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Abstract 
We devise an approach to Bayesian statistics and their applications in the analysis of the Monty 
Hall problem. We combine knowledge gained through applications of the Maximum Entropy Prin-
ciple and Nash equilibrium strategies to provide results concerning the use of Bayesian approaches 
unique to the Monty Hall problem. We use a model to describe Monty’s decision process and clari-
fy that Bayesian inference results in an “irrelevant, therefore invariant” hypothesis. We discuss 
the advantages of Bayesian inference over the frequentist inference in tackling the uneven prior 
probability Monty Hall variant. We demonstrate that the use of Bayesian statistics conforms to the 
Maximum Entropy Principle in information theory and Bayesian approach successfully resolves 
dilemmas in the uneven probability Monty Hall variant. Our findings have applications in the deci-
sion making, information theory, bioinformatics, quantum game theory and beyond. 
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1. Introduction 
The famous Monty Hall problem arises from a popular television game show Let’s Make a Deal [1] [2]. In the 
game, a contestant faces three closed doors. One of the closed doors conceals a brand new car, whereas the other 
two doors conceal goats that are worthless. To start with, the show host, Monty, asks the contestant to choose a 
door as the initial guess. After the contestant chooses a door, Monty opens another door that conceals a goat. 
Then, Monty offers the contestant the option to stick with the door selected initially, or switch to the other 
closed door. An interesting question arises as to what are the advantages and disadvantages of frequentist and 
Bayesian statistical techniques in incomplete information games such as the Monty Hall problem, and what is 
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the potential impact of these approaches on decision-making in a variety of scientific areas. 
As a mathematical problem, it is important to clarify the rules of the game that are not necessarily in parallel 

to the realistic game show situations. For the Monty Hall problem, Monty is required to open a goat-yielding 
door not chosen by the contestant under all circumstances [1]-[3]. As such, even though the winning opportunity 
appears to be 50:50 for the two remaining doors, the counter-intuitive answer is that the contestant should switch. 
The update of probability, conditional upon the constraint that Monty cannot open the door selected by the 
contestant, is pivotal to recognize the difference between the two closed doors [2]. When the contestant selects a  

door, there is a 
1
3

 chance of being right and a 
2
3

 chance of being wrong. After Monty opens a goat-yielding 

door, the door initially held by the contestant remains the same 
1
3

 winning probability, whereas the other closed 

door now has a 
2
3

 winning chance. Therefore, the contestant should switch to maximize the chance of winning  

the prize. In general, Bayesian inference indicates that the constraint as mentioned above leads to dividing the 
probability space into two sets. One set contains the door initially chosen by the contestant with prior probability 

0p , and the other set contains the other doors with probability 01 p− . In the end, the decision depends merely 
on the comparison of 0p  and 01 p−  since the goat-yielding actions are not supposed to change 0p . 
However, this conceivably simple Bayesian reasoning for the Monty Hall problem has been the subject of open 
debate [1]. 

The controversy focuses on the correct way of updating information between Bayesian and frequentist appro- 
aches to statistics [1]. Bayesian inference’s assertion that the probability of the initially chosen door remains intact 
after Monty’s goat-yielding action is precisely the point at issue. In fact, the frequentist approach indicates that the 
probability 0p  may change [1]. The frequentist inference entails that Monty makes his choice at random when 
given a selection of doors to open [1]-[9]. Frequentist and Bayesian inferences result in different answers for variants 
of the problem. For example, what if the prior probability of placing the car behind each door is not equal? What if, 
given a choice, Monty prefers to open one door over another? Given that the frequentist approach is used exclusively 
in the literature [1]-[11], it becomes necessary to develop Bayesian approaches for the Monty Hall problem. 

In this paper, we discuss and analyze a few variations of the Monty Hall problem to clarify the difference 
between Bayesian and frequentist inferences. We model the problem as an incomplete information game in which 
Monty and the contestant have opposing interests [10]-[12]. The solution of the Monty Hall game involves the 
determination of Nash equilibrium strategies, one for the contestant and the other for Monty [13]. We employ 
the Maximum Entropy Principle [14] to devise the optimal strategy for Monty, which corresponds to an 
“irrelevant, therefore invariant” theorem [1] [13]. In contrast, the “coin-flipping” procedure [1] [2] is shown to 
be unjustified for an uneven variant of the Monty Hall problem. Our findings not only completely resolve the 
Monty Hall problem and its variants, but also have applications in the decision making, information theory [14], 
bioinformatics [15]-[17], quantum game theory [11] [12] and beyond. 

