that are capable of absorbing radiation at the frequency 
ω . Then the active centers emission process is accompanied by opposite process so 
that the resultant absorption is determined by the competition of these processes. 
Nonactive absorption centers (on frequency ω ) are not accompanied by the emission: 
for such absorbtion we can formally include the scattering of radiation in the rod, 
which leads to energy loss through the side surface (see, [22], p. 11). 

So we write the Burger law  

( )d dl nS S zα α= − +                         (15) 

where lα  is the linear absorption coefficient on active centers, nα  is the corre- 
sponding coefficient in the inactive centers. Note that the competition transitions 
(absorption and stimulated emission) can lead to a negative value lα . In this case, the 
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optical parameter of the medium describe the negative absorption, i.e., the increase in 
radiation. Due to the nonlinear optical effect (in the centers), ( )l G S zα =    , where G 
is a given nonlinear function (see, [22], p. 11). 

The corresponding model equation for densities of electrons and radiation is:  
2

2 ,n
n nD n
t x

α∂ ∂
= +

∂ ∂
                         (16) 

2

2 ,n
n nD I
t x

β∂ ∂
= +

∂ ∂
                         (17) 

where α  and β  are positive or negative values. The diffusion coefficient nD , given 
that the charged particles are diffused and the Coulomb forces prevent diffusion can be 
associated with a carrier concentration by the formula: 

( )p e e p
n

e e p p

D D n n
D

D n D n
+

=
+

                       (18) 

where en  and pn  are the diffusion coefficients for electrons and holes. We assume 
that e pn n=  that is coefficient nD  is constant. 

Let 1 2,n It t t tτ τ= =  and x x l= , where l is the size of system and ,n Iτ τ  are 
times of relaxations, correspondingly. Then these equations can be written as 

2

2
1

,n n
n nD n
t x

τ α∂ ∂
= +

∂ ∂
                       (19) 

2

2
2

,I I
n nD I
t x

τ β∂ ∂
= +

∂ ∂
                       (20) 

where 2 2,n n n f f ID D l D D lτ τ= = . 
Now, instead of diffusion Equation (19) and Equation (20), we consider the diffusion 

equations with delay arguments:  

( ) ( ) ( )
2

1 1 2
1

, , , ,n n
n nx t D x t n x t
t x

τ τ α∂ ∂
+ = +

∂ ∂
              (21) 

( ) ( ) ( )
2

2 1 2, , , ,I I
n nx t D x t I x t
t x

τ τ β∂ ∂
+ = +

∂ ∂
              (22) 

where 1 r ntτ τ=  and 2 s Itτ τ= . Here, rt  and st  are times of response of the 
system on outer perturbations, correspondingly. 

These equations describes distributions of the number of electrons and radiation in 
semiconductor. We assume that the number of electrons and holes is constant. The rise 
times rt  and st  corresponds to impulse response that is the reaction of dynamic 
system on some external change. We assume that 1 1τ   and 2 1τ  . Then these 
equations, with accuracy ( )2

1O τ  and ( )2
2O τ  can be written as: 

( ) ( ) ( ) ( )
2 2

1 1 1 12 2
1 1

, , , , ,n n
n n nx t x t D x t n x t
t t x

τ τ α∂ ∂ ∂
+ = +

∂ ∂ ∂
          (23) 

( ) ( ) ( ) ( )
2 2

1 2 1 22 2
2 2

, , , , .I n
I I Ix t x t D x t I x t
t t x

τ τ β∂ ∂ ∂
+ = +

∂ ∂ ∂
          (24) 
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Since 2
n

s

t τ
τ

= , these equations can be written in the unification form: 

( ) ( ) ( ) ( )
2 2

1 12 2
1 1

, , , , ,n n
n n nx t x t D x t n x t
t t x

τ τ α∂ ∂ ∂
+ = +

∂ ∂ ∂
           (25) 

( ) ( ) ( ) ( )
2 2 2

2 2 2
1 1

ˆ, , , , .I I
f I

n n

I I nx t x t D x t I x t
t t x

τ ττ τ β
τ τ

 ∂ ∂ ∂
+ = + ∂ ∂ ∂ 

        (26) 

Bellow index in 1t  will be omitted. 
Note that the rise time can be determined by the formula 

22.230 0.078 1.12r rt ω ς ς= − +                     (27) 

in the quadratic approximation, and by the formula 

2
1

2

11 π tg
1

r rt ς
ω

ςς
−

  −  = −
  −   

                 (28) 

in the common case. Here, ς  is the damping ratio and rω  is the natural frequency of 
the network. The value ς  is a dimensionless measure which describes how oscillations 
decay after perturbations. 

