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Abstract 
Corresponding to Oswatitsch’s Mach number independence principle the Mach number of hyper-
sonic inviscid flows, ∞ ≈>Ma 5 , does not affect components of various non-dimensional formula-
tions such as velocity and density, pressure coefficients and Mach number behind a strong shock. 
On this account, the principle is significant in the development process for hypersonic vehicles. 
Oswatitsch deduced a system of partial differential equations which describes hypersonic flow. 
These equations are the basic gasdynamic equations as well as Crocco’s theorem which are re-
duced for the case of very high Mach numbers, ∞ → ∞Ma . Their numerical solution can not only 
result in simplified algorithms prospectively utilized to describe the flow around bodies flying 
mainly in the lower stratosphere with very high Mach numbers. It also offers a deeper under-
standing of similarity effects for hypersonic flows. In this paper, a solution method for Oswatisch’s 
equations for perfect gas, based on a 4-step Runge-Kutta-algorithm, is presented including a fast 
shock-fitting procedure. An analysis of numerical stability is followed by a detailed comparison of 
results for different Mach numbers and ratios of the specific heats. 
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1. Introduction 
Depending on the type of flight vehicle configuration and its mission, the atmospheric re-entry into the earth’s 
atmosphere takes place at Mach numbers between 20 and 30 [8]. In order to analyse the flow properties around 
these vehicles at such high Mach numbers, a sufficiently validated data base is required. Existing ground test 
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facilities cannot represent physically and chemically fully correct conditions at such high Mach numbers 
because of the large number of similarity parameters, whose simultaneous compliance is often contradictory [7]. 
Considering the similarity parameters in particular, current facilites are able to produce max. Mach numbers in 
the range of 8 and 10 only [13]. Here, Oswatitsch’s Mach number independence principle explains why above a 
sufficiently high Mach number, for blunt bodies and behind a strong shock with Ma 5∞ ≈> , some aerodynamic 
properties (such as LC , DC , pC , MC , relative velocities u u∞ , v u∞ , the bow-shock stand-off distance 

0∆ , the patterns of streamlines and Mach lines) become independent of Ma∞  [15]. 
However, having applied this approach in the 70s’s of the last century to the US space-shuttle, essential 

differences in the pitching moment between the wind tunnel test results and the data from the first flight 
occured. The assumed simplifications in terms of high-temperature real gas effects in the model were especially 
considered to be the reason for these inaccuracies. 

In connection with his similarity law and basing on the gas dynamic equation and Crocco’s theorem, 
Oswatitsch deduced a system of partial differential equations to calculate the flow field around hypersonic 
vehicles in the limiting case of Ma∞ → ∞ . The equations are derived for calorically perfect gas and inviscid 
flows (see [15]) and are supplemented with the according boundary conditions. Although the Mach number 
principle itself is very common in hypersonics, no detailled numercial solution of Oswatitsch’s system of 
equations has been presented, so far. Based on these equations’ solutions, general similarities between the body 
and the bow shock could be determined enabling the provision of more accurate initial solutions for advanced 
algorithms, e.g. a coupled Euler/second-order boundary-layer method [10]. 

In order to analyze the equations numerically, we first extent Oswatitsch’s steady partial equations to 
unsteady conditions and classify them. This is presented in Section 2. It should be clarified if a time-dependent 
method can be applied. The required boundary conditions as well as the shock determination method and notes 
regarding artificial viscosity are decribed in Section 3. A brief explanation of the implemented code and some 
numerical results of selected cases are presented in Section 4 and 5.  

2. Governing Equations 
Oswatitsch derived a system of equations, consisting of the basic gasdynamic equation and Crocco’s theorem 
for Ma∞ → ∞  under steady conditions only [15]. Due to numerical issues with the calculation of blunt-body- 
problems in [17], we want to apply a multi-step Runge-Kutta-algorithm as solution method. Therefore, it is 
necessary to develop a time-dependent formulation for Oswatitsch’s equations. For simplicity reasons, we only 
present the 2D-case. The extension to 3D is straight forward. 

The derivation of the steady-state Oswatitsch equations is documented e.g. in [7] or [15]. The inclusion of 
time derivatives-which is a new approach in the derivation of Oswatitsch’s formulation-leads to the following 
system of partial differential equations [12]: 

( )
2 2
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2
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which are completed by the expression for the entropy change between two states, refs s− , of a calorically 
perfect gas relating density, entropy and velocity:  

ln ln .ref v S
ref ref

Ts s c R
T

ρ
ρ

− = −                                (3) 

Equation (1) is Crocco’s theorem under the condition of an homenthalp flow, meaning that the total enthalpy 
toth  is constant in the entire flow field and so 0toth∇ = . Equation (2) represents the gas dynamic equation in 

the unsteady case which is derived from continuity and momentum equations. 
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For a detailed analysis, we non-dimensionalize as follows:  

2 2
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c

τ

ρρ ρ
ρ

∞ ∞

∞

∞

= = = = =

= + = = =

 

We introduce Equations (1) and (2) yielding  

( )X X YU S V V Uτ α= + −                                 (4) 