2. Methods 
2.1. Bayes’ Theorem 
Bayes theorem serves as an approach to statistical inference by means of conditional probabilities. Bayes theo- 
rem states that for two events C and O, the probability of C given O, ( )|P C O , is related to the likelihood of O 
given C, ( )|P O C , as: 

( ) ( ) ( ) ( )| | .P C O P O C P C P O=                             (1) 

We define ,A BC C , and CC  to be the events in which the car is placed behind door A, B, and C, respectively 
[1]. Let’s assume that the contestant selects door A. Since Monty cannot open either door A (the contestants initial 
choice) or the door with the car, we have ( ) ( ) ( )| | 0A B B C CP O P O C P O C= = = , where ,A BO O , and CO  
denote the events in which Monty opens door A, B, or C to reveal a goat, respectively. 

If the contestant’s initial choice is wrong (i.e., the car is not behind door A), Monty’s option to open a door is 
restricted in that if the car is behind B or C, then the host has to open door C or B, respectively. We have  
( ) ( )| | 1B C C BP O C P O C= = . On the other hand, if the contestant’s initial choice is correct (i.e., AC ), the host 
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can freely choose between one of the two doors, B or C. We can treat the parameter ( )|B Aq P O C=  (we have 
( )| 1C AP O C q= − ) as a random variable ranging from 0 to 1, reflecting the likelihood that Monty exhibits a 

bias in favor of selecting door B (or C) if the car is behind door A. 
Given that the possibility of finding the car behind door A, B, or C is equally likely, and then we have  

( ) ( ) ( ) 1
3A B CP C P C P C= = = . We evaluate the probability for Monty to open door B using the law of total proba-  

bility, 

( ) ( ) ( ) ( ) ( ) ( ) ( )| | |
1 1 1 10 1 .
3 3 3 3

B B A A B B B B C CP O P O C P C P O C P C P O C P C
qq

= + +

+
= × + × + × =

                 (2) 

Substituting everything into Bayes theorem, we obtain  

( ) ( ) ( ) 1| ,    | 0,    | .
1 1A B B B C B

qP C O P C O P C O
q q

= = =
+ +

                    (3) 

Similarly for Monty opening door C, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2| | | ,
3C C A A C B B C C C

qP O P O C P C P O C P C P O C P C −
= + + =             (4) 

( ) ( ) ( )1 1| ,    | ,    | 0.
2 2A C B C C C

qP C O P C O P C O
q q

−
= = =

− −
                   (5) 

The frequentist inference estimates Monty’s decision procedure q by means of long-run successful frequencies 
[5]-[9], and subsequently determines whether to stick or switch by evaluating  
( ) ( ) ( )| , | , |A B A C C BP C O P C O P C O  or ( )|B CP C O . As seen from Equation (3) and Equation (5), one can infer 

that switching is optimal for the contestant in that ( ) ( )| |A B C BP C O P C O≤  for BO , and  
( ) ( )| |A C B CP C O P C O≤  for CO . 
Bayesian inference uses expected values to determine the optimal option: 

( ) ( ) ( ) ( ) ( ) 1 2 1 1stick | | ,
3 1 3 2 3
+ − −

= + = + =
+ −B A B C A C

q q q qP P O P C O P O P C O
q q

            (6) 

( ) ( ) ( ) ( ) ( ) 1 1 2 1 2switch | | .
3 1 3 2 3
+ −

= + = + =
+ −B C B C B C

q qP P O P C O P O P C O
q q

           (7) 

Calculated expected values for sticking and switching are independent of q; thereby supporting the argument 
that rational decision in the single case is not relevant to the degrees of belief about long-run success frequency 
[4]-[9]. For a single game, Monty’s goat-yielding action is realized by selecting a discrete value of 1q =  or 0. 
The frequentist approach typically uses a “coin-flipping” procedure for the bias parameter q. On the other hand, 
the expected value includes contributions from BO  and CO , irrespective of in reality BO  or CO . In other 
words, Bayesian inference takes into account not only what happened but also what could happen. 

