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Abstract 
We investigate the solution of an N-unit series system with finite number of vacations. By using 
𝑪𝑪𝟎𝟎-semigroup theory of linear operators, we prove well-posedness and the existence of the unique 
positive dynamic solution of the system. 
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1. Introduction 
The study of repairable systems is an important topic in reliability. The series system is one of the classical re-
pairable systems. Since the strong practical background of the series systems, many researchers have studied 
them extensively under varying assumptions on the failures and repairs, see [1]-[4]. In [4], the authors studied an 
N-unit series system with finite number of vacations and obtained some reliability expressions such as the Lap-
lace transform of the reliability, the mean time to the first failure, the availability and the failure frequency of the 
system. In [4], the authors used the dynamic solution in calculating the availability and the reliability. But they 
did not discuss the existence of the positive dynamic solution. Motivated by this, we study in this paper the 
well-posedness and the existence of a unique positive dynamic solution of the system, by using 𝑪𝑪𝟎𝟎-semigroup 
theory of linear operators. For background reading on semigroup theory we refer to [5] or [6]. The N-unit series 
system with finite number of vacations can be described by the following equations (see [4]). 
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with the boundary conditions 

(𝐵𝐵𝐵𝐵)
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⎪
⎧𝑝𝑝𝑖𝑖(𝑡𝑡, 0) = 𝜆𝜆𝑖𝑖𝑝𝑝0(𝑡𝑡) + �� 𝑟𝑟(𝓌𝓌)𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡,𝓌𝓌)𝑑𝑑𝑑𝑑

∞

0

𝑀𝑀

𝑗𝑗=1

, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛

𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡, 0) = 0, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀,

𝑝𝑝01 (𝑡𝑡, 0) = �� 𝜇𝜇𝑖𝑖(𝑦𝑦)𝑝𝑝𝑖𝑖(𝑡𝑡,𝑦𝑦)𝑑𝑑𝑑𝑑
∞

0
 ,                                 

𝑛𝑛

𝑖𝑖=1

𝑝𝑝0𝑗𝑗 (𝑡𝑡, 0) = � 𝑟𝑟(𝓌𝓌)𝑝𝑝0,𝑗𝑗−1(𝑡𝑡,𝓌𝓌)𝑑𝑑𝑑𝑑
∞

0
, 𝑗𝑗 = 2,⋯𝑀𝑀,

� 

and the initial conditions 

(𝐼𝐼𝐼𝐼)

⎩
⎪
⎨

⎪
⎧𝑝𝑝0  (0,𝓌𝓌) = 1,                                                    
𝑝𝑝𝑖𝑖  (0, 𝑦𝑦) = 0 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛,                            
𝑝𝑝𝑖𝑖𝑖𝑖 (0,𝓌𝓌) = 0, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀,
𝑝𝑝0𝑗𝑗 (0,𝓌𝓌) = 0, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀,                          

� 

where Λ = 𝜆𝜆1 + 𝜆𝜆2 + ⋯  + 𝜆𝜆𝑛𝑛  
Here (t, y) ∈ [0,∞) × [0,∞), (t,𝓌𝓌) ∈ [0,∞) × [0,∞); p0 (t)dx gives the probability that at time 𝑡𝑡  N units 

are in working state and the repairman is idle; Analogously, pi(t, y)dy represents the probability that at time 
𝑡𝑡  the repairman is repairing the failed unit 𝑖𝑖 (i = 1,2,⋯ , n), and the elapsed repair time lies in [y, y + dy); 
𝑝𝑝0𝑗𝑗 (𝑡𝑡,𝓌𝓌)𝑑𝑑𝑑𝑑 represents the probability that at time t N units are in working state, the repairman is in 𝑗𝑗𝑡𝑡ℎ  
vacation (𝑗𝑗 = 1,2,⋯ ,𝑀𝑀) and the elapsed vacation time lies in [𝓌𝓌,𝓌𝓌 + 𝑑𝑑𝓌𝓌);𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡,𝓌𝓌)𝑑𝑑𝓌𝓌 represents the 
probability that at time t  unit 𝑖𝑖 (i = 1,2,⋯ , n) is waiting for repair, the repairman is in 𝑗𝑗𝑡𝑡ℎ  vacation 
(𝑗𝑗 = 1,2,⋯ ,𝑀𝑀) and the elapsed vacation time lies in [𝓌𝓌,𝓌𝓌 + 𝑑𝑑𝓌𝓌);  λ𝑖𝑖  is positive constant;  𝑟𝑟(𝓌𝓌)  is the va-
cation rate function of the repairman; 𝜇𝜇𝑖𝑖(𝑦𝑦) is the repair rate function of unit 𝑖𝑖 (i = 1,2,⋯ , n). 

Throughout the paper we require the following assumption for the vacation rate function 𝑟𝑟(𝓌𝓌) and the re-
pair rate functions 𝜇𝜇𝑖𝑖(𝑦𝑦)(i = 1,2,⋯ , n). 

