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Abstract 
In this paper, the Chebyshev wavelet method, constructed from the Chebyshev polynomial of the 
first kind is proposed to numerically simulate the single-phase flow of fluid in a reservoir. The 
method was used together with the operational matrices of integration which resulted in an alge-
braic system of equations. The system of equation was solved for the wavelet coefficient and used 
to construct the solutions. The efficiency and accuracy of the method were demonstrated through 
error measurements. Both the root mean square and the maximum absolute error analysis used in 
the study were within significantly close range. The Chebyshev wavelet collocation method sub-
sequently was observed to closely approximate the analytic solution to the single phase flow mod-
el quite well. 
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1. Introduction 
Understanding the dynamics of fluid flow in porous media is undoubtedly a subject interesting to many scien-
tists and engineers due to its applications in many areas of research [1]. In many occasions, research efforts have 
been made both experimentally and theoretically to better explain the dynamics of single-phase flow as well as 
heat transfer through varying porous media [2]-[6], mostly encountered in diverse fields of science and engi-
neering. In order to determine the appropriate conditions of operations as well as the machinery to use for the 
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various operations and jobs, a number of parameters and the governing equations have to be predicted accurate-
ly. Several of the cases assumed that the flow follows a Darcy’s law [6]-[8] which was the fundamental principle 
used to describe the flow of fluids in a reservoir; however, some researchers have extended their work to non- 
Darcy flow [2]-[4] [9]. The flow in porous media has been studied by several authors using methods like the 
Implicit Pressure Explicit Saturation (IMPES) method [10]-[13], fully implicit method [14] [15], the finite vo-
lume method [16], cell-centered finite difference method [17], discontinuous Galerkin Method [18], and sequen-
tial methods [15] [19] [20]. 

Wavelet theory is a recent methodology which has a wide range of applications in many research areas in 
mathematics, physics, and engineering. The applicability of wavelets in different areas of research is their ability 
to represent a wider class of functions and operators efficiently and accurately. Unlike most of the methods used 
in solving fluid flow problems, a carefully constructed wavelet based method will be capable of capturing as-
pects of the function which other functional analysis methods may miss such as trends, breakdown points, dis-
continuities and self similarities [21] as well as integrating different data types [22]. 

The use of wavelets methods for solving partial differential equations goes as far back as early 1990s [23]. 
Different wavelet families are applied in various papers for solving differential equations, in which the wavelet 
coefficients are computed based on either the Galerkin or Collocation methods [18] [24]. Application of wave-
lets methods reduces the problems to systems of algebraic equations. 

In this study, the Chebyshev wavelets method constructed using the first kind of Chebyshev polynomial is 
proposed for numerically simulating the single-phase flow of fluids in a reservoir. The solution to the flow equa-
tions is obtained in one-dimension. The governing models of single-phase flow in reservoir are presented in 
Section 2. The Chebyshev wavelets are discussed in Section 3. In Section 5, the Chebyshev wavelets formula-
tion of the single-phase flow model is presented. In Section 6, results from the numerical simulation are pre-
sented, discussed and finally we conclude in Section 7. 

2. Single-Phase Flow Model 
The single-phase flow in a porous medium considers the only one fluid phase or several completely miscible 
fluids in the reservoir at any given time. The single-phase flow in a porous medium is governed by partial diffe-
rential equation resulting from the principle of mass conservation. This equation is given as [6] 

( ) ( )u
t
φρ ρ∂

− = ∇ ⋅
∂

                                   (1) 

where ρ  is density of fluid; φ  is porosity; and u represents the velocity of the fluid which is related to the 
pressure gradient through the Darcy’s law. The Darcy’s law gives the velocity of the fluid to be 

Ku P
µ

= − ∇                                       (2) 

where K is the intrinsic permeability; µ  the fluid viscosity and P represents the pressure at position x at time t. 
The porosity of the reservoir and the density of the fluid phase are both functions of pressure, and for an 
isothermal system 

