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Abstract 
In the article correct method for the kinetic Boltzmann equation asymptotic solution is formulated, 
the Hilbert’s and Enskog’s methods are discussed. The equations system of multicomponent non- 
equilibrium gas dynamics is derived, that corresponds to the first order in the approximate (asym- 
ptotic) method for solution of the system of kinetic Boltzmann equations. 
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1. Introduction 
In 1912 Hilbert considered the kinetic Boltzmann equation for one-component gas as an example of integral eq-
uation and proposed a “recipe” for its approximate (asymptotic) solution (see [1], Chapter~XXII). Hilbert’s 
“recipe” was inconvenient for practical use, because the five arbitrary functional parameters of the first and the 
following approximations of the velocity distribution function had to be found by solving the differential equa-
tions in partial derivatives (equations of gas dynamics of the first and higher orders). Five years later Enskog 
proposed to use zero conditions, conditions with zero right-hand sides, to determine the five arbitrary functional 
parameters of the first and following approximations of the velocity distribution function. The imposition of the 
zero conditions leads, in fact, to using different comparison scales in the asymptotic expansion of the velocity 
distribution function and in the asymptotic expansion of the particle number density, the mean (mass) velocity 
and the temperature, that are derived from the asymptotic expansion of the velocity distribution function by in-
tegration over velocities with different weighting functions. As a result of paralogism of the method of succes-
sive approximations (one has to set variable coefficients of the same terms of the unified comparison scale equal 
to each other) partial time derivatives vanish in the necessary conditions of solutions existence of integral equa-
tions of higher orders (see below) and with them terms of gas-dynamic equations, corresponding to viscosity, 
heat conduction, … vanish. Enskog “improved” the situation by the introducing (see, for example, [2], Chapter 7, 
§ 1, Section 5) of the unsubstantiated expansion of partial time derivative: 
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The approach of Struminskii, who had proposed in 1974 in [3] his approximate (asymptotic) method of solu-
tion of the system of kinetic Boltzmann equations for multicomponent gas, differs from the approach of Enskog 
to asymptotic solution of the Boltzmann equations system for gas mixture in that, how the infinitesimal parame-
ter is introduced in the Boltzmann equations system for gas mixture, i.e. the solution is constructing in another 
asymptotic limit. In substance, Struminskii’s method of solution of kinetic equations system is the same as Ens-
kog’s method (Struminskii used the partial time derivative expansion, as Enskog did).  

In section 2 below will be proposed the correct method of asymptotic solution of the kinetic Boltzmann equa-
tions system for multicomponent gas mixture for the approach, that combines Enskog’s and Struminskii’s ap-
proaches; in particular, it will be shown, how one has to modify Enskog’s method: in addition to asymptotic ex-
pansion of the velocity distribution function i-component particles of gas mixture it is necessary to determine 
and to use the expansion of the particle number density in  of i-component, mean mass velocity u  and tem-
perature T of the gas mixture. 

Further, in the Section 3 the system of infinitesimal first order equations of multicomponent non-equilibrium 
gas dynamics, appearing during the process of the solution of the system of Boltzmann equations by successive 
approximations method in the Section 2 as necessary condition of the existence of approximate (asymptotic) so-
lution of the integral equations system, is considered in more detail. 

This article is condensed version of our article arXiv:1303.6275. Notations, used below, are close to notations 
in [2]; it is assumed, that all regarded functions are continuous and continuously differentiable so many times as 
it is necessary, if their derivatives are considered, and all regarded integrals converge. 

2. Correct Method of Solution of the Kinetic Boltzmann Equations System 
The Boltzmann equations system, that describes change of dependent on t and spatial coordinates, prescribed by 
radius-vector r , the velocity distribution functions ( ), ,r ci if t  due to collision with particles of other 
components of mixture of rarefied monatomic gases, where ci  are the velocities of particles of i-component of 
the mixture {see [2], Chapter 8, Equation (1.1); discussion of the derivation of the Boltzmann equations system 
and its applicability range see, for example, in [2], Chapters 3 and 18, [4], Chapter 7, § 1; below the central 
interaction of molecules are considered only, when the force, with which each molecule acts on the other, is 
directed along the line, connecting the centers of the molecules}, could be written as: 

( )

( ) ( )

=

= ;
∈

∈

∂ ∂ ∂
+ ⋅ + ⋅ −

∂ ∂ ∂

− ∈

∑∫∫∫

∑∫∫

Xc c
r c

k c

' 'i i i i
i i j i j ij j

j Ni i

' '
i j i j ij j

j N

f f f f f f f g bdbd d
t m

f f f f k d d i N

ε
                (2) 

in (2) N is a set of indexes, that are numbering components of the mixture; Xi  is an external force, which acts 
on the molecule of the i-component; im  is the mass of the molecule of the i-component; ijg  is the modulus of 
the relative velocity of colliding particles = −g c cij i j ; b is the impact distance, ε  is the azimuth angle, k  is 
the unit vector, directed to the center of mass of the colliding particles from the point of closest approach—see 
[2], Chapter 3, Figure 3; the scalar function ( ),g kij ijk  is determined by equality 

def
= ;kij ijg bdbd k dε                                   (3) 

by prime in (20) and below the velocities and the functions of velocities after the collision are denoted. 
Let us introduce following notations: 