Note that the rise time st  is derived from the assumption that the response of the 
medium at a time t determined by the field of the light wave at the same time t so that 
( ) ( ) ( )P t t E tα= , where ( )P t  is the polarization, ( )E t  is an electric field. However, 

in fact it should be taken into account (inevitable) “inertness” of the medium. This 
means that the response of the polarization on an action of the field take place with 
delay time. Generally speaking, the time is not precisely defined Libenson (see, [22], p. 
28). So the polarization of the medium at a time t to be determined by the wave field in 
all previous times t t t′ = − ∆ , where the delay is positive. 

Let us consider for Equation (25) the dynamic boundary conditions  

( ) ( ) ( ) ( )1 20, 0, , , , , 0,n nt F n t l t F n l t t
t t

∂ ∂
= = >      ∂ ∂

          (29) 

and the Neumann boundary conditions  

( ) ( )0, 0, , 0,n nx l x
x x
∂ ∂

= =
∂ ∂

                    (30) 

( ) ( )0, 0, , 0, 0 ,I Ix l x x l
x x
∂ ∂

= = < <
∂ ∂

                 (31) 

and the initial conditions  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, 0 , , 0 , , 0 , , 0 .n In x h x x h x I x h x x h x
x x
∂ ∂

= = = =
∂ ∂

   (32) 

Let the solutions are  

( ) ( ) ( )1 1,n x t f t x V g t x V= + + −                  (33) 

( ) ( ) ( )2 2,I x t f t x V g t x V= + + −                  (34) 
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where 1
1

nDV
t

=
∆

 and 2
f n

I

D
V

τ
τ

= . Substituting (33), (33) into (25), (26), we obtain  

the equations  

ˆ, .n In I
t t

α β∂ ∂
= =

∂ ∂
                        (35) 

From (33), (33) it follows that Equations (35) can be written as  

( ) ( ) ( ) ( ) ,f g f gζ η α ζ η′ ′+ = +                    (36) 

( ) ( ) ( ) ( ) .f g f gζ η β ζ η′ ′  + = +                   (37) 

Without loss of generality, we assume that 1 2V V V= = . Then from (42), (42) it 
follows that  

( ) ( ) 0,f fζ α ζ′ − =                          (38) 

( ) 0,g η α′ − =                            (39) 

( ) ( ) 0,f fζ β ζ′ − =                         (40) 

( ) ( ) 0.g gη β η′ − =                         (41) 

From the Neumann boundary conditions it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , , ,f t g t c f t l V g t l V c f t g t c f t l V g t l V c= + + = − + = + + = − +  (42) 

where , , 1, 2k kc c k = . Let  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 , , 0 0 ,f g f l V g l V f g f l V g l V= = − = = − . Then  

0, 1, 2k kc c k= = = . 
Now from (38) it follows that  

( ) ( ) 0.f fζ α ζ′′ ′− =                         (43) 

Integrating this equation from 0 tζ =  to 1 t l Vζ = + , we obtain that  

( ) ( ) ( ) ( ) .f t l V f t f t l V f tα′ ′+ − = + −                 (44) 

Next, integrating the equation  

( ) ( ) 0g gη α η′′ ′− =                         (45) 

from 0 tζ =  to 1 t l Vζ = + , we obtain that  

( ) ( ) ( ) ( ) .g t g t l V g t g t l Vα′ ′− − = − −                  (46) 

From (44), (46) it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .f t l V g t l V f t g t f t l V g t l V f t g tα α′ ′ ′ ′+ + − − + = + + − − +             (47) 