( ) d d
d d

P P
t P t P t

ρ φφρ φ ρ∂ ∂ ∂   = +   ∂ ∂ ∂   
                             (3) 

Introducing the compressibility relationship for the reservoir and fluid given as 

d dand
d df rc c
P P
ρ φρ φ= =                                 (4) 

then 

( ) ( )f r
Pc c

t t
φρ φρ∂ ∂

= +
∂ ∂

                                 (5) 

Consequently, assuming that the permeability of the reservoir and the viscosity of the fluid are constant we 
have  
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( )

( )22

f

f

K K KP P P c p

K P c P

ρ ρ ρ
µ µ µ

ρ
µ

   
∇ ⋅ ∇ = ∇ ⋅ ∇ + ∇ ∇   

   

 = ∇ + ∇ 

                         (6) 

We arrive at Equation (7) by substituting Equation (5) and Equation (6) into Equation (1). 

( ) ( )22
f r f

P Kc c P c P
t

φρ ρ
µ

∂  − + = − ∇ + ∇ ∂
                          (7) 

Since the compressibility of the fluid is mostly small and for a low velocity flow the pressure gradient is also 
small, which is to say that 0fc →  and ( )2 2

fc P P∇ ∇� , we obtain the single-phase flow model as 

2
r

P Kc P
t

φ
µ

∂
= ∇

∂
                                     (8) 

Initial condition is set for the flow problem at 0t =  and the boundary conditions are set at x a=  and x b=  
for [ ],x a b∈ . 

( ) ( )0, 0P x P x=                                       (9) 

( ) ( ), LP a t P t=                                      (10) 

( ) ( ), RP b t P t=                                      (11) 

3. Principles of Wavelet Transform 
Wavelets are basis functions obtained from dilating and translating a single function known as the mother wavelet. 
The wavelet transform is an integral operator obtained by taking the inner product of a function wavelets. The 
transform of a given function ( )f t  is [25] 

( ) ( ) ( ),, a bW a b f t tψ
∞

−∞
= ∫                                 (12) 

where a is the scaling parameter and b is the translation parameter. Given that the dilation parameter a and 
translation parameter b vary continuously then the wavelet family is said to be continuously [26] [27] 

( )
1
2, , , , 0a b

t bt a a b a
a

ψ ψ− − = ∈ ≠ 
 

                          (13) 

A wavelet function ( )tψ  satisfies the wavelet admissibility condition given as 

( )
0

ˆ
dCψ

ψ ω
ω

ω
∞

= < ∞∫                                  (14) 

where ( )ψ̂ ω  is the Fourier transform of the wavelet function. To ensure Cψ < ∞ , then  

( ) ( ) 2
d 0 and d 1t t t tψ ψ

∞ ∞

−∞ −∞
= =∫ ∫                            (15) 

Restricting the a and b to assume discrete values as 0
ma a−=  and 0 0

mb nb a−= , where 0 01, 0a b> > , gives a 
family of discrete wavelets [28]: 

( ) ( )20 0 0 , ,
m

m
mn t a a t nb m nψ ψ= − ∈�                           (16) 

The family of wavelets form a wavelet basis of the ( )2L   and these functions form an orthonormal basis if 
0 2a =  and 0 1b =  [25]. 

3.1. Chebyshev Polynomial 
The Chebyshev polynomials are the eigenfunctions of singular Sturm-Liouville problem with many advantages. 
The Chebyshev polynomial ( )mT t  in this research is that of the first kind, with m been the degree of the 
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polynomial. This polynomial can generally be represented by the recurrence relation 

( ) ( ) ( )0 1 1 21, , 2 ; 2,3, , 1m m mT t T t t T t tT T m M− −= = = − = −�                  (17) 

where M is a fixed positive integer greater than 2. 
A set of Chebyshev Polynomials, ( )mT t , are orthogonal with respect to the weight function ( ) 21 1w t t= −  

on the interval [ ]1,1−  [29]. 