If ( ) ( ) ( )| | stick= =A B A CP C O P C O P  and ( ) ( ) ( )| | switch= =C B B CP C O P C O P , then frequentist and Ba- 
yesian approaches lead to the same result. However, if e.g., ( ) ( )| stick≠A BP C O P , then two approaches yield 
different answers. To have an in-depth understanding of the differences between frequentist and Bayesian in- 
ferences, we employ tools in information theory to calculate the conditional entropy. 

2.2. Conditional Entropy 
In information theory, Shannon entropy is the average amount of information contained in each event. If ( )iP O  
or ( )jP C  is the probability of the event iO  or jC , , ,i j A B= , or C, then its entropy is  
( ) ( ) ( ) ( ) ( ) ( )2 2log , logi i j ji iS O P O P O S C P C P C= =∑ ∑ . Shannon entropy also measures uncertainty about 

an event. The less likely an event is, the more information it provides when the event occurs, and vice-versa. 
The combined system OC is characterized by a joint probability ( ),P O C  and therefore by a joint entropy  
( ) ( ) ( ) ( )2,, , log , ,= − =∑ i j i ji jS O C P O C P O C S C O , which is the uncertainty about the entire system. The 

conditional entropy is defined as  
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( ) ( ) ( ) ( ) ( )2
,

| , , log | ,i j i j
i j

S C O S C O S O P C O P C O= − = −∑                   (8) 

where ( )|i jP C O  is the probability of iC  conditional on jO ; ( )|S C O  characterizes the remaining uncer- 
tainty about the event C when O is known. 

In the literature of discussing the Monty Hall problem, few have brought up the concept of conditional entropy. 
We utilize the Maximum Entropy Principle [14] to infer rational decision by Monty from the information theory 
perspective. The Maximum Entropy Principle [14] refers to finding the distribution that represents the highest 
uncertainty. In the Monty Hall problem, the principle resembles the premise that Monty can follow a strategy to 
provide the contestant with minimal information. The use of Maximum Entropy Principle reproduces every aspect 
of Bayesian inference and demonstrates the compatibility of Bayesian and entropy methods. 

2.3. Nash Equilibrium 
What is the rational response in the case where the host adopts a strategy that minimizes the winning chance of 
the contestant [11]-[13]? To answer this question, we need to consider the connection between the strategies 
chosen by both the host and the contestant. In the Monty Hall problem, Monty’s decision procedure is characte- 
rized by a bias parameter q, and the contestant’s decision process is described by a parameter p, which is the 
probability of sticking. The Nash equilibrium recognizes those combinations of strategies for the contestant and 
host in which each is making the optimal choice given the choice that the other makes. A Nash equilibrium study 
allows for a thorough evaluation of not only optimal strategies but also sub-optimal strategies. Nash equilibrium 
strategies are self-enforcing because either player will be worse off if they deviate from the Nash equilibrium. 
Our analysis of Nash equilibrium strategies prevails in resolving the controversy over dilemmas appearing in the 
variants of the Monty Hall problem. 

3. Results and Discussion 
Preceding investigations [1]-[11] into the Monty Hall problem focused predominantly on the winning chances of 
sticking and switching, which arises from differences between free choice (unconditional probability) and 
restricted choice (conditional probability). Depicted in Figure 1 are results from the so-called free choice and 
restricted choice scenarios. The free choice refers to the case where Monty may open a goat-yielding door even 
if it is selected by the contestant [1]-[3]. It is then easy to show that the winning chance for sticking or switching 
strategies becomes 50:50. In contrast, with restricted choice, the winning chance for sticking and switching is  
1
3

 and 2
3

, respectively [1]. 

The “coin-flipping” has been used exclusively in the literature [1]-[11]. The coin-flipping entails that Monty 
chooses randomly from his options when door A conceals the car ( ) ( )| |B A C AP O C P O C= , which amounts to  

1
2

q = . In other words, Monty may open either B or C, and the approximation requires him to show no preference  

to either door. With the use of the “coin-flipping”, the subsequent probabilities can be extracted from Equation  

(3) or Equation (5). In either case ( BO  or CO ), the winning probability of sticking is 
1
3

, and that of switching 

is 
2
3

 [1]. 