( ) ( ), = ,−∫∫ k c' '
i i i i iJ f f f f f f k d d                             (4) 

( ) ( ), = ;−∫∫ k c' '
ij i j i j i j ij jJ f f f f f f k d d                           (5) 

to differ velocities of colliding molecules of the same kind in (22) the one velocity is denoted by c j  and the 
other is denoted by c  (without any index) and the index of the corresponding velocity distribution function f is 
omitted. 
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In Enskog’s approach the differential parts of the Boltzmann Equations (2), that are denoted by i if  below, 
are considered to be small as compared with the right-hand sides of Equations (2)—see [2], Chapter 7, § 1, 
Section 5—therefore the indicator of infinite smallness θ  is formally introduced in the Boltzmann equations 
system in the following way: 

( ) ( )= , .− ∈∑i i ij i j
j

f J f f i Nθ                            (6) 

In Struminskii’s approach to the asymptotic solution of the Boltzmann equations system the differential parts 
of the Boltzmann Equations (2) and the collision integrals of the particles of i-component with the particles of 
the other components are considered to be small as compared with the collision integral of the particles of 
i-component between each other, therefore the indicator of infinitesimality θ  is introduced in the Boltzmann 
equations system in another way: 

( ) ( ) ( )= , , .
≠

− − ∈∑i i i i ij i j
j i

f J f f J f f i Nθ θ                      (7) 

It is possible to combine Enskog’s approach with Struminskii’s approach. For this purpose we divide the set of 
mixture components N into two subsets: the subset of components, that we call formally inner components (we 
could consider the case, when there are some subsets of inner components, but this case does not fundamentally 
differ from the one, considered below, the only difference is that the notation become more complicated) and the 
subset of components, that we call external components. To differ the two groups of mixture components we  
denote the subset of indexes of inner components N̂  as well as the indexes of inner components ˆˆ∈i N  and 
the subset of indexes of external components 



N  as well as the indexes of external components ∈




i N ; the  
intersection of the sets N̂  and 



N  is the empty set— ˆ =∩ ∅


N N  and the union of these sets is the set of 
indexes of all mixture components ˆ =∪



N N N ; if an assertion concerns both kinds of components the special 
symbols will be omitted. In new notations the Boltzmann equations system can be rewritten as: 

( ) ( ) ( )ˆ ˆ ˆ̂ ˆ ˆ ˆ ˆ
ˆˆ

ˆˆ= , , ,
∈∈

− − ∈∑ ∑ 





 ji i ij i j ij i
j Nj N

f J f f J f f i Nθ θ                     (8) 

( ) ( ) ( )= , , .
≠

− − ∈∑     






 ji i i i ij i
j i

f J f f J f f i Nθ θ                      (9) 

Let us write the asymptotic expansion of the velocity distribution function if  of particles of i-component as 
formal series of successive approximations in powers of θ : 

( ) ( ) ( )0 1 22= .+ + +i i i if f f fθ θ                            (10) 

The differential parts of the Equations (3) are written as: 

( ) ( )( )
( ) ( ) ( )

0 1

0 1 22

=

= ,

 ∂ ∂ ∂
+ ⋅ + ⋅ + + ∂ ∂ ∂ 

+ + +

Xc
r c







  

i
i i i i i

i i

i i i

f f f
t m

θ

θ θ

                     (11) 

where 

( )
( ) ( ) ( )

( )= = 0,1, 2, ,∂ ∂ ∂
+ ⋅ + ⋅

∂ ∂ ∂
Xc

r c


r r r
r i i i i

i i
i i

f f f r
t m

                  (12) 

—cf. with [2], Chapter 7, § 1, Sections 4, 5 and [3]. In (11)-(12) the partial time derivative expansion (1) is 
not used in contrast to that, how it was made by Enskog and further by Struminskii. As result, described below 
method for solution of the system of kinetic Boltzmann equations differ fundamentally from Enskog’s method 
and Struminskii’s method. 

