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Abstract 
We develop an exponential spline interpolation method to solve the nonlinear Schrödinger equa-
tion. The truncation error and stability analysis of the method are investigated and the method is 
shown to be unconditionally stable. The conservation quantities are computed to determine the 
conservation properties of the problem. We will describe the method and present numerical tests 
by two problems. The numerical simulations results demonstrate the well performance of the 
proposed method. 
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1. Introduction 
Consider the following nonlinear Schrödinger equation 

( )2
1 2 , 0,t xxmu u u u x t uλ λ ε+ + + =                             (1) 

With the boundary conditions 

( ) ( ) ( ) ( )1 2, , , , 0u c t t u d t t tβ β= = ≥                            (2) 

And the initial condition 

( ) ( )0, 0 , ,u x u x x= ∈                                  (3) 

where 1m = − , ( ),u x t  is the complex-valued wave function. 1λ  and 2λ  are constant, ( ),x tε  is a 
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bounded real function. This equation plays important roles in nonlinear physics. It can describe many nonlinear 
phenomena including plasma physics [1], hydrodynamics [1] [2], self-focusing in laser pulses [3], propagation 
of heat pulses in crystals, models of protein dynamics [4], quantum mechanics [5], models of energy transfer in 
molecular systems [6] and quantum mechanics and optical communication [7]-[9] and so on. 

In the past few years a great deal of efforts has been expended to solve NLS equations. It is more difficult to 
find the analytical solutions of the NLS equation, so the study of the numerical solution of NLS equation in the 
theory and application is important. Its numerical solutions have been researched by many authors. For example, 
finite difference method [10] [11], quasi-interpolation scheme [12], quadratic B-spline finite element scheme 
[13], compact split-step finite difference method and pseudo-spectral collocation method [14] [15], exponential 
spline method [16], spline methods [17] [18], split-step orthogonal spline collocation method [19], a high-order 
and accurate method [20], linearly implicit conservative scheme [21]. 

The aim of this paper is to give an exponential spline interpolation method for the NLS equation. The paper is 
organized as follows. In Section 2, construction of the method is presented. The stability analysis of the scheme 
is investigated in Section 3. In Section 4, the computation of conserved quantities and error norms are given. In 
Section 5, two numerical examples are presented to demonstrate our theoretical results. The last section is a brief 
conclusion. 

2. Construction of Exponential Spline Interpolation Method 
We set up a grid in the ,x t  plane with grid points ( ),i jx t  and uniform grid spacing h and k, where 

1 1, , 0,1, 2, ,i i i ix a ih h x x i N+ += + = − =   and , 0,1, 2,jt jk j= =  . 
In the interval [ ]1,i ix x + , a exponential spline function ( ),i jS x t  is given by 

( ) ( ) ( ) ( )1 2 3 4, ,j j j j
i j i i i i i i i i iS x t c c x x c x x c x xψ φ= + − + − + −                   (4) 

where 1 2 3 4, , ,i i i ic c c c  are coefficients to be determined, iψ  and iφ  are the auxiliary functions which contain a 
stiffness parameter 1ip +  which will be used to raise the accuracy of the method, on the support [ ]1,i ix x +  and 
are given by  

( ) ( )( ) 2
1 12 cosh 1 ,i i i ix p x x pψ + + = − −                         (5) 

( ) ( )( ) ( ) 2
1 1 16 sinh ,i i i i i ix p x x p x x pφ + + + = − − −                       (6) 

Since the Taylor series expansions of the hyperbolic functions are  

( ) ( ) ( )3 5

sinh ,
3! 5!
px px

px px= + + +                          (7) 

( ) ( ) ( )2 4

cosh 1 ,
2! 4!

px px
px = + + +                           (8) 

We note that iψ  and iφ  tend to ( )2
ix x−  and ( )3

ix x−  in the limit of p tending to zero, and in the op-
posite limit of p tending to infinity the nonlinear terms in iψ  and iφ  vanish as 1 p . 