Then from the dynamic boundary conditions it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 .F f t l V g t l V F f t g t f t l V g t l V f t g tα α+ + − − + = + + − − +                (48) 

From (42) it follows that Equation (48) can be written as  

( ) ( ) ( ) ( )2 1F f t l V F f t f t l V f tα α+ − = + −                          (49) 
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where : 2f f= . Without loss of generality, we assume that 2 :F f f→ . Then Equ- 
ation (49) can be written as  

( ) ( ) ( ) ( )11 .f t l V F f t f tα α− + = −                      (50) 

Let ( ) ( )1
1: 1f F f fα α α−Φ = → − − . We assume that ( )2 ,C I IαΦ ∈  where I is an 

interval. In 2C  structural stable maps form an open dense subset. Then a set Per αΦ  
of periodic points of αΦ  is Per P Pα

+ −Φ =   where P+=  is finite and P−  is 
finite or countable. In the structural stable case, a separator D is  

0

n

n
D Pα

− −

≥

= Φ


                          (51) 

where P−  is closure P− . D is uncountable if and only if αΦ  has circles with periods 
2 , 0,1, 2,i i≠ =  . If αΦ  has circles with periods 2 , 0,1, 2,i i= =  , then D is coun- 

table. 
Let ( ) [ ), , 0h t t l V∈ −  is an initial function for Equation (50). Then from (50) we 

can find a solution of this equation on the interval [ )0, l V  and so on. This solution is 
bounded for 0t >  if [ ]1F f I⊂  as f I∈ . If  

( ) ( ) ( ) ( )2 1 0 0F f l V F f f t l V fα α− = + −                this solution is continuous for 
all 0t > . The set ( )1h D−Γ =  is closed and nowhere dense in the interval I. The 
Lebesgue measure of the set Γ  is zero on I. For almost all h, the solutions of Equation 
(50) tends to periodic piecewise constat function with finite, countable or uncountable 
points of discontinuities on periods. 

3. Example 1  

Let 1 :F f fα= → . Then 

( ) ( ) ( )1f t l V f t f tλ+ = −                       (52) 

where 
( )2
1
1

λ
α α

=
−

. If 0 4λ< < , for each f I∈  we obtain that  

( ) ( ) [ ]1 0,1f t f t Iλ − ∈ =   . Hence, solutions exists for any 0t > . 
If 4λ > , then all solutions of Equation (52) tends to infinity as t →∞ . If ( ]0,1λ ∈ ,  

then ( ) 0f t →  as t →∞ . If ( ]1,3λ ∈ , then ( ) 11f t
λ

→ −  as t →∞ . If  

(3,1 6λ ∈ +  , then D is countable set with with a finite set of points of accumulation. 
In this case, we have deal with solutions of pre-turbulent type. If 3.568λ > , then D is 
the Cantor set and we have deal with solutions of turbulent type. 

4. Reduction to Difference Equations  

From the boundary conditions  

( ) ( ) ( )00, 0, , 0, ,u t F I t n t
t

∂
=   ∂

                    (53) 

( ) ( ) ( )1, , , , ,n l t F I l t n l t
t

∂
=   ∂

                     (54) 

and the representation of solution in the form  
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( ) ( ) ( ), ,n x t f t x V g t x V= + + −                    (55) 

( ) ( ) ( ), ,I x t f t x V g t x V= + + −                    (56) 

it follows that  

( ) ( ) ( )0 0, , 0, 0, ,F I t n t n tα=                       (57) 

( ) ( ) ( )1 , , , ) , .F I l t n l t I l tβ=                       (58) 

From the boundary conditions  

( ) ( ) ( )00, 0, , 0, ,I t G I t n t
t
∂

=   ∂
                    (59) 

( ) ( ) ( )1, , , , ,I l t G I l t n l t
t
∂

=   ∂
                    (60) 

it follows that  

( ) ( ) ( )0 0, , 0, 0, ,G I t n t n tα=                      (61) 

( ) ( ) ( )1 , , , , .G I l t n l t I l tβ=                       (62) 

From the Neumann boundary conditions  

( ) ( )0, 0, , 0,n nt l t
x x
∂ ∂

= =
∂ ∂

                      (63) 