Substituting (10) and (11) in (8) and equating coefficients at the same powers of θ  to each other, we obtain 
the equations system of the method of successive approximations for finding the velocity distribution functions 
of inner components particles of gas mixture ( )

ˆ
r

if ; taking introduced notations (4), (5) and (12) into account, 
the system can be rewritten as: 
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( ) ( )( ) ( )0 0
ˆ̂ ˆ ˆ

ˆˆ

ˆˆ, = 0 ,
∈

∈∑ ij i j
j N

J f f i N                              (13) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

1
1 0 0

ˆ ˆ̂ ˆ ˆ ˆ̂ ˆ ˆ ˆ̂ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ=1

1
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ˆ ˆ
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−
− −

∈ ∈ ∈

−
− −

∈

+ + +

+ ∈

∑ ∑∑ ∑
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





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j N s
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               (14) 

Similarly substituting (10) and (11) in (9) and equating coefficients at the same powers of θ  to each other, 
we obtain the equations system of the method of successive approximations for finding the velocity distribution  
functions of particles of external components of gas mixture ( )



r
if : 

( ) ( )( ) ( )0 0, = 0 ,∈ 




i iJ f f i N                              (15) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

1
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, = 0 , = 1, 2, .
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− −
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− −

≠

+ + +

+ ∈

∑

∑∑

      

 









r

r r r s s r
i i i i i i i

s
r

r s s
jij i

j i s

J f f J f f J f f

J f f i N r
                  (16) 

Speaking about an order of approximation below, we assume the order to be equal to the value of index r in 
(14), (16). According to (5), (13), in zero order approximation we have the following system of integral 
equations to find the velocity distribution functions of particles of inner components of gas mixture ( )0

îf : 
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 0 0

ˆ̂ ˆ ˆ ˆ ˆ ˆ ˆ ˆ̂ ˆ
ˆ ˆˆ ˆ

ˆˆ, = = 0 .
∈ ∈

− ∈∑ ∑∫∫ k c' '
ij i j i j i j ij j

j N j N
J f f f f f f k d d i N             (17) 

The general solution of the equations system (17) can be written as a set of the Maxwell functions:  

( ) ( )
( )

( )

( )
( )

22,0
ˆ ˆ

3/2
3,02ˆ0 1,0

ˆ ˆ 3,0
ˆˆ= ,

2

 − 
 − 

  ∈
 
 

c bmi i

ki
i i

m
f e i N

k
β

β
π β

                   (18) 

where k is the Boltzmann constant. 
Particle number density in  of the i-component, mean mass velocity u  and temperature T of inner com- 

ponents of mixture are introduced by definitions:  
def
= ,∫ ci i in f d                                      (19) 

def

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ

= ,
∈ ∈
∑ ∑∫u c ci i i i i i
i N i N

n m m f d                                 (20) 

( )
def 2

ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ

3 1= ,
2 2∈ ∈

−∑ ∑∫ c u ci i i i i
i N i N

kT n m f d                            (21) 

in (21) k  is the Boltzmann constant. From (19)-(21) the equality is obtained: 

2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

3 1 1= ,
2 2 2∈ ∈ ∈

+∑ ∑ ∑∫ ci i i i i i i
i N i N i N

kT n u n m m c f d                          (22) 

that is convenient to use below instead of definition (21). 
According to definitions (19), (20), (21), in addition to the asymptotic expansion (10) it is necessary to 

determine asymptotic expansions for particle number density in  of the i-component  
( ) ( ) ( )0 1 22= ,+ + +i i i in n n nθ θ                                (23) 

mean mass velocity u   
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( ) ( ) ( )0 1 22= + + +u u u u θ θ                                 (24) 

and temperature T  of inner components of mixture  
( ) ( ) ( )0 1 22= .T T T Tθ θ+ + +                                (25) 

Substituting (10) and (23)-(25) in (19), (20), (22) and equating terms of the same infinitesimal order we obtain 

( )ˆCard 4+N  scalar relations, that connect asymptotic expansions (10) and (23)-(25): 

( ) ( ) ( )ˆ ˆ ˆ
ˆˆ= ,∈∫ cr r

i i if d n i N                                 (26) 

( ) ( )( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ =0 =0

ˆ= = = ,− −

∈ ∈ ∈
∑ ∑ ∑ ∑ ∑∫ c c u u u

r rrr r s s r s s
i i i i i i i i

s si N i N i N
m f d m n m n ρ                 (27) 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆˆ ˆ=0 =0 =0

=0 =0 =0

1 3 1=
2 2 2

3 1=
2 2
3 1 ˆˆ= .
2 2

∈ ∈ ∈

− − −

∈ ∈

− − −

+

+ ⋅

+ ⋅

∑ ∑ ∑∫

∑∑ ∑ ∑∑

∑ ∑∑

c

u u

u u

rrr
i i i i i i i

i N i N i N
r r s

r s s r s s q q
i i i

s s qi N i N

r r s
r s s r s s q q

s s q

m c f d k n T m n u

k n T m n

k n T ρ

              (28) 

In (27), (28) the notations are introduced  
( ) ( )

ˆ ˆ
ˆˆ

ˆ = ,− −

∈
∑r s r s

i i
i N

m nρ                                  (29) 

( ) ( )
ˆ

ˆˆ
ˆ = .− −

∈
∑r s r s

i
i N

n n                                    (30) 