General Assumption 1.1: The functions 𝑟𝑟(𝓌𝓌) and 𝜇𝜇𝑖𝑖(𝑦𝑦): [0, +∞) ⟶ [0, +∞)(i = 1,2,⋯ , n) are measura-
ble and bounded such that 

𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝓌𝓌→+∞

𝑟𝑟(𝓌𝓌) , 𝜇𝜇𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦→+∞

𝜇𝜇𝑖𝑖(𝑦𝑦)(i = 1,2,⋯ , n), 

𝜇𝜇∞ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝜇𝜇1, 𝜇𝜇2,⋯ , 𝜇𝜇𝑛𝑛). 

2. Problem as an Abstract Cauchy Problem 
In order to apply semigroup theory we transform in this section the system (𝑅𝑅𝑅𝑅), (𝐵𝐵𝐵𝐵) and (𝐼𝐼𝐼𝐼) into an ab-
stract Cauchy problem [5, Def. II. 6.1] on the Banach space (𝑋𝑋, ‖. ‖), where  

X = ℂ × �Ly
1 [0, +∞)�𝓃𝓃 × (L𝓌𝓌1 [0, +∞))(𝑛𝑛+1)×𝑀𝑀  

and 

‖𝑝𝑝‖ = |𝑝𝑝0| + �‖𝑝𝑝𝑖𝑖‖Ly
1 [0,+∞) + ���𝑝𝑝𝑖𝑖𝑖𝑖 �L𝓌𝓌1 [0,+∞)

𝑀𝑀

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

+ ��𝑝𝑝0𝑗𝑗 �L𝓌𝓌1 [0,+∞)

𝑀𝑀

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

p = (𝑝𝑝0, 𝑝𝑝1(𝑦𝑦), 𝑝𝑝2(𝑦𝑦),⋯ , 𝑝𝑝𝑛𝑛(𝑦𝑦), 𝑝𝑝11 (𝓌𝓌), 𝑝𝑝12 (𝓌𝓌),⋯ ,
𝑝𝑝1𝑀𝑀(𝓌𝓌), 𝑝𝑝21 (𝓌𝓌), 𝑝𝑝22 (𝓌𝓌),⋯ , 𝑝𝑝2𝑀𝑀(𝓌𝓌),⋯ ,

𝑝𝑝𝑛𝑛1(𝓌𝓌), 𝑝𝑝𝑛𝑛2(𝓌𝓌),⋯𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌), 𝑝𝑝01(𝓌𝓌), 𝑝𝑝02 (𝓌𝓌),⋯ ,
𝑝𝑝0𝑀𝑀(𝓌𝓌))𝑇𝑇 ∈ Χ

 

To define the system operator (𝐴𝐴,𝐷𝐷(𝐴𝐴)) we introduce a “maximal operator” (𝐴𝐴𝑚𝑚 ,𝐷𝐷(𝐴𝐴𝑚𝑚 )) on X given as 
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𝐴𝐴𝑚𝑚

=

⎝
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⎜
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⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−Λ 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝜑𝜑𝑀𝑀
0 𝐷𝐷1 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 𝐷𝐷2 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 𝐷𝐷𝑛𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 𝐷𝐷11 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 𝜆𝜆1 0 ⋯ 0
0 0 0 ⋯ 0 0 𝐷𝐷12 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 𝜆𝜆1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 𝐷𝐷1𝑀𝑀 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝜆𝜆1
0 0 0 ⋯ 0 0 0 ⋯ 0 𝐷𝐷21 0 ⋯ 0 ⋯ 0 0 ⋯ 0 𝜆𝜆2 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 𝐷𝐷22 ⋯ 0 ⋯ 0 0 ⋯ 0 0 𝜆𝜆2 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 𝐷𝐷2𝑀𝑀 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝜆𝜆2
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 𝐷𝐷𝑛𝑛1 0 ⋯ 0 𝜆𝜆𝑛𝑛 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 𝐷𝐷𝑛𝑛2 ⋯ 0 0 𝜆𝜆𝑛𝑛 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝐷𝐷𝑛𝑛𝑛𝑛 0 0 ⋯ 𝜆𝜆𝑛𝑛
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 𝐷𝐷01 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 𝐷𝐷02 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝐷𝐷0𝑀𝑀⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

where 

𝜑𝜑𝑀𝑀 : 𝑓𝑓 ↦ 𝜑𝜑𝑀𝑀(𝑓𝑓) = � 𝑟𝑟(𝓌𝓌)𝑓𝑓(𝓌𝓌)𝑑𝑑𝑑𝑑
∞

0
,   𝐷𝐷𝑖𝑖 = −

𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝜇𝜇𝑖𝑖(𝑦𝑦), 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛,        

𝐷𝐷𝑖𝑖𝑖𝑖 = −
𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑟𝑟(𝓌𝓌), 𝑖𝑖 =  1,2,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀,   𝐷𝐷0𝑗𝑗 = − �
𝑑𝑑
𝑑𝑑𝑑𝑑

+ Λ + 𝑟𝑟(𝓌𝓌)� , 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀    

Applying an abstract approach as in [7] we can model the boundary conditions (BC) with operators. For this 
purpose we consider the “boundary space” 𝜕𝜕𝜕𝜕 ≔ 𝐶𝐶𝑛𝑛+(𝑛𝑛+1)𝑀𝑀  and then define “boundary operators” 𝐿𝐿  and Φ  
as follows. 