So the exponential spline defined above share a number of interesting properties: 
(1) When 0p → , ( ),i jS x t  reduces to cubic spline; when p →∞ , ( ),i jS x t  reduces to linear spline.  
(2) A change of character of the exponential spline function is from linear to third order polynomial on adja-

cent support intervals. 
(3) In the general case the stiffness parameters p are different on every interval which provides the extremely 

high flexibility of the exponential spline function. 
We wish to find j

nic  in Equation (4), 1, 2,3, 4n = , Letting ( ) ( )2 ,j
i jM S x t∆=  be the unknown second deriva-

tive of the exponential spline of interpolation at the grid points, we can obtain the following representation for 
( ), jS x t∆  on [ ]1,i ix x +  in terms of the known interpolation data 1,j j

i iu u +  and the unknown spline second de-
rivatives 1,j j

i iM M +   
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( ) ( )( )
( )( )

( )( )
( )( ) [ ]

1 11 1
1 2

1 1 11 1 1

11
12

11 1 1

sinh
,

sinh

sinh
, , ,

sinh

j
i ij ji i i i

j i i
i i i i i ii i i i

j
i ii i

i i
i ii i i i

p x xx x x x M x xS x t u u
x x x x x xp p x x

p x xM x x x x x
x xp p x x

+ ++ +
∆ +

+ + ++ + +

++
+

++ + +

 −− − −
= + − − 

− − −−  
 − −

+ − ∈ 
−−  

            (9) 

The terms involving the values j
iu  and 1

j
iu +  represent the linear interpolation part of ( ), jS x t∆ . The terms 

involving the second derivatives j
iM  and 1

j
iM +  introduce the curvature. 

The function ( ), jS x t∆  on the interval [ ]1,i ix x−  is obtained with 1i −  replacing i in Equation (9). 
The continuity requirement for the first derivative ( ) ( )1 , jS x t∆  at the point ix  yields the following equation:  

( ) 1 1
1 1 1 1

1

,
j j j j

j j j i i i i
i i i i i i i

i i

u u u uA M B B M A M
h h
+ −

− + + +
+

− −
+ + + = −                   (10) 

where ( )
( )

( ) ( )
( )2 2

sinh cosh sinh
, ,

sinh sinh
i i i i i i i i i i

i i i i
i i i i i i

p h p h p h p h p h
A h B h

p p h p p h
− −

= =  

Remark 1. 
(1) By expanding Equation (10) in Taylor series, the truncation error for Equation (10) is of the form 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 21 1
1 1 1 1

1

2
1 1 2 1 3

2 3
3 2 4 3

1 4 1

1 1
2 6

1 1
12 2 20

j j j j
j j j ji i i i

i i x i i i x i i x i
i i

j ji i
i i i i i x i i i i i xi i

ji i i i
i i i i x i i i ii

u u u uT A D u B B D u A D u
h h

h hA A B B u A A h u

h h h hA A u A A

σ σ σ

σ σ σ σ

+ −
− + + +

+

+ + +

+ +

− −
= − − − + −

   = + − − − − + − + −      

   + + − − + − + −      
( )

( ) ( ) ( )

5

4
5 4 5

1 6

6

1 ,
30 24

j
x i

ji i
i i i i x ii

u

h hA A u O hσ σ+
 + + − − +  

       (11) 

where 1 1 1,i i i i i ih h h x xσ + + += = − .  

For ( ) ( )2 2
11 , 1

12 12i i i i i i
i

h hA Aσ σ σ σ
σ+= − + + = + − , ( )3 2

1 4 4 1
12

i
i i i i i

i

hB B σ σ σ
σ++ = + + + , the truncation  

error in space of the relation (10) is of ( )4O h .  
From Equation (10), we can obtain  

( ) ( )1 1
1 1 1 1

1
,

j j j
i i i i ij j j

i i i i i i i
i i

u u u
A M B B M A M

h
σ σ

σ
− +

− + + +

− + +
+ + + =                  (12) 