3.2. Chebyshev Wavelets 
The Chebyshev wavelets are constructed based on the set of Chebyshev Polynomials. The Chebyshev wavelets 

( ) ( ), , , ,n m t k n m tψ ψ=  is a function of four arguments where 1, 1, 2, , 2kk n −∈ =� � , and m represents the 
order of the Chebyshev polynomial, is defined on the interval [ ]0,1  as 

( ) ( )2
1 1

,

12 2 2 1 ,
2 2

0, otherwise

k k
m k k

n m

n nt n t
tψ − −

− − + ≤ ≤= 



                       (18) 

where 

( )
( )

1 , 0
π
2 , 0
π

m

m

m
t

T t m

 == 
 >

                                (19) 

To ensure orthogonality in dealing with the Chebyshev wavelets, the weight function ( )w x  has to be dilated 
and translated as [30] 

( ) ( )2 2 1k
nw t w t n= − +  

Given that 2k =  and 3M = ; 1, 2n =  and 0,1, 2m = , the expansions are obtained for the Chebyshev 
wavelets as 

( ) ( )0
1,0

2 11 , 02 4 1 , 0
2π2

0, otherwise 0, otherwise

tt t
tψ

 ≤ ≤− ≤ ≤ = = 
  


 

( ) ( )1
1,1

1 8 12 4 1 , 0 (4 1), 0
2 2

0, otherwise 0, otherwise

t t t ttψ π
 − ≤ ≤ − ≤ ≤ = = 

  


 

( ) ( ) ( )2
2

1,2

1 8 12 4 1 , 0 32 16 1 , 0
2 π 2

0, otherwise 0, otherwise

t t t t ttψ
 − ≤ ≤ − + ≤ ≤ = = 

  


 

( ) ( )0
2,0

2 11 , 12 4 3 , 1
2π2

0, otherwise 0, otherwise

tt t
tψ

 ≤ ≤− ≤ ≤ = = 
  


 

( ) ( ) ( )1
2,1

1 8 12 4 3 , 1 4 3 , 1
2 2

0, otherwise 0, otherwise

t t t ttψ π
 − ≤ ≤ − ≤ ≤ = = 

  


 

( ) ( ) ( )2
2

2,2

1 8 12 4 3 , 1 32 48 17 , 1
2 π 2

0, otherwise 0, otherwise

t t t t ttψ
 − ≤ ≤ − + ≤ ≤ = = 

  


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3.3. Approximating Function 
Any square intgrable function ( ) [ ]( )2 0,1f t L∈  may be representated by the Chebyshev wavelets as 

( ) ( )
1 0

nm nm
n m

f t c tψ
∞ ∞

= =

= ∑∑                                  (20) 

where ( ) ( ), ,n m nmc f t tψ=  in which ,⋅ ⋅  represents the inner product. The infinite series in Equation (20) 
can be truncated for finite values of n and m. The wavelet decomposition of the function ( )f t  can then be 
written as 

( ) ( ) ( )
12 1

T

1 0

k M

nm nm
n m

f t c t C tψ
− −

= =

≈ = Ψ∑∑                              (21) 

where C and ( )tΨ  are 12 1k M− ×  matrices given by 

110 11 1 1 2 1 2 1
, , , , , , , kM M M

C c c c c c −− − −
 =  � � �  

( ) ( ) ( ) ( ) ( ) ( )110 11 1 1 2 1 2 1
, , , , , , , kM M M

t t t t t tψ ψ ψ ψ ψ −− − −
 Ψ =  � � �                 (22) 

Likewise, a two variable function ( ),f x t  defined on the square [ ] [ ]0,1 0,1×  which is square integrable can 
as well be expanded using the Chebyshev wavelets basis as: 

( ) ( ) ( ) ( ) ( )
1 12 2

T

1 1
,

k kM M

ij i j
i j

f x t d x t x D tψ ψ
− −

= =

= = Ψ Ψ∑ ∑                        (23) 

where ijD d =    is a 1 12 2k kM M− −×  matrix. 

