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Abstract

Based on Riccati transformation and the inequality technique, we establish some new sufficient
conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our
results not only extend and improve some known theorems, but also unify the oscillation of the
second-order nonlinear delay differential equation and the second-order nonlinear delay differ-
ence equation on time scales. At the end of this paper, we give an example to illustrate the main
results.
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1. Introduction

The theory of time scales was first proposed by Hilger [1] in order to unify continuous and discrete analysis.
Several researchers have made greater contributions to various aspects of this new theory; see [2]-[4]. The new
theory of dynamic equations on time scales not only unifies the theories of differential equations and difference
equations, but also extends these classical cases to cases “in between”, e.g., to so-called g-difference equations
where T =q'" :{ql ‘teN, forq >l} .

In recent years, there has been much research involving the oscillation and nonoscillation of solutions of var-
ious equations on time scales such as [5]-[18]. In this paper we study and give the sufficient conditions for os-
cillation of the second-order neutral delay dynamic equation

[a(t)([x(t)Jr r(O)x(z(t)]° )j +q(t) £ (x(r(1)) =0, tety,e0),, (1.1)
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where t, >0 and T is unbounded time scale. Besides that, we will have hypotheses as follows throughout
the paper:
(Hy) y isthe ratio of two positive odd integersand y >1.
(Hz) a,r,q:T—R are positive rd-continuous functions with r(t) satisfying 0<r(t)<1.
(Hs) reCl ([to,oo)T ,"]1‘) is a strictly increasing and differentiable function such that z(t)<t, z(t)—>
as t>ow and T=7(T)cT.
f(x)

(Hy) f eC(R,R) is a continuous function which satisfies —2 L forall x=0, where L is a positive
X

constant.
In addition, for the sake of clearness and convenience,we will use the notation

z(t)=x(t)+r(t)x(z(t))

in the following narrative.

It is well known by reserchers in this field that an dynamic equation is called oscillatory in case all its solu-
tions are oscillatory, and a solution of the equation is said to be oscillatory if it is neither eventually positive nor
eventually negative. We only discuss those solutions x of Equation (1.1) that are not eventually zero in this pa-
per. Moreover we refer to [3] [4] for general basic background, ideas and more details on dynamic equations.

Because of a(t) >0, we shall consider Equation (1.1) respectively based on the case

j: (ﬁf At = oo, (1.2)

and the other case

1Y

2. Several Lemmas

In this section, we present and prove three lemmas which play important roles in the proofs of the main results.
Lemma 1. ([16]) Assume that 7:T — R isstrictly increasing, T = r(']I‘) c T isatime scale and

r(o(t))=o(r(t)). Let x:T>R.If z*(t) and x*(r(t)) existfor teT*, then (x(r(t)))A exists, and
(x(z(1))" =x* (2 (1)) (1) (2.1)
Lemma 2. ([3]) Assume that x is delta-differentiable and eventually positive or eventually negative, then
((x() ) =7 [[ (o () +@-h)x()] 5 ()n 22)

We give the below lemma and prove it similar to that of Q. Zhang and X. Song ([17], Lemma 3.5).
Lemma 3. Based on (1.2), assume that (H;)-(H,) hold. If x is an eventually positive solution of (1.1), there
exists t, e[ty,0), such that

2* (1) =[x()+r(O)x(c(1)) ] >0, (a(t)(zA(t))y ) <0, teft,®).. 23)

Proof. Assume x(t) is an eventually positive solution of (1.1). That is, there exists t, €[t,,0)_ such that
x(t)>0 and x(z(t))>0 for te[t,o) . Because of z(t)=x(t)+r(t)x(z(t)) and 0<r(t)<1, we get
z(t)>0 esaily for te[t, ) . Atthe same time for te[t,, ) , from equation (1.1) we obtain that

(a(t)(zA(t))’)A <0, (2.4)

o) a(t)(zA (t))y is decreasing. From (2.4), we know that z*(t) is either eventually positive or eventually