𝐿𝐿：𝐷𝐷(𝐴𝐴𝑚𝑚) → 𝜕𝜕𝜕𝜕,    

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑝𝑝0
𝑝𝑝1(𝑦𝑦)
𝑝𝑝2(𝑦𝑦)
⋮

𝑝𝑝𝑛𝑛(𝑦𝑦)
𝑝𝑝11 (𝓌𝓌)
𝑝𝑝12 (𝓌𝓌)

⋮
𝑝𝑝1𝑀𝑀(𝓌𝓌)
𝑝𝑝21 (𝓌𝓌)
𝑝𝑝22 (𝓌𝓌)

⋮
𝑝𝑝2𝑀𝑀(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛1(𝓌𝓌)
𝑝𝑝𝑛𝑛2(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌)
𝑝𝑝01 (𝓌𝓌)
𝑝𝑝02 (𝓌𝓌)

⋮
𝑝𝑝0𝑀𝑀(𝓌𝓌)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

→ 𝐿𝐿

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑝𝑝0
𝑝𝑝1(𝑦𝑦)
𝑝𝑝2(𝑦𝑦)
⋮

𝑝𝑝𝑛𝑛(𝑦𝑦)
𝑝𝑝11 (𝓌𝓌)
𝑝𝑝12 (𝓌𝓌)

⋮
𝑝𝑝1𝑀𝑀(𝓌𝓌)
𝑝𝑝21 (𝓌𝓌)
𝑝𝑝22 (𝓌𝓌)

⋮
𝑝𝑝2𝑀𝑀(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛1(𝓌𝓌)
𝑝𝑝𝑛𝑛2(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌)
𝑝𝑝01 (𝓌𝓌)
𝑝𝑝02 (𝓌𝓌)

⋮
𝑝𝑝0𝑀𝑀(𝓌𝓌)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑝𝑝1(0)
𝑝𝑝2(0)
⋮

𝑝𝑝𝑛𝑛(0)
𝑝𝑝11 (0)
𝑝𝑝12 (0)
⋮

𝑝𝑝1𝑀𝑀(0)
𝑝𝑝21 (0)
𝑝𝑝22 (0)
⋮

𝑝𝑝2𝑀𝑀(0)
⋮

𝑝𝑝𝑛𝑛1(0)
𝑝𝑝𝑛𝑛2(0)

⋮
𝑝𝑝𝑛𝑛𝑛𝑛 (0)
𝑝𝑝01 (0)
𝑝𝑝02 (0)
⋮

𝑝𝑝0𝑀𝑀(0)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

and 
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𝛷𝛷

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑝𝑝1(0)
𝑝𝑝2(0)
⋮

𝑝𝑝𝑛𝑛(0)
𝑝𝑝11(0)
𝑝𝑝12(0)
⋮

𝑝𝑝1𝑀𝑀(0)
𝑝𝑝21(0)
𝑝𝑝22(0)
⋮

𝑝𝑝2𝑀𝑀(0)
⋮

𝑝𝑝𝑛𝑛1(0)
𝑝𝑝𝑛𝑛2(0)

⋮
𝑝𝑝𝑛𝑛𝑛𝑛 (0)
𝑝𝑝01(0)
𝑝𝑝02(0)
⋮

𝑝𝑝0𝑀𝑀(0)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜆𝜆1 0 0 ⋯ 0 𝜑𝜑11 𝜑𝜑12 ⋯ 𝜑𝜑1𝑀𝑀 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
𝜆𝜆2 0 0 ⋯ 0 0 0 ⋯ 0 𝜑𝜑21 𝜑𝜑22 ⋯ 𝜑𝜑2𝑀𝑀 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝜆𝜆𝑛𝑛 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 𝜑𝜑𝑛𝑛1 𝜑𝜑𝑛𝑛2 ⋯ 𝜑𝜑𝑛𝑛𝑛𝑛 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 𝜑𝜑1 𝜑𝜑2 ⋯ 𝜑𝜑𝑛𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 𝜑𝜑01 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑝𝑝0
𝑝𝑝1(𝑦𝑦)
𝑝𝑝2(𝑦𝑦)
⋮

𝑝𝑝𝑛𝑛(𝑦𝑦)
𝑝𝑝11(𝓌𝓌)
𝑝𝑝12(𝓌𝓌)

⋮
𝑝𝑝1𝑀𝑀(𝓌𝓌)
𝑝𝑝21 (𝓌𝓌)
𝑝𝑝22 (𝓌𝓌)

⋮
𝑝𝑝2𝑀𝑀(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛1(𝓌𝓌)
𝑝𝑝𝑛𝑛2(𝓌𝓌)

⋮
𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌)
𝑝𝑝01 (𝓌𝓌)
𝑝𝑝02 (𝓌𝓌)