( ) ( )0, 0, , 0,I It l t
x x
∂ ∂

= =
∂ ∂

                      (64) 

it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0, 0, , , 0, 0, ,f t g t f t l V g t l V f t g t f t l V g t l V= + = − = + = −   (65) 

for a special choice of the initial conditions at the points  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,0 0,0 , , 0,0 0,0 , .f g f l V g l V f g f l V g l V= = − = = −     (66) 

Then functional Equations (57), (58) and (61), (62) can be written as:  

( ) ( ) ( ) ( ) ( ) ( )1 0, , ,F f t l V f t l V f t l V F f t f t f tα α   + + − + = −         (67) 

( ) ( ) ( ) ( ) ( ) ( )1 0, , ,G f t l V f t l V f t l V G f t f t f tβ α   + + − + = −         (68) 

where 2f f→  and 2f f→ . 
Let us assume that 1 , :F f f f  =   and 1 , :G f f f  =  . Then from (67), (68) it 

follows that 

( ) ( ) ( ) ( ) ( )01 , ,f t l V F f t f t f tα α − + = −               (69) 

( ) ( ) ( ) ( ) ( )01 , .f t l V G f t f t f tβ β − + = −               (70) 

We got the system of difference equations with continuous time. This system  

produce a map 2 2: R RΦ → , depending on parameters α̂  and β̂ , where ˆ
1
αα
α

=
−

 

and ˆ
1
ββ
β

=
−

. 
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We assume that there is a bounded open subset 2G R⊂  such that ( )G GΦ ⊂ , 
where Φ  is a continuous map such that: 1) differential DΦ  is continuous on the set 
G; 2) a set ( )1 f−Φ  is finite for each f G∈ ; 3) a set ( )Ω Φ  of non-wandering points 
of the map Φ  is finite and hyperbolic. Further, let ( )Bσ  is a spectre of operator B. If 
( )Ω Φ  is finite, then: 4) ( ) FixΩ Φ = Φ , where FixΦ  is a set of fixed points of the 

map Φ ; for all points of the map Φ  we have that ( ) { }e : 0zD Rezσ δΦ ⊂ > >  for 
each ( )f ∈Ω Φ . The hyperbolic property means that if ( )f ∈Ω Φ  and r fΦ = , 
where r is a natural number, then ( ) { }: 1rD z zσ φΦ = =

, where φ  is the empty 
set. 

We will consider continuous solutions ( ) ( )0 ,f t C R G+∈  of system (69), (70). Such 
solutions are produced by the set of initial functions ( ) [ )( ){ }0: 0, ,H h t C l V G= ∈  
such that ( ) ( )0 0h l V h− = Φ    . From these assumptions it follows that  
( ) NPer FixΩ Φ = Φ = Φ  for some natural N and ( ) P P P+ − ±Ω Φ =   , where  
, ,P P P+ − ±  are the sets of attractive, repelling and saddle fixed points of the map NΦ . 

Then ( )sa W a
G

∈
=


, where ( ) ( ){ }: lims mN
mW a f G f a→∞= ∈ Φ =  is a stable of a 

fixed point a of the map NΦ . It means that each point f G∈  is attracted by one 
circle of the map Φ . 

Then  

( ) ( )*lim ,Nj

j
f f

→∞
Φ = Φ                        (71) 

where ( ) ( )( )( ) ( )( )( )* * *i if h t i h t iΦ = Φ Φ − = Φ Φ − , and ( ) ( )* fΦ ∈Ω Φ  for each 
f G∈ . For each ( )h t H∈  we define N-periodic piecewise constant function  

( )* :hP R+ → Ω Φ  by the formula  

( ) ( )( )( ) ( )( )( )* * * ,i i
hP t h t i h t i= Φ Φ − = Φ Φ −             (72) 

where [ ), , 0,1, 2,t i i l V i∈ + =  . Then any solution of system is asymptotic periodic 
and such that  

