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Abstract

We obtain maximum principles for solutions of some general fourth order elliptic equations by
modifying an auxiliary function introduced by L.E. Payne. We give a brief application of these
maximum principles by deducing apriori bounds on a certain quantity of interest.
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1. Introduction
In [1], Payne obtains maximum principle results for the semilinear fourth order elliptic equation
Alu=f(u) €))

by proving that certain functionals defined on the solution of (1) are subharmonic. In this work, functionals con-
taining the terms |V2u|—u,iAu'i are utilized and apriori bounds on the integral of the square of the second gra-
dient and on the square of the gradient of the solution are deduced. Since then, many authors [2]-[11] and refer-
ences therein have used this technique to obtain maximum principle results for other fourth order elliptic diffe-
rential equations whose principal part is the biharmonic operator.

Other works deal with the more general fourth order elliptic operator L°u, where Lu:= a;u; and a; =a;.
In [12], Dunninger mentions that functionals containing the term (Lu)2 can be used to obtain maximum prin-
ciple results for such linear equations as

LPu+alLu+bu=0.

A similar approach is taken in [13] for a class of nonlinear fourth order equations.
In this paper, we modify the results in [1] and a matrix result from [14] to deduce maximum principles de-
fined on the solutions to semilinear fourth order elliptic equations of the form:
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Lu=f(u). 2)

Then we briefly indicate how these maximum principles can be used to obtain apriori bounds on a certain
quantity of interest.

2. Results

Throughout this paper, the summation convention on repeated indices is used; commas denote partial differen-
tiation. Let a; ( ) be a symmetric matrix. Moreover let Lu:=a;u;, be a uniformly elliptic operator, i.e, the
symmetric matrlx a; ( ) is positive definite and satisfies the uniform ellipticity condition:
a; (X)vv; = |v| Xe Q veR", where Q isabounded domainin R" and n>2.

Let u be a C5 solution to the equation

Lu=f(u) in Q. 3)
where fissay,a C' function. Now we define the functional

P=c (Lu)’ —(apLu) U, +¢ |[Vuf +2(1-c;) [ f (s)ds+ B(x).

We show that L(P) is subharmonic and note that the constants ¢, and ¢, and any constraints on f are yet
to be determined.
By a straight-forward calculation, we have

P, =2c,LuLu; —(a,Lu) u, —(a,,Lu) u
+2C,u U +2(1-¢) f(u)u; + B,

,mi

Now we write
L(P)=a;P;
=2ca;LuLuy +2c,a;Lu;Lu; —a;(a,,Lu) u

—ay (ap,Lu) uy -8y (a,Llu)

Jnij —.m
u,mi - i' (amn Lu ),n u,mij (4)

+2C,8,U U +2C,8,u U e+ 2(1-¢)) T (u)ayu,

ij =, mi ™, mj ij < mH, mij
+2(1-c,) f'(u)a;uu; +L(B).
By expanding out the derivative terms in parentheses, we see that L(P) is
=2¢,f (u)Lu+2c,a;Lu;Lu; —au,, [ @y, LU+, Lu;j +a,, Lu

ij2,m mn,ni mn, nj

m

ankUy LU, +agLu g +a, Lu g+ aanuynij]

mn,ij

ij 2, mj \ “mn,i mn,ni

—2a,u i (@, Lu, +a,,Lu +a,, Lu+a, Lu) (5)

—3U i (@ o LU+ @, LU, )+ 2C,a,U U oy +2C,8,U U

ij =, mij ij <, mi ™, mj ij—,m™, mij

+2(1-c¢) f(u)Lu+2(1-c,) f'(u)a;u,u; + L(5).
The terms in Iines 2 and 3 above containing two or more derivatives of Lu can be rewritten using (3) in the
form A'f (u)=Luy, where A" denotes the matrix which is the inverse of the positive definite matrix (a )
Furthermore, we use the identity a;u . =Lu —a; U, torewrite the last two terms in line 4. Hence,

ij ', mij ij,m™=ij
L(P)=2f (u)Lu+2ca;Lu;Lu; - f(u)u

—ay, Lulu +a Luay; up —a bu Lu o +aa; ulu g

mn,n ij,m-ij mn “ij,m™,ij

—a.a_ u (A"'f(u)+A”'f'() ) 2a;a,,u,A" f (u)

ij “mn*™,m ij “mn ™, mj

,m mnn

—a;Lu(u,a,, ; +2a

m “mn,nij mn, n| ,mj )

(6)
—2aa A“‘f() 2a,u a, Lu, —2a, au Lu,

ij mnl ,m ij <,m%mn,ni =4, j mn,n “ij ™, mj

—g;Lu ua; —2;Luusa, +2C,8,u U

= m%mnij N mj “mn,i ij < mi -, mj

+2c,a,u U +2(1-c) £ (u)auu; + L(B).

ij 2, m™ mij ij i
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Using the identity above for a;u,,; and the additional identity, a A”' = A”' which can be obtained by
computing (a A”') for the terms at the ends of lines 6 and 3 respectlvely, we obtaln

L(P)=L(8)+(1-2¢,)a, ( Juu; —2a,, u, f(u)+2cu,Lu,
+2C,3;U U 5 —2C,a; Uyuy — LuLu, +a,,,Lua; ,u;

mn n ij,m™ij
a‘rsalju mamn nrsu Jj 2 mn nau LU U 2a I‘ua'mn ,ni ' mj (7)
—2a;a,,;Lu u . +a,a; Luu;+ (201 -1)a;Lu;Lu;

= 8, iU LU 2auamn will LU .