T
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negative. Now we assert that z* (t)>0.
Suppose to the contrary that there exits t, e[t,, ) such that z*(t)<0 for all te[t, ) . Because
a(t)(z* (t))y is decreasing,

a(t)(z* (1) <a(t,)(z"(t,)) =-M” (2.5)

1
for teft,,») ,where M =[a(t,)]r |zA (t, )| > 0. Based on the above inequality (2.5), we get

1 |7
2 (t)<-M [ﬁ} . telty,o).. (2.6)
After integrating the two sides of inequality (2.6) fromt,to te [tz,oo)T , We have
1
2(t)<2(t)-M[ | ——| as, te[t, ) @.7)
< ) Y a(s) v telty o). .

When t— oo, we get limz(t)=-c from (1.2) and the above (2.7), which is contradictory to z(t)>0. So
the above hypothesis of zkﬁ) <0 is false. In other words, we get z*(t)>0 for t, [t,,o), . This completes
the proof. a
3. Main Results

Now we state and prove our main results in this section.
Theorem 1. Based on (1.2), assume that the conditions (H,)-(H,4) hold. If there exists a positive nondecreas-
ing A-differentiable function & € C, ([ty, ), ,R) such that for every T e[ty,o),

T

Iirp_)swupj: [Lé(s)q(s)(l— r(r(s)))y -1’ (z(s))s" (s)}As =, (3.1)

where
-1

n(r(t))= J: {m]y 8 (s)As |, (3.2)

then (1.1) is oscillatory on [ty, ).
Proof. Assume that (1.1) has a nonoscillatory solution x on [ty,o) . We may assume that x(t)>0 and

x((t))>0 for all te[t, ) 1 t,) . By the definition of z(t), it follows z(t)>0. From (Hs) we
know r(t)<t, by Lemma3we have z*(t)>0,so z(r(t))£ z(t),and 0<r(t)<1, we obtain

x()=2()-r (Ox((1) > 2()-r (1) 2(z(1) > (1-r () 2(0), tet),.
The proof that x is eventually negative is similar. By Lemma 3 we have zA(t)>O for all te[tz,oo)T,
t, €[t, )., and by Lemma 1 and (Hy), there exists T e[t,,c0)_ such that (z(r(t)))A >0 forall te[T, ) .
Using (2.2) and (2.3), we have

((z(f(t)))’)A =y (z(o (@) + @-n)z(e()] " (2( (1))’ ch
> 7[}[0(z2(e(1))+ (@-h)2(z ()] (2(z(1))) dn
= (2(=)) " (2(r ()"

T is unbounded above, which implies T* =T . Furthermore, from Lemma 1 we get

(2(=(1))" = 2" (=(1)) =" (1):
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Thus, by (Hs),

((z(r(t)))y) > (2(e(1))) " 2* (v (1) (1) . (33)

Next we define the function W(t) by

W (t)=6(t) :

te [T,oo)T. (3.4)

Then on [T’OO)T’ we have W (t) > 0. From the basic knowledge of the time scale calculus that you can see in
[3], we obtain

(3.5)

L0501 (< ) +a((0)* () ZA(’“))] | 65)
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we get

Using (3.7) in (3.6), we have
W (£) < -La ()5 (O)(1-r(2()) +7 (7(1)5* (1), [T.),. (38)
At last, integrating (3.8) from T to t, we obtain

0<W (t) <W (T)_j;[w(s)q(s)(l—r(f(s))y —7 (c(s)) 6 (s)}As,

which creates a contradiction to (3.1). This completes the proof. a
Remark 1. From Theorem 1, we can obtain different conditions for oscillation of all solutions of (1.1) with
different choices of &(t).
Next, we give the conditions that guarantee every solution of (1.1) oscillates when (1.3) holds.
Theorem 2. Based on (1.3), assume that the conditions (H1)-(Hy), (3.1) and (3.2) hold. If for every
Te [to,oo)T

1
7

[ g @ r(e(o) afw)au | s ®9)

where

o(t) = jt‘” (LJ; As, (3.10)

then (1.1) is oscillatory on [t,,c0)_.