Figure 2 displays the calculated conditional entropy as a function of the bias parameter, 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2| 1 log 1 log (2 ) log 2 1 log 1 3.S C O q q q q q q q q= + + − + − − − − −            (9) 

As seen in Figure 2, the maximum entropy of the symmetrical curve is at 
1
2

q = , whereas the minimum en-  

tropy endpoints are at 0q =  or 1q = . In the absence of information about the selection process used by 
Monty, expected values of winning the prize for sticking or switching are independent of the process (see 
Equation (6) and Equation (7)), which coincide with the assessed likelihood using the frequentist approach with  

1
2

q = . Suppose that Monty chooses 0q =  (or 1q = ) and informs the contestant accordingly before the game  
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Figure 1. The probability distribution of prior (top panel), free-choice (bottom left), restricted choice with Bayesian inference, 
and restricted choice with frequentist approach (bottom right).                                                                   
 

 

Figure 2. Calculated Shannon entropy as a function of the parameter q for ( ) ( ) ( ) 1
3A B CP C P C P C= = = . Insets: the winning 

probability of the contestant initially selecting the green door and Monty opening either the light or dark grey door, respectively.           
 
starts, we have a strongly biased scenario as a variant of the original Monty Hall problem [6]. In this situation,  

there is a 
1
3

 chance that the contestant knows exactly the location of the car if Monty opens the non-preferred  

door. In the case that Monty opens the preferred door, the contestant has a 50:50 winning chance for either 
sticking or switching. It is important to note that there is a difference between the case where Monty informs the 
contestant of his decision process before a door is chosen and the case in which he informs the contestant after. 
In the latter case, Monty has gained additional information, which is not accounted for by frequentist inferences. 

The frequentist approach entails using a fixed model to the inference [1]. Consequently, the “coin-flipping”  

assumption (
1
2

q = ) has been used exclusively in the literature for the solution of variants of the Monty Hall  

problem [1]-[11]. However, Monty is not compelled to “coin-flipping”. In reality, Monty should adopt strategies 
to reduce the contestants winning chance. For Bayesian inference, although the partition of the probability space 
argument has been elaborated on before, there is a striking lack of analysis on its underlying ramifications. 
Converting Bayesian inference (the probability of that initially selected door concealing the car is invariant of 
the event of Monty opening a goat-yielding door) into conditional probability formalism, we have: 

( ) ( ) ( )| | .A A B A CP C P C O P C O= =                            (10) 

This indicates that the events of AC  and BO  are independent; so are AC  and CO . This independence also 
implies that ( ) ( ) ( ) ( )| , |B A B C A CP O C P O P O C P O= = . 

Using the law of total probability, we can calculate the bias parameter q: 

( ) ( ) ( ) ( ) ( ) ( ) ( )| | | ,B B A A B B B B C CP O P O C P C P O C P C P O C P C= + +               (11) 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )| 1 0 | ,B B A A B A B C CP O P O C P C P O P C P O C P C− = − = +  

( ) ( ) ( ) ( ) ( )( ) 1 1 1| | 1 1 1 .
3 3 2B B A B C C AP O P O C P O C P C P C q = = − = × − = = 

 
 

There exists a bias parameter q that characterizes the result of Bayesian inference, which facilitates an assess- 
ment of epistemic and statistical probabilities for Bayesian and frequentist inferences [4]-[9]. 

A few remarks are immediately in order. 1) As a conditional probability problem, it is important to remove 
ambiguities through the rules of the game [1]-[3]. The following rules are necessary: Monty by no means opens 
the goat-yielding door the contestant chose initially, and Monty always opens a door concealing a goat [1] [2]. 
The former is essential for the partition of the probability space. The latter is important as well in case Monty  

limit the winning chance of the contestant to 
1
3

 by ending the game prematurely [10]; 2) If the contestant initially  

chooses the correct door, Monty then faces with a choice as to which door to open. The frequentist approach 
uses a “coin-flipping” method [1]. In Bayesian approach, however, Monty can choose to open a door in such a 
way that no additional relevant information is given to the contestant; 3) For the two non-selected doors with the 
same prior winning probability, the two approaches find the same solution. However, the reasoning behind each  

answer varies. In the frequentist inference, q is assumed to be 
1
2

 [1], whereas Bayesian inference determines the 

value of q to be 
1
2

. When the non-selected doors have different prior winning probabilities, the frequentist and  