In particular, for = 0r  from (26)-(28) we obtain expressions for arbitrary functions ( ) ( )1,0
ˆ ,ri tβ , ( ) ( )2,0 ,b r t  

and ( ) ( )3,0 ,r tβ  in (18) through the zero order approximations to local values of the î -component number  
density, the mean mass velocity and the temperature of inner components of the mixture: 

( ) ( ) ( ) ( )1,0 0
ˆ ˆ, = , ,r ri it n tβ                                 (31) 
( ) ( ) ( ) ( )2,0 0, = , ,b r u rt t                                 (32) 
( ) ( ) ( ) ( )3,0 0, = , .r rt T tβ                                 (33) 

According to (4), (15), zero order integral equations, from which the velocity distribution functions ( )0


if  of 
particles of outer components of the mixture are found: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 0 0, = = 0 ,− ∈∫∫ k c   


' '

ii i i iJ f f f f f f k d d i N                 (34) 

—are simpler than Equations (17) and differ actually from (17) only by lack of summation over components. 
Therefore, similarly (18), the general solution of the equations system (34) can be written as a set of the 
Maxwell functions:  

( ) ( )
( )

( )

( )
( )

22,0

3/2
3,020 1,0

3,0= ,
2

 
− 

 −
 

∈  
 

c b 







 






mi i i

ki i
i i

i

m
f e i N

k
β

β
π β

                   (35) 

where ( )1,0


iβ  and ( )3,0


iβ  are some, independent of ci , scalar functions of spatial coordinates, defined by the 

radius vector r , and time t, and ( )2,0bi  is a vector function of r  and t. 
Let’s add to the definition of the number density of particles of i-component definitions of mean velocity ui  

and temperature 

iT  of outer component of mixture:  
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def
= ,∫u c c      

i i i i i i in m m f d                                 (36) 

( )
def 23 1= ;

2 2
−∫ c u c      

i i i i i i ikT n m f d                             (37) 

from (19), (36), (37) the equality is obtained:  

2 23 1 1= ,
2 2 2

+ ∫ c        

i i i i i i i i ikT n u n m m c f d                           (38) 

that is convenient to use below instead of definition (37). 
Let’s enter similar (24)-(25) asymptotic expansions of outer 



i -component mean velocity ui   
( ) ( ) ( )0 1 22= + + +u u u u   

i i i iθ θ                               (39) 

and outer 


i -component temperature 

iT   
( ) ( ) ( )0 1 22= .+ + +   

i i i iT T T Tθ θ                              (40) 

Substituting (10), (23), (39), (40) in (19), (36), (38) and equating terms of the same infinitesimal order we 
obtain for each 



i  5 (scalar) relations, that connect asymptotic expansions (10), (23), (39), (40):  
( ) ( )= ,∫ c  

r r
i i if d n                                   (41) 

( ) ( )( ) ( ) ( ) ( ) ( )

=0 =0
= = = ,− −∑ ∑∫ c c u u u           

r rrr r s s r s s
i i i i i i i i i i i i

s s
m f d m n m n ρ                   (42) 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

=0 =0 =0

=0 =0 =0

1 3 1=
2 2 2

3 1=
2 2
3 1= ,
2 2

− − −

− − −

+

+ ⋅

+ ⋅

∫

∑ ∑∑

∑ ∑∑

c

u u

u u

        

     

    

rrr
i i i i i i i i i

r r s
r s s r s s q q

i i i i i i
s s q

r r s
r s s r s s q q

i i i i i
s s q

m c f d k n T m n u

k n T m n

k n T ρ

                 (43) 

cf. with (26)-(28). In (42), (43) the notation is used  
( ) ( )= .− −
  

r s r s
i i im nρ                                    (44) 

For = 0r  from (41)-(43) we obtain expressions for arbitrary functions ( ) ( )1,0 ,r

i tβ , ( ) ( )2,0 ,b r

i t  and 
( ) ( )3,0 ,r

i tβ  in (35) through the zero order approximations to local values of the number density, the mean  
velocity and the temperature of outer 



i -component of the mixture: 
( ) ( ) ( ) ( )1,0 0, = , ,r r 

i it n tβ                                 (45) 

( ) ( ) ( ) ( )2,0 0, = , ,b r u r 

i it t                                 (46) 
( ) ( ) ( ) ( )3,0 0, = , .r r 

i it T tβ                                 (47) 

For 1≥r  the velocity distribution functions of inner components of gas mixture ( )
ˆ

r
if  are found from the 

integral equations system (14), which, taking (5) and equality 
( ) ( ) ( ) ( )0 0 0 0

ˆ ˆ ˆ ˆ≡' '
i j i jf f f f                                   (48) 

into account, can be rewritten in the form  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 1
1 1 0 0 0 0