To show that L(P) is nonnegative, we establish a series of inequalities based on the following one from
[14]: Let (s, ) beany nxn matrix. From the inequality

CH (uik +% APs )(u'jk +%Aj“sqk j >0, (8)

1
aljukjukl+skluk| —_ZA S S (9)

One can deduce

pk “gk *

Repeated use of (9) on terms in lines 2, 3, 4, 5 in (7) yields the following:

AUy U +aay Luuy > —E A" (8,8 LU 48,8y, Lu, ) (10)
auu |ku —2a IJ mn i LU nUm > —A™ ( pm, r & Lu naqn s LU ) (11)
auu |ku 2aij amn,ni Luu,mj 2 _qu (Luaps sran I-uaql Iwawi ) (12)

1
auu |kLI +amn nau mLu nu ij 2 _ZA ( mn,n p| mLuars saql rLu) (13)
> L AP 14
auu |kL’I au a'rsa'mn nrsu ”U m = _Z (arsaplu mamn ana|Wanu zazt tlw) ( )
a;Lu;Lu; —2a, agu, Lu > —A% (84U a, anU 8, ) (15)
aij Lu,i Luj ij a'mn uu m LU 2 _Z qu (alﬂu r e |nalmu,qakp,lm ) (16)
aljulku zczau m"'I muu —_CZqu( plmumaqllul) (17)
a,U Uy, —2aa,, Luu > —A™ (a, a lua, a,Lu,) (18)

Furthermore, by completing the square, we obtain useful inequalities for the last two terms in line 1 and the
third term in line 2 of (7):

2c,u Lu, >—cu u —c,lu Lu (19)
~2a,, U, f(u)=-a, u.a,,.u, - f2 (20)
—a, Lulu > 8 Luamq’q Lu—Lu Lu (21)

We add (10)-(21) and label the resulting inequality, for part of L(P), as

1684
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L(P)="7a,u,u; +2a;Lu;Lu; +2c,u, Lu, —2a, u f(u)+a,a,Liu;
- 2;a,,;Lu u . — 2,8, (Luu +an e Lu Uy —agaan, Ugu

mn,i ,n=mj ij —'mn,ni mn,n ij,m

=28, idU LU —2¢,8; U U — 23,8,

mn,ni %ij Y m ij,m™,m™ij

Luu,, +ag,,Lua; u

mn,n mn,n ij.mij

1
Pq pq
>-A (asku,ramynsamqu'pakw,wm)—ZA (a. u.a a,mu,qakp‘,m)

in™,r“rk,in

— LA™ (@, U ,ag,u, ) - A% (2, a;Luay @, L, )

pi,m~,m™~qi,l ™1 pr,r*si 57l P mi

- A" (a,,,a,Lu,8,, a5Lu, ) - Cu U, —cLlu, Lu,

pm,r ~ri ,n“an,s Ysi

2
=8, U, 854U — amppruamquLu - Lu,m Lu,m - amnynLuLu'm —f

—%A”q(amnapiymLuaa Lu,s)—%qu(a a,; ,Lua,.a Lu)

,n=rsHqi,r 'mn,n " pi,m s,s qi,r
1 qu qu L L
_Z arsapiu,mamn,nrsalwaqiu,zazt,tlw - Llaps,srari uaql,lwawi :

Now,

L(P)=L(P)+ L(,B)+(1—201)aij fl;u; +(2c,-7)au U +(2¢ —3)aijLu,iLuvj

ij Y ik

ij —rs&'mn,nrs Lij ', m

1
2 ((Zcz - 7) 8ij — Ay, p Qg @k 2 APIa, 80 s 5B B — APIA 858y 1,8 8@ Ul

+((2c1—3)aij—(cz+1)5ij—qua a,a, .8, — A% a.a ajs—%qua a, 3,8

mi “pl,m“rj “ql,r

pj.r Gl %qi,s sl pr.r sl |

_c2pPa —
sk ~tin,ns mqakw,wm CZA apm,laqm,j 4 rn ik, m

+((1—201)faij—czc5ij—qua I

—aipypa

Equa a8, B8 d ju’iu'j+L(ﬂ)—f2.

jq,q_4 rs % pm Gin,nrs qm A jt tiw

1 .
pJ
—APa a 3 1m

Lu;Lu;

Since g (x) s positive definite, for a sufficiently large value of c,, where ¢, depends on the coefficients
a; and their derivatives, and for a sufficiently large value of c,, say (>1), where ¢, depends on the con-

stants ¢,, 7, &
the following result.

i» and various derivatives of a;, L(P) can be made nonnegative as desired. Thus we have

Theorem 1. Suppose that ueC®(Q)NC*(Q) is a solution of (2) and f eC'(R). If <y, where
y>0, f'(u)<a,a<0, B(x) is a nonnegative function such that L(4)>y then there exists positive
constants ¢, and ¢, sufficiently large (c, >1) such that P cannot attain its maximum value in Q unless it

is a constant.

We note that the function f (u) = —(u + u3) satisfies the conditions stated in Theorem 1 for a solution that is

bounded above.

3. Bounds

Here we give a brief application of Theorem 1.
Suppose that

u= u =0 on oQ.
on
By Theorem 1,
P < max, (c, (Lu)” + A(x))
Using integration by parts on the first two terms of P yields the identity
_[Qa”muvkma“"uvpn —(am” Lu)‘n u,dx = 2_|'Q(Lu)2 dx.
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Upon integrating both sides of the previous inequality we deduce

2_[9(Lu)2 dx+2(1—cl)_|'9(j:f(s)ds)dx (22)
g[max(79 (cl(Lu)2 +ﬂ(x))}area(Q). (23)
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