⋮
𝑝𝑝0𝑀𝑀(𝓌𝓌)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

where:𝜑𝜑𝑖𝑖𝑖𝑖 : 𝑓𝑓 ⟼ 𝜑𝜑𝑖𝑖𝑖𝑖 = ∫ 𝑟𝑟(𝓌𝓌)𝑓𝑓𝑖𝑖𝑖𝑖 (𝓌𝓌)𝑑𝑑𝑑𝑑 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀∞
0  

𝜑𝜑𝑖𝑖 : 𝑓𝑓 ⟼ 𝜑𝜑𝑖𝑖(𝑓𝑓) = � 𝜇𝜇𝑖𝑖(𝑦𝑦)
∞

0
𝑓𝑓𝑖𝑖(𝑦𝑦)𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 

𝜑𝜑0𝑗𝑗 :  𝑓𝑓 ⟼ 𝜑𝜑0𝑗𝑗 = � 𝑟𝑟(𝓌𝓌)𝑓𝑓0𝑗𝑗−1(𝓌𝓌)𝑑𝑑𝑑𝑑, 𝑗𝑗 = 2,⋯ ,𝑛𝑛,
∞

0
 

The system operator (𝐴𝐴,𝐷𝐷(𝐴𝐴)) on 𝑋𝑋 is then defined as 
𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑚𝑚𝑝𝑝,𝐷𝐷(𝐴𝐴) = {𝑝𝑝 ∈ 𝐷𝐷(𝐴𝐴𝑚𝑚)| 𝐿𝐿𝐿𝐿 = 𝛷𝛷𝛷𝛷}. 
With these definitions the above equations (R), (BC) and (IC) are equivalent to the abstract Cauchy problem 

�
𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴(𝑡𝑡),   𝑡𝑡 ∈ [0,∞),          
𝑝𝑝(0) = (1,0,⋯ ,0)𝑇𝑇 ∈ 𝑋𝑋.

�(ACP) 

3. Characteristic Equation 
In this section we characterize 𝜎𝜎(𝐴𝐴) by the spectrum of a scalar (2 × 2)-matrix, i.e., or we obtain a characte-
ristic equation which relates 𝜎𝜎(𝐴𝐴) to the spectrum of an operator on the boundary space ∂X. For this purpose, 
we apply techniques and results from [7]. We start from the operator (𝐴𝐴0,𝐷𝐷(𝐴𝐴0)) defined by 

𝐷𝐷(𝐴𝐴0) = {𝑝𝑝 ∈ 𝐷𝐷(𝐴𝐴𝑚𝑚 )| 𝐿𝐿𝐿𝐿 = 0},   𝐴𝐴0𝑝𝑝 = 𝐴𝐴𝑚𝑚𝑝𝑝. 
The elements in ker(γ − 𝐴𝐴𝑚𝑚 ) can be expressed as follows. 
Lemma 3.1: For γ ∈ ρ(𝐴𝐴0), we have 

𝑝𝑝 ∈ 𝑘𝑘𝑘𝑘𝑘𝑘(𝛾𝛾 − 𝐴𝐴𝑚𝑚)                                  (1) 
⇔p = (𝑝𝑝0, 𝑝𝑝1(𝑦𝑦), 𝑝𝑝2(𝑦𝑦),⋯ , 𝑝𝑝𝑛𝑛(𝑦𝑦), 𝑝𝑝11 (𝓌𝓌), 𝑝𝑝12 (𝓌𝓌),⋯ , 𝑝𝑝1𝑀𝑀(𝓌𝓌), 𝑝𝑝21(𝓌𝓌), 𝑝𝑝22 (𝓌𝓌),⋯ , 𝑝𝑝2𝑀𝑀(𝓌𝓌),⋯ ,

𝑝𝑝𝑛𝑛1(𝓌𝓌), 𝑝𝑝𝑛𝑛2(𝓌𝓌),⋯𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌), 𝑝𝑝01 (𝓌𝓌), 𝑝𝑝02 (𝓌𝓌),⋯ , 𝑝𝑝0𝑀𝑀(𝓌𝓌))𝑇𝑇 ∈ Χ  

with 

 𝑝𝑝0 =
𝑐𝑐0𝑀𝑀

𝛾𝛾 + Λ
� 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑
∞

0
, 𝑝𝑝1(𝑦𝑦) = 𝑐𝑐1𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇1(𝑠𝑠)𝑑𝑑𝑑𝑑𝑦𝑦

0 ,   

𝑝𝑝2(𝑦𝑦) = 𝑐𝑐2𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑦𝑦
0 ,⋯ , 𝑝𝑝𝑛𝑛(𝑦𝑦) = 𝑐𝑐𝑛𝑛𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇𝑛𝑛 (𝑠𝑠)𝑑𝑑𝑑𝑑𝑦𝑦

0 , 

  𝑝𝑝11 (𝓌𝓌) = 𝑐𝑐11𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆1𝑐𝑐01

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌), 

𝑝𝑝12 (𝓌𝓌) = 𝑐𝑐12𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆1𝑐𝑐02

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌), … 

𝑝𝑝1𝑀𝑀(𝓌𝓌) = 𝑐𝑐1𝑀𝑀𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆1𝑐𝑐0𝑀𝑀

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌)， 

𝑝𝑝21(𝓌𝓌)𝑐𝑐21𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆2𝑐𝑐01

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌) 
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𝑝𝑝22(𝓌𝓌) = 𝑐𝑐22𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆2𝑐𝑐02