ˆ̂ ˆ ˆ̂ ˆ̂ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ=1 =0

0 0
ˆ̂ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ

, , = , ,

ˆˆ= ,

r r
r r s s r s s r r

jij ij ij iji i j i i i j i j j
s sj Nj N j N j N

r r r ' r '
ij ji j i j i j

j N

J f f J f f J f f J f f

f f k d d i N

χ χ

χ χ χ χ

− −
− − − −

∈∈ ∈ ∈

∈

+ + − −

− + − − ∈

∑∑ ∑∑ ∑ ∑

∑∫∫ k c








  (49) 
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in (49) functions ( )
ˆ

r
if  are written as ( ) ( ) ( )0

ˆ ˆ ˆ=r r
i i if f χ , where ( )

ˆ
r

iχ  are new unknown functions. 
The left-hand sides of Equations (49) involves functions, that are known from the previous step of the 

successive approximations method. Unknown functions ( )
ˆ
r

iχ  enter, linearly, only into the right-hand sides of 
Equations (49). Therefore the general solution of the system of Equations (14) is a family of functions of a form  

( ) ( ) ( )
ˆ ˆ ˆ ˆˆ{ = }

∈
Ξ +r r r

i i i i Nf ξ , where ( ) ( ) ( )0
ˆ ˆ ˆ ˆˆ{ = }

∈
Ξ Φr r

i i i i Nf , ( ) ( ) ( )0
ˆ ˆ ˆ ˆˆ{ = }

∈
r r

i i i i Nfξ φ , a family of functions ( )
ˆ ˆˆ{ }

∈
Φ r

i i N  is a 

particular solution of the system of inhomogeneous Equations (49) and a family of functions ( )
ˆ ˆˆ{ }

∈
r

i i Nφ  is the 
general solution of the system of homogeneous equations  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ̂ ˆ

ˆˆ

ˆˆ0 = .
∈

+ − − ∈∑∫∫ k cr r r ' r '
i j i j i j ij j

j N
f f k d d i Nφ φ φ φ                   (50) 

Multiplying Equations (50) by ( )
ˆ

r
iφ , integrating over all values of ˆci , summing over î  and transforming 

integrals, we obtain  

( ) ( ) ( ) ( ) ( ) ( )( )20 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ̂ ˆ ˆ

ˆˆ ˆ,

1 = 0.
4 ∈

+ − −∑ ∫∫∫ k c cr r r ' r '
i j i j i j ij i j

i j N
f f k d d dφ φ φ φ                     (51) 

From (51) we conclude, that ( )
ˆ

r
iφ  are linear combinations of the summational invariants of the collision ( )l

iψ  
( )= 1, 2,3l : 

( ) ( ) ( ) ( )1, 2, 3, 2
ˆ ˆ ˆ ˆ ˆ ˆ

1= ,
2

+ ⋅ +a cr r r r
i i i i i im m cφ α α                            (52) 

where ( )1,
ˆ

r
iα  and ( )3,rα  are some, independent of ˆci , scalar functions of spatial coordinates, defined by the 

radius vector r , and time t, and ( )2,a r  is a vector function of r  and t (as well as above, arbitrary functions 
( )2,a r  and ( )3,rα  are identical for all inner components of the mixture), and, hence,  

( ) ( ) ( ) ( ) ( ) ( )0 1, 2, 3, 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 ˆˆ= .
2

 + ⋅ + ∈ 
 

a cr r r r
i i i i i i if m m c i Nξ α α                      (53) 

To simplify further evaluations according to the expression for ( )0
îf , see (18) and (31)-(33), let us rewrite (53) 

as  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )20 1, 2, 0 3, 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 ˆˆ= ,
2

 + ⋅ − + − ∈  
b c u c ur r r r

i i i i i i if m m i Nξ β β              (54) 

where ( )1,
ˆ

r
iβ , ( )2,b r  and ( )3,rβ  are new functions of r  and t. Family of functions ( )

ˆ ˆˆ{ }
∈

r
i i Nχ  is a solution of 

the system of inhomogeneous equations  
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ̂ ˆ
ˆˆ

ˆˆ= ,
∈

+ − − ∈∑∫∫ k cr r r r ' r '
i i j i j i j ij j

j N
F f f k d d i Nχ χ χ χ                (55) 

where ( )
ˆ

r
iF  denote left-hand sides of the Equations (49), taken with opposite sign. 