Proof. Assume that (1.1) has a nonoscillatory solution x on [to,oo)T , then it is neither eventually positive nor
eventually negative. Without loss of generality, we may assume that x(t) >0, then x(r(t)) >0 for all
te[t, o)., te[t,o).  itfollows z(t)=x(t)+r(t)x(z(t))>0 and

x(t)=z(t)-r(t)x(z(t)) = z(t)-r(t)z(z(t)) = (1-r(t))z(t), te[t,o),.

The proof is similar when x is eventually negative. Since a(t)(zA (t))y is decreasing for all te[T,c). and
Te [H:OO)T , it is eventually of one sign and hence z* (t) is eventually of one sign. So we shall distinguish the
following two cases to discuss:

(1) z*(t)>0 for t>T;and

(I z*(t)<0 for t>T.

Case (I). The proof that z* (t) is eventually positive is similar to that in Theorem 1, so it is omitted here.

Case (I). For s>t>T, we have

then

—2*(s)= {ﬂ]i (-2* (1)). (3.11)

Integrating (3.11) from t (t > T) to u (u > t) and letting u — o, we have
1

z(t)2 jf[%}ym (a(t))i(—zA(t))z—e(t)aV(t)zA(t), te[T ),
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and thus
(2(0)) 2=(0(0) a(V)(z* () 2-(0()) a(T)(* (1)) =b(6(V)) . te[T=),,  (312)

where b= —a(T)(zA (T ))7 > 0. Applying (3.12) to Equation (1.1), we find

(a2 @) "> La)(x(=()) > La(-r(<(0)) (2(=(1)))

(3.13)
> Lq(t)(1-r(z(1))) (2(1)) 2bLe” () a(t)(1-r(z(1))) . te[T,),.
Integrating (3.13) from T to t, we have
—a(t)(z* (t))y >-a(T)(z* (T))7 +bLJ'Tt Qy(s)q(s)(l—r(r(s)))y As
> bL.[Tt 0 (s)q(s)(l—r(r(s)))y As.
Therefore,
A>b—|'tys —rrsyss;. .
202 251 @r(e(0) ale)s @19

Next integrating (3.14) from T to t, we obtain

4

_z(t)+z(T)zJ{%J‘:W(u)(l—r(r(u)))yq(u)Au} AS—>®, t—> .

By (3.9), we have lim,_, z(t) = —oo, Which contradicts z(t) > 0. This completes the proof. o

Remark 2. By Theorem 2, we get the sufficient condition of oscillation for Equation (1.1) when the condition
(1.3) is satisfied, while the usual result existing is that the conditions (1.3) was established, then every solution
of the Equation (1.1) is either oscillatory or converges to zero on [to,oo)T .

Theorem 3. Based on (1.2), assume (H;)-(H,) hold and z’(a(t)):a(z’(t)). If there exists a positive A-
differentiable function & € Cl, ([to,oo)T,]R) such that for every T e[ty, ),

- (@) (5 6)

47/5(5)2'A (S)

t—w

Iimsupj{Lq(s)&(s)(lr(r(s))) (n“(r(s)))“}As—oo, (3.15)

where 7 is as the same as that in (3.2), then (1.1) is oscillatory on %to,oo)T .