3.4. Chebyshev Operational Matrix of Integration 
The operational matrices are used to integrate or different a function (set of functions). This matrix was introduced 
by Chen and Hsiao in 1975 [26]. Given that Q is defined as 1 12 2k kM M− −×  operational matrix for integration [31], 
the integral of the vector ( )tΨ  defined in Equation (22) can be obtained as 

( ) ( )
0

d
t

Q tτ τΨ ≈ Ψ∫                                   (24) 

In this research, the operational matrix of integration Q is derived based on the Chebyshev wavelets. This is 
demonstrated for 3M =  and 2k = , the six Chebyshev basis functions can be integrated and the represented in 
terms of the wavelets function using the definition of the inner product which gives rise to the following results, 

( ) ( )1,00

2 1, 0
2 1 1 1πd 0 0 0

1 1 4 24 2, 1
2π

t
t t

t t t
t

ψ

 ≤ ≤  = = Ψ    ≤ ≤


∫  

( )
( )

( )
2

1,10

8 12 , 0 1 1π 2d 0 0 0 0
168 210, 1

2

t
t t t

t t t
t

ψ


− ≤ ≤  = = − Ψ    ≤ ≤

∫  

( ) ( )
3 2

1,20

8 32 18 , 0
π 3 2 1 1 1d 0 0 0

86 2 3 21 8 1, 1
6 2

t
t t t t

t t t

t

ψ

π

  − + ≤ ≤      = = − − − Ψ  
 − ≤ ≤

∫  

( ) ( )2,00

10, 0
1 12d 0 0 0 0

2 1 1 4 4 2, 1
2π π

t
t

t t t
t t

ψ

 ≤ ≤  = = Ψ    − ≤ ≤


∫  
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( )
( )

( )2,10
2

10, 0
2 1 1d 0 0 0 0

168 1 8 22 3 1 , 1
π 2

t
t

t t t
t t t

ψ

 ≤ ≤  = = − Ψ    − + ≤ ≤


∫  

( ) ( )2,20
3 2

10, 0
2 1 1d 0 0 0 0

88 32 23 1 6 224 17 , 1
π 3 6 2

t
t

t t t
t t t t

ψ

 ≤ ≤  = = − − Ψ      − + − ≤ ≤   

∫  

Based on Equation (24), the operational matrix of integration is obtained as 

6 6

1 1 10 0 0
4 24 2
1 10 0 0 0

168 2
1 1 10 0 0

86 2 3 2
1 10 0 0 0
4 4 2
1 10 0 0 0

168 2
1 10 0 0 0

86 2

Q ×

 
 
 
 − 
 
 − − − 
 =
 
 
 
 − 
 
 − −  

                        (25) 

4. Convergence Analysis 
The convergence of the Chebyshev wavelets basis is indicated in this section. 

Theorem 1. If a function ( ) [ ]( )2 0,1f t L∈ , with bounded second order derivative ( )f t′′ ≤   can be expan- 
ded as a sum of infinite Chebyshev wavelets  

( ) ( )
1 0

,nm nm
n m

f t c tψ
∞ ∞

= =

= ∑∑                                 (26) 

then 

( ) ( )
5

22

2π ,
2 1

nmc
n m

≤
−

                                  (27) 

which means the Chebyshev wavelets expansion converges uniformly to ( )f t . 
Proof. For the proof of this theorem you are referred to [32]. 
Theorem 2. Let ( )f t  be a continuous function defined on the interval [ )0,1  with second derivatives ( )f t′′  

bounded by  , then the accuracy estimation 

( ) ( )

1
22 2 1

, 4 2 4 25 2 5 20 02

π 1 π 1
2 21 1k

M

M k
n m M mnn m n m

σ
∞ ∞ ∞ −

= = ==

 
 ≤ +  − − 

∑∑ ∑∑                   (28) 

where 

( ) ( )

1
2 22 1 11

, 0
0 0

d
k M

M k nm nm
n m

f t c t xσ ψ
− −

= =

   = −     
∑∑∫                         (29) 
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Proof. For the proof of this theorem you are referred to [33]. 