Bayesian inferences lead to different results. 
To illustrate the differences, we examine an uneven probability model in which the odds of a car being behind 

a door are not uniform. A case of an unequal prior model could occur as follows. Assume Monty rolls a standard, 
6-sided die. If he rolls a 1, 2, or 3, then the car is placed behind door A. If he rolls a 4 or 5, the car is placed 
behind door B. If he rolls a 6, the car is placed behind door C. Therefore, the winning probabilities for the doors  

,A B , and C, are 
1
2

, 
1
3

, and 
1
6

, respectively. The contestant consequently rolls the die to select a door as the  

contestant’s initial choice. 
Shown in Figure 3 are the results that the contestant initially chooses door A. According to the “coin-flipping”,  

for BO , ( ) 3|
5A BP C O =  and ( ) 2|

5C BP C O =  [1]. Therefore, it is in the contestant’s best interest to stick. 

Conversely, for CO , ( ) 3|
7A CP C O =  and ( ) 4|

7B CP C O = . Then the contestant should switch in this case [1].  

Monty, however, has a counter strategy available. If AC , Monty opens door C ( CO ), the contestant switches 
doors and loses. If CC , on the other hand, Monty opens door B ( BO ), the contestant sticks to the initial choice 
and also loses. The only case in which the contestant wins is BC , in which case Monty has to open door C ( CO ),  
 

 
Figure 3. Probability distribution changes from the prior to the restricted choice with the frequentist inference (left panel) 
and to that with Bayesian inference (right panel), respectively.                                                            
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the contestant switches to door B and wins. This counter-strategy limits the contestant’s winning chance to 1
3

, 

instead of 
1
2

 for a mixed strategy by randomly sticking or switching with equal probability. 

In fact, the case where ( ) 0AP O =  allows for a straightforward evaluation of the Nash equilibrium strategy. 
We have 

( ) ( ) ( )3 1 3 1,     | ,     | ,
6 3 1 3 1B A B C B

q qP O P C O P C O
q q

+
= = =

+ +
                (12) 

( ) ( ) ( )5 3 3 3 2,     | ,     | .
6 5 3 5 3C A C B C

q qP O P C O P C O
q q

− −
= = =

− −
                (13) 

As a consequence, if 
1
3

q < , the contestant should switch for BO  and stick for CO ; whereas if 
1
3

q > , the 

contestant should stick for BO  and switch for 1
3

. Consequently, Monty’s dominant strategy is for bias parameter 

1
3

q∗ = .  A t  
1
3

q∗ = ,  ( ) ( ) ( ) 1| | stick
2

= = =A B A CP C O P C O P ,  ( ) ( ) ( ) 1| | switch
2

= = =C B B CP C O P C O P ,  

where ( )stickP  and ( )switchP  are calculated expected values following Equation (6) and Equation (7). It is 
straightforward to evaluate the tactics of the contestant and conclude that the contestant should then decide ran-  

domly between switching and sticking, i.e., 
1
2

p∗ = . 

It is worth noting that the Nash equilibrium is at (
1 1,
2 3

p q∗ ∗= = ). The result of 1
3

q∗ =  is a stark contrast to 

the “coin-flipping” that assumes 
1
2

q = . Therefore, an extension of the “coin-flipping” to variants of the Monty  

Hall problem is unjustified. In contrast, using Bayesian inference (cf. the derivations of Equation (11)), we have 

( ) ( ) ( ) ( ) ( )( ) 1 1 1| | 1 1 1 .
6 2 3B B A B C C AP O P O C P O C P C P C q∗ = = − = × − = = 

 
           (14) 

Therefore, the rational decision procedure inferred from Bayesian approach conforms to the Nash equilibrium  

strategy. Furthermore, we have ( ) ( ) ( ) 1| | stick
2

= = =A B A CP C O P C O P  and  

( ) ( ) ( ) 1| | switch
2

= = =C B B CP C O P C O P  for Bayesian inference. 