Multiplying Equations (55) by ( )
ˆ
l

iψ  ( )= 1, 2,3l , integrating over all values of ˆci  and transforming 
integrals as above, we obtain as necessary condition for the existence of solutions of the system of integral 
Equations (55), the necessity of the fulfillment of equalities: 

( ) ( ) ( )1
ˆ ˆ ˆ

ˆˆ= 0 ,∈∫ cr
i i iF d i Nψ                               (56) 

( ) ( ) ( )ˆ ˆ ˆ
ˆˆ

= 0 = 2,3 .
∈
∑∫ cl r

i i i
i N

F d lψ                              (57) 

Among (infinitesimal) set of particular solutions of the system of Equations (55), different from each other on 
some solution of the system of homogeneous Equations (50), unique solution ( )

ˆ ˆˆ{ }
∈

Φ r
i i N  may be chosen such 

that 
( ) ( ) ( ) ( )1 0
ˆ ˆ ˆ ˆ

ˆˆ= 0 ,Φ ∈∫ cr
i i i if d i Nψ                              (58) 

( ) ( ) ( ) ( )0
ˆ ˆ ˆ ˆ

ˆˆ
= 0 = 2,3 .

∈

Φ∑∫ cl r
i i i i

i N
f d lψ                            (59) 
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Having substituted expression for ( ) ( )ˆ
ˆˆ∈r

if i N   

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
ˆ ˆ ˆ

20 0 1, 2, 0 3, 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

=

1=
2

Ξ +

 Φ + + ⋅ − + −  
b c u c u

r r r
i i i

r r r r
i i i i i i i i

f

f f m m

ξ

β β
                (60) 

in (26)-(28), taking (18), (29)-(33) and (58)-(59) into account, we obtain a system of ( )ˆCard 4+N  algebraic 
equations [constraint equations for asymptotic expansions (10) and (23)-(25)]:  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, 0 0 3,
ˆ ˆ ˆ ˆ

3 ˆˆ= ,
2

+ ∈r r r
i i i in n kT n i Nβ β                       (61) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1, 0 0 2, 0 0 0 3,
ˆ ˆ ˆ

ˆˆ =0

3ˆ ˆ ˆ= ,
2

−

∈

+ +∑ ∑u b u u
r

r r r r s s
i i i

si N
m n kT kTβ ρ ρ β ρ              (62) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

20 0 0 1, 0 0 0 2,
ˆ ˆ ˆ

ˆˆ

20 0 0 0 0 3,

=0 =0 =0

1 ˆ3
2

3 ˆˆ5
4
3 1 ˆˆ= ,
2 2

∈

− − −

 + + ⋅  

 + +  

+ ⋅

∑

∑ ∑∑

u b

u u

r r
i i i

i N

r

r r s
r s s r s s q q

s s q

n kT m u kT

kT n kT u

k n T

β ρ

ρ β

ρ

                    (63) 

from which we find expressions for functions ( ) ( )1,
ˆ ,rr
i tβ , ( ) ( )2, ,b rr t  and ( ) ( )3, ,rr tβ  through (variable) coe- 

fficients of asymptotic expansions of the particle number density of î -component, of the mean mass velocity 
and of the temperature of inner components of the mixture 

( )
( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( )

ˆ1, 0
ˆ 0 0 0

=0ˆ

20
0 0

=0 =0

0 0
0 0

=0

3 1 ˆ ˆ=
2 ˆ

1 1 ˆ ˆ
2 ˆ

1 ˆ ˆ ,
ˆ

−

− −

−

 − −  

 
− ⋅ − 

 
 + ⋅ −  

∑

∑∑

∑

u u

u u u

r r
r r s s ri

i
si

r s
r s s q q r

s q

r
r s s r

s

n
n T n T

n n T

u
n kT

n kT

β

ρ ρ

ρ ρ

                    (64) 

( )
( ) ( )

( ) ( )( ) ( ) ( )2, 0
0 0

=0

1 ˆ ˆ= ,
ˆ

− −  
∑b u u

r
r r s s r

skT
ρ ρ

ρ
                         (65) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

3, 0
20 0 =0

20
20 0 =0 =0

0 0
20 0 =0

ˆ ˆ=
ˆ

1 1 ˆ ˆ
3 ˆ

2 1 ˆ ˆ .
3 ˆ

−

− −

−

 −  

 
+ ⋅ − 

 

 − ⋅ −  

∑

∑∑

∑

u u

u u u

r
r r s s r

s

r s
r s s q q r

s q

r
r s s r

s

k n T n T
n kT

u
n kT

n kT

β

ρ ρ

ρ ρ

                      (66) 

Then the fulfillment of equalities (56)-(57) can be considered as the differential equations, the r-order 
equations of gas dynamics, for finding ( )1

ˆ
−r

in , ( )1
ˆ
−u r

i , ( )1
ˆ

−r
iT  ( )= 1, 2,r . 

The partial solution of the system of inhomogeneous Equations (55) ( )
ˆ ˆˆ{ }

∈
Φ r

i i N , satisfying (58)-(59), may be 

constructed, for example, using expansion of ( ) ( )ˆ ˆΦ cr
i i  in series in terms of Sonine polynomials with expansion  
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coefficients, depending on r  and t (see [2] or [4]); such construction proves existence of solutions of the 
system of integral Equations (49). 