( ) ( ) 2
*lim 0j h R

t Nj P t→∞ ℘ + − =                   (73) 

for each fixed point t R+∈ , where ( ) ( ) ( )( ),t n t I t℘ = . The function ( )*
hP t  is non- 

invertible on the set  

[ ) ( ) ( ){ }
0

, : , .s
h

i
t i i l V h t i W a a R

∞
+

=

Γ = ∈ + − ∈ ∈


           (74) 

5. Example 2  

Consider the system  

( ) ( ) ( )22 ,u t l V u t w t λ+ = + +                    (75) 

( ) ( )2 ,w t l V bw t+ =                        (76) 

where e , 0ab a= < . This system produce the map 2 2
, :b R RλΦ →  such that  

( ) ( )2
, : , , .b u w u w bwλ λΦ → + +                   (77) 

The set of non-wandering points of the map ,bλΦ  is ( ) ( )*
, , , 0b bFix uλ λ λΩ Φ = Φ = , 
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where *uλ  is a fixed point of the map 2: u uλϕ λ→ + . 
Let us define the initial curve  

( )( ) ( ) ( ) ( ) [ ){ }2 1: , : , , 0, 2 ,h t u w R u t h t w R t l Vγ = ∈ = ∈ ∈         (78) 

where the vector-function ( )h t  is determined by the initial data of the initial value 
boundary problem. 

If 1 4λ >  the map λϕ  has not fixed points and, hence, for each initial curve ( )h t  
in 2R  given in the interval 0 2t l V< < , solutions of the problem is such that 

( ) ( )( ),u t w t →∞  as t →∞ . For 2λ < −  each point ( )u Iλ λ λϕ∈ Ω  go out from 
the interval Iλ  under an action of iterations of the map λϕ . Here, ( )0 0,Iλ β β= − , 
where 0 1 2 1 4β λ= + −  is the repelling fixed point of the map λϕ . It means that 
each component of the solution tends to infinity as t →∞ . 

The solutions are bounded if and only if 2 1 4λ− < ≤ . For 2λ = −  the fixed points 
are 0 2β =  and 1 1β = . Indeed, if 0 2u < , then there is 0θ  such that 0 02cosu θ= ± . 
Then 02cos 2n

nu θ= ± . If 0θ  is commensurate with ( )0π π, , 1m m n
n

θ− = =  (that is 
m n  is irreducible fraction). In this case, there are numbers k and i such that 

( ) ( )2 2 1 0i k mod n− ≡ . Then, beginning from some number, we obtain a circle. For 
almost all (with respect of the Lebesque measure), the sequence is uniformly distributed 
in the interval. 

There is a set Λ  such that for almost u∈Λ  trajectories { }2 0

i

i
ϕ

∞

− =
 are placed on 

Λ  everywhere dense. The trajectories on Λ  are unstable, but the set Λ  are stable 
generally. It means that Λ  attracts almost all trajectories from its neighbourhoods. 
For 2λ = −  the set Λ  is the interval [ ]2 2, 2I − = − . It means that any solution tends 
as t →∞  to a function ( )1 1,p pζ η , where t x Vζ = −  and t x Vη = + . This 
function is equal [ ]2, 2−  on the interval ( ),d dζ η+ +  for each given 0d > . The 
number of oscillations increase infinitely as t →∞ . Such behaviour of trajectories 
exists not only for 2λ = − , but for continuum values of λ . If 3 4 1 4λ− < < , then 
( )I Iλ λϕ ⊂  and there is the fixed attractive point 1β  on this interval. It means that 
( ) ( )( ),u t w t →∞  as t →∞ . If 5 4 3 4λ− < < , then the fixed point 1β  become 

repelling, but instead on Λ  appears an attractive circle of the period 2 which consists 
from the two points 2,3 1 2 3 4β λ= − ± − − . For the two-dimensional map ,bλΦ  it 
means that the set of attractive fixed points is ( ) ( ){ }2 32 ,0 , 2 ,0P β β+ = . The set of 
saddle fixed points consists from the unique point ( ){ }12 ,0P β± = . Then vectors, 
corresponding to these eigenvalues, are ( )1,0  and ( )0,1  (Figure 2). If 3 4 5 4λ− < < , 
then for 1, 0,1, 2,n n nλ λ λ +< < =   the map λϕ  has an attractive circle of the period 
2n , but all another circles are repelling. For the system of difference equations it means 
that ( )u t  tends to a 22 nl V -periodic piecewise constant function and ( )w t  tends to 
zero. 