To further pursue this point, we calculate the conditional entropy as the function of the bias parameter (q) for 
the initial unequal probability model, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1| 3 1 log 3 1 3 log 3 5 3 log 5 3 3 3 log 3 3 ,
6AS C O q q q q q q q q= + + − + − − − − −       (15) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

22

1| 2 1 log 2 1 2 log 2 5 2 log 5 2
6

2 2 2 2 3log 3 ,log

BS C O q q q q q q

q q

= + + − + − −

− − − − 

             (16) 

( ) ( ) ( ) ( )

( ) ( )

2 22

2 2

1| 2 (2 ) 2 log 4 log 4log
6

3log 3 1 log 1 ,

CS C O q q q q q q

q q

= + + − − + − −

− − − − 

               (17) 

where ,A BO O , and CO  represents ( ) ( )0, 0A BP O P O= = , and ( ) 0CP O = , respectively. 

As seen in Figure 4, the maximum entropy for each instance is 
1 1,
3 4

q = , and 
2
5

 for ,A BO O , and CO , re-  
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spectively. It is worth noting that Bayesian approach yields the maximum entropy value of q, which corresponds 
to the rational strategy for Monty. We summarize in Table 1 extracted values of conditional entropy for different  

bias parameters. The value of q∗  is larger than the corresponding value of the “coin-flipping” 1
2

q =  for the  

uneven probability model. 
We have demonstrated that Bayesian inference corresponds to Maximum Entropy solution for the calculated 

conditional entropy. As a result, Bayesian approach can be employed to tackle the variants of the Monty Hall 
problem. In contrast, if the contestant miscalculates rational decisions by the “coin-flipping” model, we have 
demonstrated that there exists a counter strategy for Monty to take advantage of the situation. 

4. Conclusions 
In conclusion, we have devised a Bayesian inference approach for a systematic exploration of rational decisions 
for variants of the Monty Hall problem. The method employs the Maximum Entropy Principle [14]. Our results 
show that the “coin-flipping” assumption is unfounded in several variants of the Monty Hall problem. In contrast, 
Bayesian inference considers many different perspectives in updating the probability to avoid inference bias. 

The frequentist inference determines the winning probability using single conditional probability. Bayesian 
inference estimates the winning probability using expected values that are weighted averages of individual 
conditional probabilities. Bayesian inference considers Monty’s decision process with respect to the change of 
information at the various stages of the game. We examined a few variants of the Monty Hall problem and showed 
that the “coin-flipping” assumption was in general not consistent with maximum entropy solutions. Our analysis 
on the uneven prior probability Monty Hall variant reveals fallacies in the “coin-flipping” assumption, thereby 
providing convincing evidence that Bayesian inference is appropriate in tackling Monty Hall-like conditional  
 

 

Figure 4. Calculated Shannon entropy for the unequal prior probability model ( ) ( )1 1,
2 3A BP C P C= = , and ( ) 1

6CP C = .            

 
Table 1. Extracted Shannon entropy S for the original model, and ( ) ( ) ( ), ,A B CS O S O S O  for the unequal probability model 

( ) 1
2AP C = , ( ) 1

3BP C = , and ( ) 1
3CP C =  as a function of the bias parameter q.                                         

 S ( )AS O  ( )BS O  ( )CS O  

0q =  0.667 0.809 0.809 0.541 

1q =  0.667 0.541 0.459 0.459 

1
2

q =  0.918 0.978 0.874 0.645 

q∗  0.918 1.000 0.918 0.650 
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probability problems. We believe that our findings shed light on the application of Bayesian inferences and the 
Maximum Entropy Principle in quantum Monty Hall problems [11] [12], which deserve further development in 
the future. 

We remark, before closing, that the approaches developed in this paper can be applied to a variety of emerging 
fields, notably Big Data and Bioinformatics. Bayesian inference has some appealing features, including the capa- 
bility of describing complex data structures, characterizing uncertainty, and providing comprehensive estimates of 
parameter values, and comparative assessments. Bayesian methodology can be employed for a comprehensible 
means of integrating all available sources of information and of considering missing data. There is also of great 
benefit in using Bayesian approach as a mechanism for integrating mathematical models and advanced compu- 
tational algorithms. 
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