For 1≥r  the velocity distribution functions of outer components of gas mixture ( )


r
if  may be similarly 

found from the integral equations system (16):  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )20 0 1, 2, 0 3, 01= =
2

 Ξ + Φ + + ⋅ − + −  
b c u c u              

r r r r r r r
i i i i i i i i i i i i i i if f f m mξ β β           (67) 

where 

( )
( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( )

1, 0
0 0 0

=0

20
0 0

=0 =0

0 0
0 0

=0

3 1=
2

1 1
2

1 ,

−

− −

−

 − −  

 
− ⋅ − 

 

 + ⋅ −  

∑

∑∑

∑

u u

u u u



    

  

    

 

    

 

r r
r r s s ri

i i i i i
si i i

r s
r s s q q r

i i i i i
s qi i

r
r s s r

i i i i i
si i

n
n T n T

n n T

u
n kT

n kT

β

ρ ρ

ρ ρ

                   (68) 

( )
( ) ( )

( ) ( )( ) ( ) ( )2, 0
0 0

=0

1= ,− −  
∑b u u    

 

r
r r s s r

i i i i i
si ikT

ρ ρ
ρ

                        (69) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

3, 0
20 0 =0

20
20 0 =0 =0

0 0
20 0 =0

=

1 1
3

2 1 .
3

−

− −

−

 −  

 
+ ⋅ − 

 

 − ⋅ −  

∑

∑∑

∑

u u

u u u

    

 

    

 

    

 

r
r r s s r

i i i i i
s

i i

r s
r s s q q r

i i i i i
s q

i i

r
r s s r

i i i i i
s

i i

k n T n T
n kT

u
n kT

n kT

β

ρ ρ

ρ ρ

                  (70) 

The fulfillment of analogous (56)-(57) equalities 
( ) ( ) ( )= 0 , = 1, 2,3∈∫ c  


l r

i i iF d i N lψ                           (71) 

can be considered as the differential equations, the r-order equations of gas dynamics, for finding ( )1r
in −
 , ( )1−uri , 

( )1−


r
iT  ( )= 1, 2,r . 

3. The System of First Order Equations of Multicomponent  
Non-Equilibrium Gas Dynamics 

Let us consider in more detail the system of infinitesimal first order Equations (56)-(57), (71) ( )= 1r , derived 
above as the necessary (and sufficient) condition of the solution existence of the first order integral equations 
system (14), (16) ( )= 1r . 

To simplify transformations, according to the expressions for velocity distribution functions of particles of 
infinitesimal zero order (18), (35), functions ( )

ˆΨ l
i , ( )Ψ 

l
i  may be used in (56)-(57), (71) ( )= 1r  rather than 

functions ( )
ˆ
l

iψ , ( )


l
iψ , respectively: 

( )1 = ,Ψ i im                                       (72) 

( )2Ψ = ,Ci i im                                      (73) 

( )3 21= ,
2

Ψ i i im C                                     (74) 
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for inner components ( )0
ˆ ˆ= −C c ui i , for outer components ( )0= −C c u  

i i i . 
At transformation of differential parts of the Equations (56)-(57) and (71) we use equalities:  

( )
( )

( ) ( )
( )

( )

( ) ( )
( ) ( )

0
0

0
0 0= = ,

 ∂ Ψ ∂ ∂Ψ ∂Ψ∂  Ψ Ψ − −
∂ ∂ ∂ ∂ ∂∫ ∫ ∫c c c

l
l li i

l li i i
i i i i i i i i

n
f d f d f d n

t t t t t
          (75) 

( )
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )0
0 0

0 0= = ,∂ ∂Ψ ∂Ψ∂ ∂
Ψ ⋅ ⋅ Ψ − ⋅ ⋅ Ψ − ⋅

∂ ∂ ∂ ∂ ∂∫ ∫ ∫c c c c c c c c
r r r r r

l l
l l li i i

i i i i i i i i i i i i i i i
f d f d f d n n       (76) 

( )
( )

( ) ( ) ( )
( )00

0= = .
 ∂ ∂ ∂

Ψ ⋅ − ⋅Ψ − ⋅Ψ ∂ ∂ ∂ 
∫ ∫

X X Xc c
c c c

l l li i i i
i i i i i i i

i i i i i i

f d f d n
m m m

              (77) 

In (75)-(77) the bar above symbol with index ( )0  denotes the average of the value: 
( ) ( )0 01= ;∫ ci i

i

V Vf d
n

                                   (78) 

r  and ci  are considered as independent variables. At averaging in (77) it is assumed, that external force 
Xi , acting on the particle of species i, is independent of the particle velocity, it is assumed also, that integrals,  
depending on external forces Xi , are convergent, and product ( ) ( )0Ψ Xl

i i if  tends to zero, when ci  tends to 
infinity. 