( )Y X YV S U V Uτ α= − −                                 (5) 

( ) ( ) ( )( )2 2 1
X Y Y XR UU VV U U V V UV U Vτ τ τα β β

β
= + + − + − + +                 (6) 

with  

( ) ( )2 21 11 and 1 .
2 2

W Wγα β
γ

−
= − = −  

Thus, Oswatitsch’s system of partial differntial equations is transfered in a format which allows the 
determination of its type. We reshape and define the vector B  as follows  

U
V
R

 
 =  
 
 

B                                       (7) 

to receive a general form for Equations (4)-(6)  

[ ] [ ] [ ] 0.X YI K Mτ + + =B B B                               (8) 

For our investigation, it is sufficient to consider only I in Equation (8) to evaluate the type. The matrix I is  

( )2

1 0 0
0 1 0 .

1 1
2

I

U V Wγ

 
 
 

=  
 −
− − − 
 

                             (9) 

and its eigenvalues iλ  can be calculated by solving the characteristic polynom which in this case yields  

1 1,λ =                                       (10) 

2 1,λ =                                       (11) 

( )2
3

1 1
2

Wγλ −
= −                                   (12) 

for the eigenvalues. As 1W <  is valid in the entire flow field behind the shock all three eigenvalues are 
positive. In consequence, the derived system of equations is hyperbolic in terms of time τ  and can be 
calculated with the proposed Runge-Kutta-method. A description of the treatment for parabolic or elliptic types 
can be found e.g. in [5] or [6]. 

3. Boundary Conditions, Numerical Viscosity and Shock Fitting 
The method of evalutating and approximating the values at the boundaries is discussed in the following part. 
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Different results, stability and convergence rate are often closely related to the kind that the boundary conditions 
are set [1]. In the 2D-case four boundaries determine the flowfield, see Figure 1.  

1) The first boundary condition is at the bow shock. Here the Rankine-Hugoniot-conditions determine the 
values of the variables just behind it (index 2). A detailed derivation of the corresponding equations can be 
found in [7]. All variables depend on the free stream Mach number Ma∞ , the ratio of specific heats γ  and the 
shock angle θ , which is the angle between the shock plane’s tangency and the vector of the free stream 
velocity,  

( )2 2 2 Ma , ,U u u U γ θ∞ ∞= =                                (13) 

( )2 2 2 Ma , ,V v u V γ θ∞ ∞= =                                 (14) 

( )2
2 2 Ma , , .

v

s sS S
c

γ θ∞
∞

−
= =                                (15) 

Different values for γ  can be considered to simulate the thermal excitation of the gas. In this paper, we do 
not distinguish between the gas dynamic state in the flow region ahead and behind the bow shock. So, the value 
for the isentropic exponent is assumed to remain constant in the entire flow field also for 1.4γ < . An effective 
isentropic exponent is not applied. For Equation (15) no limiting value exists. Thus, we define 2S  as the dif-
ference between the entropy increase between an oblique and a normal shock. That means that 2S  is equal to 
zero at the position where the shock front is normal to the free stream. With this trick Oswatitsch [4] obtained an 
expression for the entropy increase across shock waves resulting in the desired limiting value. Under Oswa-
titsch’s assumptions ( )Ma∞ → ∞  Equations (13)-(15) simplify to the following set of boundary conditions at 
the shock  

( )2 2 2 ,U u u U γ θ∞= =                                 (16) 

( )2 2 2 ,V v u V γ θ∞= =                                  (17) 

( )2 2
2 2

obliqueshock normalshock

.
v v

s s s sS S
c c

θ∞ ∞− −
= − =                       (18) 

Figure 2 describes the mentioned parameters in this limiting case: 2U  in Figure 2(a) and 2V  in Figure 
2(b) depend on both: the shock angle and the ratio of the specific heats. This does not hold for the entropy 2S . 
As can be seen in Figure 2(c) the entropy is independent of this ratio. The only oberservable dependency is in 
terms of the shock angle. 

2) The second boundary is at the symmetry line. Here, the usual and well known boundary conditions are 
implemented, see [2].  
 

 
Figure 1. Finite difference grid in physical space.           
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Figure 2. Flow field behind a bow shock.                                                

 
3) The determination of the values at the outlet is just a simple extrapolation. This is allowed as long as the 

local Mach number at this boundary is larger than 1. Therefore, it is necessary to create a flow field which is 
extended enough to allow an acceleration to supersonic velocities. This is obviously closely connected to the 
body contour which is to be investigated.  

4) The wall boundary is that the velocity normal to the wall must be zero. Normally, the calclulated velocity 
at the wall will not satisfy this condition. Thus, it is necessary to modify the velocity vector and the other flow 
variables at the wall. To accomplish this, a finite one-dimesional compression or expansion wave is emited from 
the body surface. This wave needs to have a sufficient strength to cancel the normal component of the velocity 
[2].  