Or  

( ) ( )
1 1 1

1 1 1 2 2 2
1 12 2 2

1 1 1 1
1

,
j j j

j j j i i i i i
i i i i i i i

i i

u u u
A M B B M A M

h
σ σ

σ

+ + +
+ + + − +
− + + +

− + +
+ + + =               (13) 

Further, when 1iσ = , then 1i ih h h += = , 1 1
10,

12 12i i i i
h hA A B B+ += = + = , the truncation error in space of the 

relation (10) is of ( )5O h , Equation (2.7) can be rewritten as  

( )1 1 1 12
1210 2 ,j j j j j j

i i i i i iM M M u u u
h+ − + −+ + = − +                          (14) 

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 12
1210 2 ,

j j j j j j

i i i i i iM M M u u u
h

+ + + + + +

+ − + −

 
+ + = − +  

 
                      (15) 

In order to get the error estimates of Equation (10), we put ehDE =  in Equation (12), where E and D are the 
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shift and differential operators respectively, and expand them in powers of hD, we have  

( ) ( )
1

4
2 1

12 2 , , 1, 2, , .
10

j j
i i xx i j

E I EM u u x t O h i N
h E I E

−

−

− +
= = + =

+ +
                  (16) 

Or  

( ) ( )4 , 1, 2, , .j j
xx ii

u M O h i N= + =                             (17) 

At the grid point ( ),i jx t , Equation (1) can be discretized by  

( ) ( )
2 211 1 11 1

22 2 221 2 0,
2

j jj j j j jj i ii i
xx i i ii

u uu um u u u O k
k

λ ε λ
++ + + ++ +−

+ + + + =               (18) 

From Equation (18), we have 

( )
2 211 1 11

1 1 21 12 2 2
1 1 2 1

1 1

1 ,
2

j jj jj j ji ii i
i i i

u uu uM m u O k
k

ε λ
λ λ

+++ + +− −− −
− − −

 +−  = − − + +
 
 

               (19) 

( )
2 211 1 11

22 2 2
2

1 1

1 ,
2

j jj jj j ji ii i
i i i

u uu uM m u O k
k

ε λ
λ λ

+++ + +
 +−  = − − + +
 
 

                (20) 

( )
2 211 1 11

1 1 21 12 2 2
1 1 2 1

1 1

1 ,
2

j jj jj j ji ii i
i i i

u uu uM m u O k
k

ε λ
λ λ

+++ + ++ ++ +
+ + +

 +−  = − − + +
 
 

               (21) 

Substituting Equation (19), Equation (20) and Equation (21) into Equation (15) and after some simplifications, 
we obtain  

1 1 1 * * *
1 1 2 3 1 1 1 2 3 1

j j j j j j
i i i i i i i i i i i iF u F u F u F u F u F u+ + +

− + − ++ + = + +                    (22) 

where 
2 211

2
21, 2, , , 1, 2, , ,

2

j j
j i ij

i i

u u
i N j δ ε λ

+
+ +

= = = +   

( ) ( )

( ) ( )

( ) ( )

1
1 1 22

1 1

*1
3 1 1 1 2

1 1

* *1
2 3 12 2

1 1

112 , 2 ,

1 122 , 2 ,

24 122 , 2 .

j ji i i i
i i i i

i i

j ji i
i i i i

i i

j ji i i
i i i i

A B BF m k F m k
hh

A AF m k F m k
h h

B B AF m k F m k
h h

σδ δ
λ λ σ

δ δ
λ σ λ

δ δ
λ λ

+
−

+
+ −

+
+

+ +
= + + = + −

= + + = − + +

+
= − + − = − + +

 
The local truncation error of the relation (22) is of ( )2 4O k h+ . 
The boundary conditions (2) and the system given in the Equation (22) consists of 2N +  equations in 

2N +  unknown. We can write this system in a matrix form as follows:  
1 * ,j jFU F U+ =                                    (23) 

where ( )T

0 1 1, , , ,j j j j j
N NU u u u u +=  ,  

Once the vectors 0U  are computed, , 1, 2,3,nU n =  , unknown vectors can be found repeatedly by solving 
the recurrence relation (23). 