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌),⋯, 

𝑝𝑝2𝑀𝑀(𝓌𝓌) = 𝑐𝑐2𝑀𝑀𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆2𝑐𝑐0𝑀𝑀

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌),⋯ 

𝑝𝑝𝑛𝑛1(𝓌𝓌) = 𝑐𝑐𝑛𝑛1𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆𝑛𝑛𝑐𝑐01

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌), 

𝑝𝑝𝑛𝑛2(𝓌𝓌) = 𝑐𝑐𝑛𝑛2𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 +

𝜆𝜆𝑛𝑛𝑐𝑐02

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌),⋯ 

𝑝𝑝𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑛𝑛𝑛𝑛𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 + 𝜆𝜆𝑛𝑛 𝑐𝑐0𝑀𝑀

Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌), 

𝑝𝑝01 (𝓌𝓌) = 𝑐𝑐01𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 , 𝑝𝑝02 (𝓌𝓌) = 𝑐𝑐02𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 ,⋯ 

𝑝𝑝0𝑀𝑀(𝓌𝓌) = 𝑐𝑐0𝑀𝑀𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0  

Using [8, Lemma 1.2], the domain 𝐷𝐷(𝐴𝐴𝑚𝑚 ) of the maximal operator 𝐴𝐴𝑚𝑚  decomposes as  
D(𝐴𝐴𝑚𝑚 ) = D(𝐴𝐴0)⨁ker⁡(γ− 𝐴𝐴𝑚𝑚 ). 

Moreover, since 𝐿𝐿 is surjective, L|ker⁡(𝛾𝛾−𝐴𝐴𝑚𝑚 ): (𝛾𝛾 − 𝐴𝐴𝑚𝑚) → 𝜕𝜕𝜕𝜕  is invertible for each γ ∈ ρ(𝐴𝐴0), see [8, 
Lemma 1.2]. We denote its inverse by  

𝐷𝐷𝛾𝛾 : = �𝐿𝐿|ker⁡(𝛾𝛾−𝐴𝐴𝑚𝑚 )�
−1: 𝜕𝜕𝜕𝜕 → 𝑘𝑘𝑘𝑘𝑘𝑘(𝛾𝛾 − 𝐴𝐴𝑚𝑚 ) 

and call it “Dirichlet operator”. 
We can give the explicit form of 𝐷𝐷𝛾𝛾  as follows. 
Lemma 3.2: For each γ ∈ ρ(𝐴𝐴0), the operator 𝐷𝐷𝛾𝛾  has the form 

𝐷𝐷𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝑑𝑑0
𝑑𝑑1 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 𝑑𝑑2 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝑑𝑑𝑛𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 0 𝑑𝑑11 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 ℎ01 0 ⋯ 0
0 0 ⋯ 0 0 𝑑𝑑12 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 ℎ02 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 𝑑𝑑1𝑀𝑀 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ ℎ0𝑀𝑀
0 0 ⋯ 0 0 0 ⋯ 0 𝑑𝑑21 0 ⋯ 0 ⋯ 0 0 ⋯ 0 ℎ01 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 𝑑𝑑22 ⋯ 0 ⋯ 0 0 ⋯ 0 0 ℎ02 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 𝑑𝑑2𝑀𝑀 ⋯ 0 0 ⋯ 0 0 0 ⋯ ℎ0𝑀𝑀
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 𝑑𝑑𝑛𝑛1 0 ⋯ 0 ℎ01 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 𝑑𝑑𝑛𝑛2 ⋯ 0 0 ℎ02 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛 0 0 ⋯ ℎ0𝑀𝑀
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 𝑑𝑑1 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 𝑑𝑑1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0 0 0 ⋯ 𝑑𝑑1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

where 
𝑑𝑑0 = 1

𝛾𝛾+Λ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 , 

𝑑𝑑𝑖𝑖 = 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝑦𝑦
0 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀, 

ℎ0𝑗𝑗 =
𝜆𝜆𝑛𝑛
Λ
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌), 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀 

𝑑𝑑0𝑗𝑗 = 𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 , 𝑗𝑗 = 1,2,⋯ ,𝑀𝑀. 