6. Physical Dynamic Boundary Conditions  

Let us consider the following model [2]: ( ) ln tn I k I Iδ = , where ( )n Iδ  is refractive 
index, 0k >  is the strength of the nonlinearities, tI  is the threshold intensity. We  
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Figure 2. Phase portrait for simplest solutions of relaxation 
type (white and black solitons). ( ) ( )1 1 3 3, , ,p p p p -attractive 

fixed points, ( )2 2,p p -saddle point of co-dimensional 1. 

 
study propagation of a spatially incoherent, quasi-monochromatic and linearly po- 
larized light beam in a linear photopic lattice with a non-instantaneous surface non- 
linearity. The electron field fluctuates on time scale much shorter than the response 
time of the nonlinearity [4]. The state of the system can be described by a function 
( ) ( ) ( )*, , , ,I x t E x t E x t= , where E is the electric field, *E  is the value which is 

conjugate to the value E. 
Now we show how can be postulated nonlinear boundary conditions. For plane 

waves the density is defined as  

2
0 0

1
2 lI c n Eε=                             (79) 

where c is velocity of light, ln  is linear refractive index at low fields. The effective 
refractive index can be written as  

( )
( ) 1 22

1
2

0

31 .
2 2eff

l

n I
c n
χχ
ε

 
= + +  
 

                    (80) 

Indeed, as noted in [10]: “the nonlinear effects in optical fiber occur either due to 
intensity dependence of refractive index of the medium or due to inelastic-scattering 
phenomenon”. There are various types of nonlinear effects based on self-phase modu- 
lation, cross-phase modulations and four-wave mixing. We consider the effect when 
the refractive index is the nonlinear function of the optical intensity. The power 
dependence describes the Kerr-effect [10]. Origin of nonlinearity is the unharmonic 
motion of electrons under the action of the polarization  , which is induced by 
electric dipoles so that  

( ) ( )1 2 2
0 0E Eε χ ε χ= + +                       (81) 



I. B. Krasnyuk 
 

1727 

where 0ε  is the permittivity of vacuum and ( ) , 1, 2,k kχ =   is susceptibility. 
We assume that there is the surface polarization at a walls which confine the laser 

fiber. Then defects and color centers at the walls produce the second order gene- 
ralization. We confined itself by the study only the quadratic boundary conditions 
which describes wave type distributions of relaxation, pre-turbulent and turbulent type. 
Then the surface refractive index is ( )effn n I Iδ = . Then one of the boundary con- 
ditions can be written as 

( ) ( ) ( ) ( )1 20, 0, , , , .eff eff
I It n I t l t n I l t
x t
∂ ∂

= =
∂ ∂

                (82) 

In similar form, we can consider more common boundary conditions. Then from (80) 
it follows that ( ) ( )1 2,χ χ  are bifurcations parameters. Formally, their changing leads to 
appearing of period doubling distributions bifurcations and, correspondingly, to ex- 
istence of distributions of relaxation, pre-turbulent and turbulent type. We can con-  

sider also the values ( )1
1 1µ χ= +  and 

( )2

2 2
0

3
2 2 lc n

χµ
ε

=  as bifurcations parameters. 

From the formula ( ) ln tn I k I Iδ =  it follows that we can use the approximation  

( ) ( ) ( )2 31 1ln 1
2 3t t t tI I I I I I I I+ = − + +              (83) 

for 1tI I   unless 1tI I = − . Then the boundary conditions can be written as  

( ) ( ) ( ) ( )1 20, 0, , , ,eff eff
I It n I t l t n I l t
x t
∂ ∂

= =
∂ ∂

              (84) 

if , 1, 2k k
eff l tn n I I k= + = . Thus we obtain the problem with nonlinear boundary 

conditions which can be considered as above. Here, k
ln  is a bifurcation parameter. 