5. Model Decomposition 
The flow dynamics of fluids in the porous medium requires adequately solving the equations governing the flow 
process. In this section, the Chebyshev wavelets collocation method is used to analyze the governing equation of 
the single-phase flow in a porous medium. The unknown function, ( ),P x t  in the problem is defined and 
decomposed at this stage using the Chebyshev wavelets in Equation (30). 

( ) ( ) ( )T2P x D t
t
∂

∇ = Ψ Ψ
∂

                               (30) 

Integrate with respect to t, making use of the Chebyshev operational matrix of integration (Q), 

( ) ( ) ( )T2
0 0

d d
t t

P x D tτ τ
τ
∂

∇ = Ψ Ψ
∂∫ ∫  

( ) ( )T2 2

0t
P P x DQ t

=
∇ −∇ = Ψ Ψ                             (31) 

Substituting the initial condition ( )oP x , we obtain 

( ) ( ) ( )T2 2
oP x DQ t P x∇ = Ψ Ψ +∇                            (32) 

Integrating Equation (30) twice with respect to x together with the boundary conditions gave 

( ) ( ) ( )T2
0 0 0 0

d d d d
x x x x

P D t
t

τ τ τ τ τ∂
∇ = Ψ Ψ

∂∫ ∫ ∫ ∫  

( ) ( ) ( )
TT 2

0 0x x

P P x P x Q D t
t t t= =

∂ ∂ ∂ − − ∇ = Ψ Ψ ∂ ∂ ∂ 
                     (33) 

Substituting the boundary conditions, for 1x =  

( ) ( ) ( ) ( ) ( )
TT 2

0

1R L
x

P P t P t Q D t
t =

∂  ′ ′∇ = − − Ψ Ψ ∂ 
                     (34) 

Therefore 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T TT T2 21 1R L

P x Q D t x Q D t xP t x P t
t

∂ ′ ′= Ψ Ψ − Ψ Ψ + + −
∂

           (35) 

Equation (32) and Equation (35) are substituted into Equation (8) which results to the wavelet representation 
of the single phase model governing the fluid flow in the media given in Equation (36). 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

T TT T2 2

T

1 1r R L

o

c x Q D t x Q D t xP t x P t

K x DQ t P x

φ

µ

′ ′Ψ Ψ − Ψ Ψ + + −

′′= Ψ Ψ +
           (36) 

Taking collocation points 

12 1, , 1, 2, , 2
2

k
i i k

ix t i M
M

−−
= = �                            (37) 

we obtain a set of linear algebraic equations from Equation (36) based on the collocation points. These set of 
linear equations are solved for D. In order to reconstruct the pressure, ( ),P x t  from its wavelet coefficient we 
obtain the expression for ( ),P x t  by integrating Equation (35) with respect to t which gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

T TT T2 2, 1

0 0 0

o

L L R L R L

P x t x Q DQ t x Q DQ t P x

P t P x P t P t x P P

= Ψ Ψ − Ψ Ψ +

+ − + − + −
              (38) 
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6. Simulation Results 
In this section, we present the numerical solution of the single-phase flow model given in Equation (1) using the 
solution (Equation (38)) from Chebyshev wavelet collocation method discussed above and compare with the 
exact solution given in Equation (39) below: 

( ) ( ) ( )
2 212 1 π, exp sin π

π

n

L R L
r

n kP x t P P P x t n x
n c φµ

=

∞

  
= + − + −  

  
∑                (39) 

This will allows us to estimate the error associated with the Chebyshev wavelet collocation method. The 
various parameter values necessary for describing the flow dynamics can be measured or estimated for the 
medium of choice and the occupying fluids. In this study, parameters for the numerical simulation of the flow 
problem were taken from Unsal et al. [34]. Chosen parameter values are for oil as the fluid phase flowing 
through a porous medium. The efficiency of the Chebyshev wavelets method was measured using [28] [34] the 
root mean square error (RMSE) and the maximum error ( L∞ ) 