3. Stability Analysis 
Following the von Neumann technique, we first linearize the nonlinear term in Equation (18) by making the 
quantity j

iδ  as locally constant δ  and assume that the numerical solution can be expressed by means of a 
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Fourier series  

( )expj j
iu m ihη ϕ=                                   (24) 

where 1m = − , jη  is the amplitude at time level j, ϕ  is the wave number and h is the element size. Subs-
tituting Equation (24) into Equation (22), the amplification factor can be written as  

* * *
1 2 3

1 2 3

e e
e e

m h m h
i i i

m h m h
i i i

F F F
F F F

ϕ ϕ

ϕ ϕη
−

−

+ +
=

+ +
                               (25) 

Using Eulers formula, we have  

1 1

2 2

,X mY
X mY

η +
=

+  

where ( ) ( )1 2 2 12 2
1 1 1 1

12 10 24 4 40cos , cosX X h Y Y h
k kh h

δ δϕ ϕ
λ λ λ λ

 
= = + + − = − = + 

 
,  

Since  
2 2

1 1
2 2
2 2

1,X Y
X Y

η +
= =

+  
Thus this method is unconditionally stable. 

4. Computation of Conserved Quantities and Error Norms 
The nonlinear Schrödinger equation possesses two conservation quantities: 

(1) Mass conservation:  

( ) 2
1 , d ,

bexact
a

C u x t x= ∫                                  (26) 

Calculated by  
2

1
0

,
N

n
j

j
C h u

=

= ∑                                     (27) 

(2) Energy conservation: If ( )1 tλ  and ( )2 tλ  are independent of t, then  

( ) ( ) ( ) ( )2 2 42
2 1 , , , d ,

2
bexact

xa
C u x t x u x t u x t xλλ ε = − − 

 ∫                    (28) 

Calculated by  

( )
2 2 42

2 1
0

,
2

N n n n
x i j jj

j
C h u u uλλ ε

=

 = − −  
∑                          (29) 

where n
ju  and u are the approximate solution at n-th time step at j-th node and exact solution, respectively. 

The maximum error norm L∞  and discrete root mean square error norm 2L  will be calculated  

( ) ( )
0

, maxn n
i ii N

L h k u u u x u∞ ∞ ≤ ≤
= − = −                           (30) 

( ) ( )
2

2 2 0
,

N
n n

i i
i

L h k u u h u x u
=

= − = −∑                          (31) 

The relative error of numerical solution is defined as  

( )
2

1

2

1

N
n

i i
ir

N
n
i

i

u x u
E

u

=

=

−
=

∑

∑
                              (32) 
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5. Numerical Results 
In the section, we present the results of our numerical experiments for the proposed scheme described in the 
previous section. 

Example 1. Consider the one dimensional Gross-Pitaevskii equation  

( ) [ ]221 cos 0, 0, 2π , 0
2t xxmu u x u u u x t+ − − = ∈ ≥                      (33) 

With the analytical solution  

( ) ( )
3
2, e sin ,
tm

u x t x
−

=                                (34) 

Conserved quantities and error norms at various times are recorded in Table 1. The real and imaginary parts 
of the numerical and exact solutions are tabulated in Table 2, the numerical results reveal the accuracy of the 
proposed method. 

The absolute error at different space step sizes h at time 1t =  are shown in Figure 1, it can be seen that the 
absolute errors becomes smaller as decreasing h. 