For γ ∈ ρ(𝐴𝐴0), the operator  Φ𝐷𝐷𝛾𝛾  can be represented by the (𝑛𝑛 + 𝑛𝑛 × 𝑀𝑀 + 𝑀𝑀) × (𝑛𝑛 + 𝑛𝑛 × 𝑀𝑀 + 𝑀𝑀)-matrix 



A. Osman, A. Haji 
 

 
1597 

ϕ𝐷𝐷𝛾𝛾

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0 0 ⋯ 0 𝑎𝑎1,𝑛𝑛+1 𝑎𝑎1,𝑛𝑛+2 ⋯ 𝑎𝑎1,𝑛𝑛+𝑀𝑀 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 𝑎𝑎2,𝑛𝑛+𝑀𝑀+1 𝑎𝑎2,𝑛𝑛+𝑀𝑀+2 ⋯ 𝑎𝑎2,𝑛𝑛+𝑀𝑀+𝑀𝑀 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯

𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,1 𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,2 ⋯ 𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,𝑛𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋯

� 

, 

�

0 0 ⋯ 0 𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+1 𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+2 ⋯ 𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀
0 0 ⋯ 0 𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+1 𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+2 ⋯ 𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑎𝑎𝑛𝑛 ,𝑛𝑛+(𝑛𝑛−1)𝑀𝑀+1 𝑎𝑎𝑛𝑛 ,𝑛𝑛+(𝑛𝑛−1)𝑀𝑀+2 ⋯ 𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛 𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+1 𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+2 ⋯ 𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+2,𝑛𝑛+𝑛𝑛𝑛𝑛+1 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 ⋯ 0 0 0 ⋯ 𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀 0 ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

 

where 
𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,1 = ∫ 𝜇𝜇1(𝑦𝑦)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇1(𝑡𝑡)𝑑𝑑𝑡𝑡𝑦𝑦

0 𝑑𝑑𝑑𝑑∞
0  , 𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,2 = ∫ 𝜇𝜇2(𝑦𝑦)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇2(𝑡𝑡)𝑑𝑑𝑡𝑡𝑦𝑦

0 𝑑𝑑𝑑𝑑∞
0 ,⋯, 

𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+1,𝑛𝑛 = ∫ 𝜇𝜇𝑛𝑛(𝑦𝑦)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝜇𝜇𝑛𝑛 (𝑡𝑡)𝑑𝑑𝑡𝑡𝑦𝑦
0 𝑑𝑑𝑑𝑑∞

0 , 𝑎𝑎1,𝑛𝑛+1 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 , 

𝑎𝑎1,𝑛𝑛+2 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 ,⋯, 𝑎𝑎1,𝑛𝑛+𝑀𝑀 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 , 

𝑎𝑎2,𝑛𝑛+𝑀𝑀+1 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 ,𝑎𝑎2,𝑛𝑛+𝑀𝑀+2 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 ,⋯, 

𝑎𝑎2,𝑛𝑛+𝑀𝑀+𝑀𝑀 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 ,⋯, 𝑎𝑎𝑛𝑛 ,𝑛𝑛+(𝑛𝑛−1)𝑀𝑀+1 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 , 

𝑎𝑎𝑛𝑛 ,𝑛𝑛+(𝑛𝑛−1)𝑀𝑀+2 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 ,⋯,𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛 = ∫ 𝑟𝑟(𝓌𝓌)𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 𝑑𝑑𝑑𝑑∞

0 , 

𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+1 = 𝜆𝜆1
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+1 = 𝜆𝜆2
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑,⋯, 

𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+1 = 𝜆𝜆𝑛𝑛
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 
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𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+2,𝑛𝑛+𝑛𝑛𝑛𝑛+1 = ∫ 𝑟𝑟(𝓌𝓌)∞
0 𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑, 

𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+2 = 𝜆𝜆1
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+2 = 𝜆𝜆2
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑,⋯, 

𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+2 = 𝜆𝜆𝑛𝑛
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+3,𝑛𝑛+𝑛𝑛𝑛𝑛+2 = ∫ 𝑟𝑟(𝓌𝓌)∞
0 𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑,⋯, 

𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 = 𝜆𝜆1
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 = 𝜆𝜆2
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑,⋯, 

𝑎𝑎𝑛𝑛 ,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀−1 = 𝜆𝜆𝑛𝑛
Λ ∫ 𝑟𝑟(𝓌𝓌)∞

0 𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌
0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀 ,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀+1 = ∫ 𝑟𝑟(𝓌𝓌)∞
0 𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑, 

𝑎𝑎1,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀 =
𝜆𝜆1

𝛾𝛾 + Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑 +
𝜆𝜆1

Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀 =
𝜆𝜆2

𝛾𝛾 + Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑 +
𝜆𝜆2

Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑,⋯ 

𝑎𝑎2,𝑛𝑛+𝑛𝑛𝑛𝑛+𝑀𝑀 =
𝜆𝜆𝑛𝑛

𝛾𝛾 + Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−Λ𝓌𝓌−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 𝑑𝑑𝑑𝑑 +
𝜆𝜆𝑛𝑛
Λ
� 𝑟𝑟(𝓌𝓌)
∞

0
𝑒𝑒−𝛾𝛾𝛾𝛾−∫ 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑑𝑑𝓌𝓌

0 (1 − 𝑒𝑒−Λ𝓌𝓌)𝑑𝑑𝑑𝑑, 

The Following result, which can be found in [9], plays important role for us to prove the well-posedness of 
the system. 

Lemma 3.3 (The characteristic equation): If  𝛾𝛾 ∈ 𝜌𝜌(𝐴𝐴0) and there exists 𝛾𝛾0 ∈ 𝐶𝐶 such that 1 ∉ σ(ΦD_γ0 ), 
then 

γ ∈ σ(A) ⟺ 1 ∈ σ�Φ𝐷𝐷𝛾𝛾�. 