7. Applications to Semiconductor Lasers  

In semiconductor lasers, the intersection field matter is realized through the carrier 
density n which satisfies to the equation [3]: 

2
2

2
s a

n j n g nE D
t qv xτ ω

∂ ∂
= − − +

∂ ∂

                  (85) 

where ~I E , j is the injection current, q is the electron charge, v is active volume of 
the device, sτ  is lifetime of the carriers, g is optical gain in cm−1, and D is the diffusion 
coefficient. 

We assume that device is placed at a point 0x = , and the Neumann boundary 
condition  

0 at 0.n x
x
∂

= =
∂

                         (86) 

Next, we assume that the media of semiconductor laser is ideal that is light 
propagates throw the media without changing of amplitude along lines d dx t V= , 
where V is velocity of propagation of light. The we can consider phenomenological 
dynamic boundary condition 
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1 at 0.
s a

jn n g x
t qv τ ω

∂
= − − =

∂ 

                  (87) 

We assume that 

( ) 2
ag a n n E= − −                        (88) 

where an  is the carrier density at transparency,   is the gain compress factor. As 
noted in [3]: “the actual dependence of the gain on the field density is still object of 
controversy”. Note that in the paper [3] has been considered the case 2 1E ll . 

Next, we consider, additionally, the boundary conditions 

2 at
s

jn n x l
t qv τ

∂
= − =

∂
                     (89) 

that is 2 1I 
 at 0x = . 

On the other hand, from the theory of the injection locking it follows that 

( )( ) ( )2
1 1

1 1 at 0
2 a

I a n n I x
t

γ∂
= − − − − =

∂
             (90) 

where 1 1, , aa nγ  are constants. Assuming that 2 1I   at x l= , we obtain the right 
boundary condition 

( )( )1 1
1 at .
2 a

I a n n x l
t

γ∂
= − − − =

∂
                (91) 

Thus we get the dynamic boundary conditions. Applying the method of reduction 
corresponding initial value boundary problem to a system of difference equations, we 
obtain that the problem has solutions of relaxation, pre-turbulent and turbulent type 
for a special case of the coefficients 1 1, , aa nγ  and so on. 

8. Comparison with Experiment  

In [9] has beeb discusses the dynamics of modulation surface directed instability and 
periodic waves in the coupled linear equations which describes light propagation in 
dispersed Kerr media. New spatial-temporal periodic solutions are found for these 
equations. As noted in [9]: there is “the fundamental link which exists between the 
phenomenon of polarization instability and the so-called black and white vector 
solitons”. From this point of view, the asymptotic periodic spatial-temporal periodic 
solutions obtained in our paper are not the solitons, because solitons exists due to a 
balance between surface induced injection of radiation into optic media and volume 
radiation. Surface radiation with feedback can be modeled by laser diode. The balance 
can be achived only asymptotically as t →∞ . We obtain white and black asymptotic 
impulse the form of which determined by the form of surface induced impulse. In this 
case, parameters of surface absorption and emission are bifurcation parameter which 
define the period and the frequency oscillations on the period white and black 
“solitons” [11]. 

Spatial solitons were experimentally observed in 1997 by Mitchel and Segev (see, 
[11]). Such solitons arise from incoherent white light and these solitons appears as a 
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dynamic balance between the tendency for the beam to expend as a result of diffraction 
and the property of beam to contract as a result of self focusing. In [23] has been 
demonstrated solitons which can be obtained from both the spatially and temporally 
incoherent light. But, as noted in [11], the corresponding theory can not explain 
spatial-temporal coherence properties and also properties of temporal spectral density 
of such solitons. We believe that the initial value boundary problem, which is con- 
sidered in the present paper, may be useful to describe formal properties of spatial- 
temporal solitons and their spectral properties. 

9. Conclusion  

In this paper, we analyze the dynamic of surface, and induce nonlinear instability in 
ideal optic volume producing light propagation, reflected from walls, which confines an 
ideal resonator. The problem is described by two linear difference equations with 
nonlinear dynamic boundary conditions for density of radiations and density of 
photons in the resonator. It is shown that deriving from the form of the boundary con- 
ditions with feedback we can obtain distributions of the light of relaxation, pre- 
turbulent and turbulent type. 
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