( ) ( ) ( ) 2
2

1

1 ˆerror RMSE
n

i i
i

L y x y x
n =

= −∑                         (40) 

( ) ( )
1

ˆerror max i ii n
L y x y x∞ ≤ ≤

= −                             (41) 

The wavelet equations resulting from the decomposition of the single phase flow model was solved algebrai-
cally for the wavelet coefficients and used to reconstruct the solution to the single phase flow model. The ap-
proximate solution of the pressure distribution in the reservoir obtained from the use of the Chebyshev wavelet 
collocation method and the corresponding exact solution are present in Figure 1. 

The simulation provided estimates of the evolution of pressure of oil through the reservoir on which the pres-
sure can either be maintained, increased or decrease to achieve the required quantity of oil to be produced. This 
will inform management on the necessary action to take to achieve target production. The absolute errors in the 
approximation of the pressure evolution are shown in Figure 2. Absolute error between analytic and numerical 
solutions in different time period of the flow is shown in Figure 3. 

The simulation results based on the Chebyshev wavelet method, compared to the exact solution have fairly 
small errors measured which makes the Chebyshev wavelet method very efficient and accurate in approximating 
the pressure distribution in the reservoir from the flow model. Figure 4 shows a plot of the numerical solution 
compared to the exact at selected times in the reservoir showing a close approximation of the exact solution. In 
Figure 5, the plot shows the numerical solution at different depths of the reservoir. 

The pressure in the medium was observed to drop gradually over the time period as seen in Figure 5. The 
pressure is greater for higher values of the spatial variable (depth). Figure 6 is a time plot of the root mean 
square errors and the maximum absolute error demonstrating the efficiency of the method. Some of the error 
values are tabulated in Table 1. 
 

 
Figure 1. Pressure distribution in the reservoir.                                                                       
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Figure 2. Absolute error in different flow times t.                                                                                    
 

 
Figure 3. Absolute error in Chebyshev wavelets approximation of pressure in the medium for single-phase flow.                                                                              
 

 
Figure 4. Comparing the numerical solution to the exact solution of pressure in the porous medium.                                    
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Root Mean Square Error Estimate and Maximum Absolute Error values for pressure distribution through the 
reservoir were calculated at each time within the simulation period. These were calculated using Equation (41). 
Table 1 shows respective values for the two error estimators at sample time intervals. 
 

 
Figure 5. Pressure approximation by Chebyshev wavelets method over different time periods.                                        
 

 
Figure 6. Time series of root mean square error (RMSE) and maximum absolute error ( L∞ ).                                        
 
Table 1. Root mean square error estimate (RSME) and maximum absolute error (MAE) at time t.                                     

t 0.1t =  0.3t =  0.6t =  0.8t =  0.9t =  1.0t =  

RSME 0.0478 0.0928 0.1076 0.1116 0.1099 0.1076 

MAE 0.0690 0.1274 0.1331 0.1733 0.1887 0.2029 



P. Amoako-Yirenkyi et al. 
 

 
1220 

7. Conclusion 
This paper presented the Chebyshev wavelet method together with the operational matrix of integration as a 
numerical scheme for approximating the pressure distribution of the single phase flow of fluid in a porous me-
dium. Both Root Mean Square Error Estimate ranging from 0.02 to 0.11 and the maximum absolute error be-
tween 0.04 and 0.21 indicate that the method is efficient for simulating the flow process. Aside the capacity to 
capture trends, breakdown points, discontinuities, self similarities in functions, the use of the Chebyshev wavelet 
method incorporates the boundary condition of the problem automatically making the method very convenient 
for solving boundary value problems. The problem is subsequently reduced to a set of algebraic equations. The 
resulting system of equations was solved to obtain the wavelet coefficient of the unknown functions from which 
the solution to the flow problem was reconstructed. 
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