Example 2. Consider the equation (1) with 1 21, 1,λ λ= − =  

( ) ( ) ( )22 2 2, 4 2 e ,x tx t x tε − −= − −                            (35) 

The exact solution of this problem is  

( ) ( ) ( )22 3, e ,x t m x tu x t − − + − +=                               (36) 

 

Table 1. Conserved quantities and error norms at various times for example 1 with 2π0.01, , 0, 2π
64

k h a b= = = = . 

t  1C  2C  L∞  2L  
rE  

5.0 3.14159265358952 5.00720563249462 1.4158e−004 2.5096e−004 1.4158e−004 

10 3.14159265358946 5.00720563249418 2.8317e−004 5.0191e−004 2.8317e−004 

20 3.14159265358965 5.00720563249524 5.6635e−004 1.0038e−003 5.6635e−004 

30 3.14159265358984 5.00720563234957 8.4953e−004 1.5057e−003 8.4953e−004 
0 0

1 1 3.14159265358979exactC C= =   
 

Table 2. The real and imaginary parts of the numerical and exact solutions for Example 1 with 2π0.001, ,
64

k h= = .

0, 2π, 1.a b t= = =  

ix  Real parts Imaginary parts 

 Exact solution Approximation Absolute error Exact solution Approximation Absolute error 

π
4  

0.05001875498139 0.05001908991577 3.35e-007 −0.70533546922731 −0.70533544547538 2.37e−008 

π
2  

0.07073720166770 0.07073767533643 4.73e-007 −0.99749498660405 −0.99749495301379 3.35e−008 

3π
4  

0.05001875498139 0.05001908991578 3.35e-007 −0.70533546922731 −0.70533544547537 2.37e−008 

5π
4  

−0.05001875498139 −0.05001908991578 3.35e-007 0.70533546922731 0.70533544547538 2.37e−008 

6π
4  

−0.07073720166770 −0.07073767533646 4.73e-007 0.99749498660405 0.99749495301376 3.36e−008 

7π
4  

−0.05001875498139 −0.05001908991577 3.35e-007 0.70533546922731 0.70533544547537 2.37e−008 
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Figure 1. The absolute error at different h for example 1 with 0.001, 1k t= = . 

 
Table 3. Conserved quantities and error norms at various times for example 2 with 0.01, 0.1, 10, 20k h a b= = = − = . 

t  1C  2C  L∞  2L  
rE  

1 1.25331413731550 −3.31870453365852 2.1940e-003 2.8448e-003 2.5411e-003 

2 1.25331413731550 −3.33237042327679 2.3980e-004 3.2407e-003 2.8948e-003 

3 1.25331413731550 −3.32685242595849 7.7694e-004 9.4702e-004 8.4592e-004 

4 1.25331435202165 −3.31733074605112 2.2382e-003 2.5906e-003 2.3140e-003 
0 0 0 0

1 1 2 21.25331413731550, 3.32358067657703exact exactC C C C= = = = −  
 

 
Figure 2. The numerical solution at various times t = 1, 2, 3, 4 with 

0.01, 0.1k h= = . 
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Figure 3. The numerical solutions and analytical solutions for k = 0.01, h 
= 0.1 at time t = 3. 

 

 
Figure 4 The numerical solutions and analytical solutions for k = 0.01, h 
= 0.1 at time t = 4. 

 
Conserved quantities and error norms at various times are presented in Table 3. The numerical results reveal 

that the values of 1C  is almost constant while the values of 2C  differ slightly and the errors are very small. 
The numerical solutions at various times are given in Figure 2. The numerical solutions and analytical solu-

tions at time 3t =  and 4t =  are shown in Figure 3 and Figure 4, respectively. The absolute error at time 
3t =  and 4t =  are plotted in Figure 5 and Figure 6, respectively. It observed that (1) the propagation of so-

litary wave is rightward while preserving unchanged shape; (2) our method gives a good approximation com-
pared with the exact solutions. 

6. Conclusion 
A numerical method based on exponential spline interpolation function is applied to study a class of nonlinear 
Schrödinger equation. We use exponential spline collocation method, which results in tri-diagonal systems of  
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Figure 5. The absolute error for k = 0.01, h = 0.1 at time t = 3. 

 

 
Figure 6. The absolute error for k = 0.01, h = 0.1 at time t = 4. 

 
equations that can be solved efficiently by the Thomas algorithm. The numerical simulations confirm and dem-
onstrate the reliability and efficiency of the schemes and tell us that the method is applicable technique, rela-
tively simple and approximates the exact solution very well. 
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