After simple transformations from (56)-(57) and (71) ( )= 1r  we obtain following system of infinitesimal 
first order equations of multicomponent non-equilibrium gas dynamics:  

( )
( ) ( ) ( )

0
ˆ 0 0

ˆ
ˆˆ= ,

∂ ∂
− ⋅ ∈

∂ ∂
u

r
i

i

n
n i N

t
                             (79) 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0 0 0
ˆ ˆ ˆ,

ˆ ˆˆ ˆ,

ˆ ˆ ˆp = ,
∈ ∈ ∈

∂ ∂ ∂
+ ⋅ + − ⋅

∂ ∂ ∂∑ ∑u J X u u
r r






p ij i i
i N j N i N

n
t

ρ ρ                     (80) 

( )
( ) ( )

( )
( ) ( ) ( )

00
0 0 0 0 0

ˆ,
ˆˆ ,

ˆ ˆˆ p̂ : = ,
∈ ∈

∂∂ ∂ ∂
+ ⋅ + + − ⋅

∂ ∂ ∂ ∂∑uq u
r r r






E ij
i N j N

E J E
t

                     (81) 

( )
( ) ( ) ( )

0
0 0= ,

∂ ∂
− ⋅ ∈

∂ ∂
u

r


 


i

i i

n
n i N

t
                              (82) 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0 0 0
,p = ,

≠

∂ ∂ ∂
+ ⋅ + − ⋅ ∈

∂ ∂ ∂∑
u

J X u u
r r



         




i

i i i p ij i i i i i i
j i

n m n n m i N
t

               (83) 

( )
( ) ( )

( )
( ) ( ) ( ) ( )

0 0
0 0 0 0 0

,p : = .
≠

∂ ∂∂ ∂
+ ⋅ + + − ⋅ ∈

∂ ∂ ∂ ∂∑
u

q u
r r r

 

    




i i

i i E ij i i
j i

E
J E i N

t
                 (84) 

In accordance with the general definition of pressure tensor of i-component of gas mixture 

( ) ( )
def

p = − −∫ c u c u ci i i i i i i im f d                               (85) 

and with the general definition of i-component heat flux vector 

( ) ( )
def 21=

2
− −∫q c u c u ci i i i i i i im f d                              (86) 

(cf. with [2], Chapter 2, §§ 3, 4) in (79)-(84) 

( ) ( ) ( )( ) ( )( )
( )

( ) ( ) ( )
0

0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ

ˆˆ
ˆ ˆ ˆp = = U = U

∈

− −∑ c u c ui i i i
i N

n m n kT p                   (87) 
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is inner components pressure tensor of zero order, ( )0p̂  is inner components hydrostatic pressure of zero order, 

U  is the unit tensor, double product of two second rank tensors w  and w'  ([2], Chapter 1, § 3) is the scalar 
w : w = = w : w∑ ∑' ' 'w wαβ βαα β , 

( ) ( ) ( )( ) ( )( )
( )020 0 0 0

ˆ ˆ ˆ ˆ
ˆˆ

1ˆ = = 0
2 ∈

− −∑q c u c ui i i i
i N

n m                           (88) 

is inner components heat flux vector of zero order, 

( ) ( ) ( )( )
( )

( ) ( )
020 0 0 0 0

ˆ ˆ ˆ
ˆˆ

1 3ˆ ˆ= =
2 2∈

−∑ c ui i i
i N

E n m n kT                            (89) 

is zero order internal energy of particles of inner components per unit volume, which is equal, in this case, to 
energy of their translational chaotic motion, however, the energy transfer equations, written in form (81) and (84) 
can be used in more general cases as well (cf. with [4], Chapter 7, § 6), in (87)-(89) averaging (78) is performed 
with Maxwell function ( )0

îf  from (18); 

( ) ( ) ( )( ) ( )( )
( )

( ) ( ) ( )
0

0 0 0 0 0 0 0p = = U = U− −c u c u         

i i i i i i i i i in m n kT p                      (90) 

is 


i -component pressure tensor of zero order, ( )0


ip  is 


i -component hydrostatic pressure of zero order,  

( ) ( ) ( )( ) ( )( )
( )0

20 0 0 01= = 0
2i i i i i i in m − −q c u c u                                  (91) 

is 


i -component heat flux vector of zero order,  

( ) ( ) ( )( )
( )

( ) ( )
020 0 0 0 01 3= =

2 2
−c u      

i i i i i i iE n m n kT                            (92) 

is zero order internal energy of particles of 


i -component per unit volume, in (90)-(92) averaging (78) is per-
formed with Maxwell function ( )0



if  from (35). 
General analytic expressions for integrals ( )0

,J 

p ij , ( )0
,


E ijJ  from (80), (81) and (83), (84), that depend on the 
interaction cross-section, can be derived in general case, when separate components (with Maxwell velocity 
distribution function of particles) have different mean velocities and temperatures. 

System of infinitesimal first order equations of multicomponent non-equilibrium gas dynamics (79)-(84) is 
proposed to use for describing turbulent flows 
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