4. Well-Posedness of the System 
Our main goal in this section is to prove the well-posedness of the system. We first prove that the operator A 
generates a positive contraction 𝐶𝐶0-semigroup �𝑇𝑇(𝑡𝑡)�

𝑡𝑡≥0
 For this purpose we will check that operator A fulfills 

all the conditions in the Phillips’ theorem, see [6, Thm. C-II 1.2]. The following lemma shows the surjectivity of 
γ− A for 𝛾𝛾 > 0. 

Lemma 4.1: If 𝛾𝛾 ∈ 𝑅𝑅, 𝛾𝛾 > 0, then  𝛾𝛾 ∈ 𝜌𝜌(𝐴𝐴). 
Proof: Let  𝛾𝛾 ∈ 𝑅𝑅, 𝛾𝛾 > 0. Then all the entries ofΦ𝐷𝐷𝛾𝛾are positive and using only elementary calculations one 

can show that both column sums are strictly less than 1. Hence, �Φ𝐷𝐷𝛾𝛾� < 1 and thus 1 ∈ σ�Φ𝐷𝐷𝛾𝛾�. Using 
Lemma 3.3 we conclude that  𝛾𝛾 ∈ 𝜌𝜌(𝐴𝐴). 

Lemma 4.2: 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⟶ 𝑅𝑅(𝐴𝐴) ⊂ 𝑋𝑋 is a closed linear operator and 𝐷𝐷(𝐴𝐴) is dense in  𝑋𝑋. 
If 𝑋𝑋 ′ denotes the dual space of 𝑋𝑋, then 𝑋𝑋 ′ =  × �𝐿𝐿𝑦𝑦∞[0,∞)�𝑛𝑛 × (𝐿𝐿𝓌𝓌∞ [0,∞))𝑛𝑛𝑛𝑛+𝑀𝑀+1 
It is obvious that 𝑋𝑋 ′ is a Banach space endowed with the norm 

‖𝑞𝑞‖ = |𝑞𝑞0| + �‖𝑞𝑞𝑖𝑖‖Ly
∞[0,+∞) + ���𝑞𝑞𝑖𝑖𝑖𝑖 �L𝓌𝓌∞ [0,+∞)

𝑀𝑀

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

+ ��𝑞𝑞0𝑗𝑗 �L𝓌𝓌∞ [0,+∞)

𝑀𝑀

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

where 
q = (𝑞𝑞0, 𝑝𝑝1(𝑦𝑦), 𝑞𝑞2(𝑦𝑦),⋯ , 𝑞𝑞𝑛𝑛(𝑦𝑦),𝑞𝑞11 (𝓌𝓌), 𝑞𝑞12(𝓌𝓌),⋯ , 𝑞𝑞𝑞𝑞1𝑀𝑀(𝓌𝓌), 𝑞𝑞21 (𝓌𝓌), 𝑞𝑞22(𝓌𝓌),⋯ , 𝑞𝑞2𝑀𝑀(𝓌𝓌),⋯ ,

𝑞𝑞𝑛𝑛1(𝓌𝓌), 𝑞𝑞𝑛𝑛2(𝓌𝓌),⋯𝑞𝑞𝑛𝑛𝑛𝑛 (𝓌𝓌), 𝑞𝑞01(𝓌𝓌), 𝑞𝑞02(𝓌𝓌),⋯ , 𝑞𝑞0𝑀𝑀(𝓌𝓌))𝑇𝑇 ∈ 𝑋𝑋 ′
. 

Lemma 4.3: The operator (𝐴𝐴,𝐷𝐷(𝐴𝐴)) is dispersive. 

Proof: For 
p = (𝑝𝑝0, 𝑝𝑝1(𝑦𝑦), 𝑝𝑝2(𝑦𝑦),⋯ , 𝑝𝑝𝑛𝑛(𝑦𝑦), 𝑝𝑝11 (𝓌𝓌), 𝑝𝑝12 (𝓌𝓌),⋯ , 𝑝𝑝1𝑀𝑀(𝓌𝓌), 𝑝𝑝21 (𝓌𝓌), 𝑝𝑝22(𝓌𝓌),⋯ , 𝑝𝑝2𝑀𝑀(𝓌𝓌),⋯ ,

𝑝𝑝𝑛𝑛1(𝓌𝓌), 𝑝𝑝𝑛𝑛2(𝓌𝓌),⋯𝑝𝑝𝑛𝑛𝑛𝑛 (𝓌𝓌), 𝑝𝑝01 (𝓌𝓌), 𝑝𝑝02(𝓌𝓌),⋯ , 𝑝𝑝0𝑀𝑀(𝓌𝓌))𝑇𝑇 ∈ Χ , 

we define 
q = (𝑞𝑞0,𝑝𝑝1(𝑦𝑦), 𝑞𝑞2(𝑦𝑦),⋯ , 𝑞𝑞𝑛𝑛(𝑦𝑦), 𝑞𝑞11(𝓌𝓌), 𝑞𝑞12(𝓌𝓌),⋯ , 𝑞𝑞𝑞𝑞1𝑀𝑀(𝓌𝓌), 𝑞𝑞21 (𝓌𝓌), 𝑞𝑞22 (𝓌𝓌),⋯ , 𝑞𝑞2𝑀𝑀(𝓌𝓌),⋯ ,