Proof. Assume that (1.1) has a nonoscillatory solution x on |t;,) . Without loss of generality, we can as-
sume that x(t)>0 and x(z(t))>0 for all te[t,»)_, t, e[to,oo , - By the definition of z(t), it follows
z(t) >0 . The proof when x is eventually negative is similar. Proceeding as the proof of Theorem 1, we obtained
(3.3) and (3.5). Using (3.3) in (3.5), we have that on [T,oo)T

X .8 (Da(a(0))(2* (e (1)) 2*(z(1))" (t)
WA (t)<-La(t)s(t)(1-r(z(t))) + () W(o—(t))—}/5 — . (3.16)
( ) 5(0‘(t)) (Z(T(G(t))))
Also, since (a(t)(zA (t))7 )A <0, we have
a(z(1))(2* (z(1)) za(a(t)(z* (o (1)) .
ZA(r(t))ZMZA(G(t)). 3.17)
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Substituting (3.17) into (3.16), we obtain on [T,o0)

W )=o) 51 Ewlett) PO u(o)
(=) (s(=(1)”
W (t) <—La(t)8(t)(1-r (z(1))) + 5?2_((?))W (o(1))
PO (o) (wle) o
(a(=@)) (5(e(®)
Now using inequality (3.7), we get
t 1 % A A 7%
z(z(t))> J.T(a(r(s)) % (s)As (a(r(t))(z (r(t)))) ,
t 1 v A A v
> j{a(r(s)) e (5)as |(a(t)(2 v))
Hence, we have
2(z(t) | @’ (1)
22 (1) n(z(1)
This implies thaton [T, )
i) =) (" soan” Ao o) o
Using (3.19) in (3.18), we have on [T,c)_. that
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Integrating both sides of this inequality from T to t, taking the limsup of the resulting inequality as t — o
and applying condition (3.15), we obtain a contradiction to the fact that W (t)>0 for te[T,e)... This com-
pletes the proof. a

Using the same ideas as in the proof of Theorem 2, we can now obtain the following result based on (1.3).

Theorem 4. Under the condition (1.3), assume that the conditions (H;)-(H,), (3.9) and (3.15) hold, then (1.1)
is oscillatory on [ty, ). o

4. Application

Now we shall reformulate the above conditions which are sufficient for the oscillation of (1.1) when (1.2) holds
on different time scales:
If T=R, Equation (1.1) becomes

(a)(Z(0) ) +a() f (x(z(1) =0, te[t, =) @.1)

and then conditions (3.1) and (3.15), respectively, become

mpiupj; Ls(s)a(s)(1-r(z(s))) ~&'(s) jr’(ﬂ:;{i}’du ds = o0 4.2)

and

Iimsupj; Lq(s)(l_ r(r(s))y 5(5)_(

ns! 475(5) 7 (5) )J du ds = . (4.3)

The conditions (4.2) and (4.3) are new.
If T =7, Equation (1.1) becomes

A(an (Azn)7)+qnf (%,,)=0,n=0,1,2,, (4.4)
and conditions (3.1) and (3.15), respectively, become
1\ 77
n , lodl (1)
limsupd | Lgs (1-r_,) —AS| D, (—] = (4.5)
N—o  l=ny k=ng—o ak
and
(8.) (30 f 1l
. n a__ ) (AS I (1}
| Lgs (1-r ) -~ 1 = = o0, 4.6
ITILS»O:JPI:Z”:,] o |( ﬁ_g) 475 k_nzozg(ak] o0 (4.6)

At same time, the Theorems 1 and 3 are new for the case T=7.
Example 1. Consider the second-order nonlinear delay 2-difference equations

(tg (z* (t))g JA N (X(%DZ [1+ X2 GD =0, te2”, t2t,=2, 4.7)

where z(t)=x(t) +%x(%) . This gives
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The conditions (H;)-(Hs) are clearly satisfied, and (H4) holds with L = 1. Because

3 3
JQ(LT as=]'sias=Co2 L oast et
a(s) 251

3

(1.2) is satisfied. Now let & (t) =15 forall t>s>2,andthen

Thus when t — oo, we have

E|:L5(S)q(5)(l—l’(r(5)))y—7]7(‘[(5))5A(S)}AS= 21 %—2 % 3[32JA AS — .

235 §5 — 25

It is easy to see that (3.1) is satisfied as well. Altogether, the Equation (4.7) is oscillatory by Theorem 1.
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