𝑞𝑞𝑛𝑛1(𝓌𝓌),𝑞𝑞𝑛𝑛2(𝓌𝓌),⋯𝑞𝑞𝑛𝑛𝑛𝑛 (𝓌𝓌), 𝑞𝑞01(𝓌𝓌), 𝑞𝑞02(𝓌𝓌),⋯ , 𝑞𝑞0𝑀𝑀(𝓌𝓌))𝑇𝑇 ∈ 𝑋𝑋 ′
, 

where 
q0 = �|p|�sgn+(p0)，qi (𝑦𝑦) = �|p|�sgn+�pi(𝑦𝑦)�, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 

q𝑖𝑖𝑖𝑖 (𝓌𝓌) = �|p|�sgn+ �p𝑖𝑖𝑖𝑖 (𝓌𝓌)� , i = 1,2,⋯ , n, j = 1,2,⋯ , M, 



A. Osman, A. Haji 
 

 
1599 

q0𝑗𝑗 (𝓌𝓌) = �|p|�sgn+ �p0𝑗𝑗 (𝓌𝓌)� , j = 1,2,⋯ , M, 

and 

sgn+(p0) = �1 if p0 > 0,
0 if p0 ≤ 0,

� sgn+�pi(y)� = �1 if pi(𝑦𝑦) > 0,
0 if pi(y) ≤ 0,

� 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 

sgn+ �p𝑖𝑖𝑖𝑖 (𝓌𝓌)� = �
1 if p𝑖𝑖𝑖𝑖 (𝓌𝓌) > 0,
0 if  p𝑖𝑖𝑖𝑖 (𝓌𝓌) ≤ 0,

� i = 1,2,⋯ , n, j = 1,2,⋯ , M, 

sgn+ �p0𝑗𝑗 (𝓌𝓌)� = �
1 if  p0𝑗𝑗 (𝓌𝓌) > 0,
0 if  p0𝑗𝑗 (𝓌𝓌) ≤ 0, j = 1,2,⋯ , M.� 

Noting the boundary condition, it is not difficult to see that 〈𝐴𝐴𝐴𝐴, 𝑞𝑞〉 ≤ 0. By [6, p.49] we obtain that 
(𝐴𝐴,𝐷𝐷(𝐴𝐴)) is a dispersive operator. 

From Lemma 4.1- 4.3 we see that all the conditions in Phillips' theorem (see [6, Thm. C-II 1.2]) are fulfilled 
and thus we obtain the following result. 

Theorem 4.4: The operator (𝐴𝐴,𝐷𝐷(𝐴𝐴)) generates a positive contraction 𝐶𝐶0-semi-group �𝑇𝑇(𝑡𝑡)�
𝑡𝑡≥0

. 
From Theorem 4.4 and [5, Cor.II.6.9] we can characterize the well-posedness of The system (𝑅𝑅), (𝐵𝐵𝐵𝐵) and 

(𝐼𝐼𝐼𝐼) as follows. 
Theorem 4.5: The system (𝑅𝑅), (𝐵𝐵𝐵𝐵) and (𝐼𝐼𝐼𝐼)is well-posed. 
Combining Theorem 4.5 with [5, Prop.II.6.2] we can state our main result. 
Theorem 4.6: The system (𝑅𝑅), (𝐵𝐵𝐵𝐵) and (𝐼𝐼𝐼𝐼) has a unique positive dynamic solution 

p(t) = (𝑝𝑝0(𝑡𝑡), 𝑝𝑝1(𝑡𝑡,𝑦𝑦), 𝑝𝑝2(𝑡𝑡, 𝑦𝑦),⋯ , 𝑝𝑝𝑛𝑛(𝑡𝑡,𝑦𝑦), 𝑝𝑝11 (𝑡𝑡,𝓌𝓌), 𝑝𝑝12 (𝑡𝑡,𝓌𝓌),⋯ ,
𝑝𝑝1𝑀𝑀(𝑡𝑡,𝓌𝓌), 𝑝𝑝21(𝑡𝑡,𝓌𝓌), 𝑝𝑝22 (𝑡𝑡,𝓌𝓌),⋯ ,𝑝𝑝2𝑀𝑀(𝑡𝑡,𝓌𝓌),⋯ ,

𝑝𝑝𝑛𝑛1(𝑡𝑡,𝓌𝓌), 𝑝𝑝𝑛𝑛2(𝑡𝑡,𝓌𝓌),⋯𝑝𝑝𝑛𝑛𝑛𝑛 (𝑡𝑡,𝓌𝓌), 𝑝𝑝01(𝑡𝑡,𝓌𝓌), 𝑝𝑝02 (𝑡𝑡,𝓌𝓌),⋯ , 𝑝𝑝0𝑀𝑀(𝑡𝑡,𝓌𝓌))𝑇𝑇 ∈ Χ
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