Among others, Pulliam presents in [16] a model of implementing artificial viscosity. His algorithm is 
succesfully utilized to avoid oscillations and to bring the entire calculation to convergence and a steady state. 
This is required when spatial derivatives are discretized as central differences. The added dissipation consists of 
two kinds of viscosity. The first is of second order and should increase its value near shocks. The second is of 
fourth order. It should stabilize the calculation in the whole flow field. The distinction between both is 
controlled pressure-related. At this stage, we waive to present the entire algorithm for the determination of the 
dissipative terms as it is explained very much in detail in [16]. It is to be mentioned that in contrast to Pulliam’s 
suggestions for the disspipation factors ( 2 1 4k = , 4 1 100k = ), we could only achieve stabile calculations and 
results with the usage of the following values which were also used by Lecheler [11]. These are four times larger 
than Pulliam’s proposal:  

2 41.0 and 0.04.k k= =  

The investigated body contour does not lead to the occurance of interior shocks. That is why the value for 2k  
does not affect the solution’s accuracy. However, for consistency reasons we also apply the larger value for 2k . 

In order to decrease computational costs it is possible to calculate just the flowfield between the bow shock 
and the body surface. Position and shape of the bow shock have then to be adapetd to the current conditions in 
the flow field. This method is called shock-fitting. After each iteration the pressure just behind the shock can be 
calculated by  

( )2
2 2exp .p S R

p
γ

∞

= +                                  (19) 

2S  and 2R  are determined by extrapolating the flow properties from the interior flow field. The Rankine- 
Hugoniot condition for curved shocks is  
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( )2
12 2 1

.
1

nMap
p

γ γ
γ∞

− −
=

+
                                  (20) 

Equating Equations (18) and (19) provides the horizontal Mach number in front of the shock 1Ma n  that 
bases on the calculations from the interior of the flow field.  

( ) ( )1 2 2
1Ma exp 1 .

2n S R γγ γ
γ
+

= + + −                            (21) 

1Ma n  is then brought in relation to the actual Mach number Ma∞ , which for simplicity is taken as 
horizontal only. With a∞  as the speed of sound and relk  as a relaxation factor the distance of each point of the 
shock plane has to be repositioned and can be calculated with  

( )shock 1Ma Ma .∞ ∞∆ = ∆ = ∆ −rel rel nx k tv k t a                           (22) 

For time-asymptotic calcualtions the term 1Ma Man ∞−  will tend to zero after a certain number of iterations 
and the distance x∆  each shock point is moved will become zero as well. In that way the final position of the 
shock wave ahead of the body is determined. Typical values of relk  are of the order of ( )110O − . Higher 
values are allowed, but in return the step size between two iteration steps of the movement of the shock has to be 
increased. By using the complete 4-step Runge-Kutta-procedure, additional smooting functions for the shock 
plane as presented in [4] are not required. 

4. Implemented Algorithm, Grid Dependency and Residuum 
The derived unsteady system of equations (see Section 2) can be solved by different approaches. We decided to 
use an explicite form of the equations wherein the time derivatives at time n are determined by the flow 
properties at the same time. The equations are then  

( ) ( ) ( )nn
X X YU S V V Uτ β= + −                                (23) 

( ) ( ) ( )nn
Y X YV S U V Uτ β= − −                                (24) 

( ) ( ) ( ) ( )( )
( )

2 2 1 n
n

X Y Y XR UU VV U U V V UV U Vτ τ τ α α
α

 = + + − + − + +  
              (25) 

( )( ) ( )( )2 21 1with 1 and 1 .
2 2

n n
W Wγα β

γ
−

= − = −  

Spatial derivatives are approximated by central differential quotients. We inroduce the vetor ( )nw  
representing the current flow properties and ( )nPw  representing the left hand side of Equations (22) to 24  

( )

( )

( )

( )

( )

( )

( )

( )

and .

n n

n n n n

n n

U U

Pw V Pw V

R R

τ

τ

τ

   
   
   = =
   
   
   

                          (26) 

in order to apply Jameson’s et al. [9] multi step Runge-Kutta-method accordingly  

( ) ( )0 nw w=                                    (27) 

( ) ( ) ( )1 0 0

2
w w Pwτ∆

= −                                (28) 

( ) ( ) ( )2 0 1

2
w w Pwτ∆

= −                                (29) 
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( ) ( ) ( )3 0 2

2
w w Pwτ∆

= −                                 (30) 

( ) ( ) ( ) ( ) ( ) ( )( )4 0 0 1 2 32 2
6

w w Pw Pw Pw Pwτ∆
= − + + +                       (31) 

( ) ( )1 4 .nw w+ =                                    (32) 

As mentioned in Section 3 the usage of a central difference approximation for spatial derivatives leads to os-
cillations which have to be damped. This is done by adding artificial viscosity. The calculation of this numerical 
viscosity is very time consuming. Thus, we decide to calculate the dissipation terms D only in the first step and 
leave it constant for the rest of each iteration loop. The integration of the numerical viscosity leads to the fol-
lowing modification of Equations (27)-(32): 

( ) ( )0 nw w=                                    (33) 

( ) ( ) ( ) ( )( )1 0 0 0

2
w w Pw Dwτ∆

= − +                            (34) 

( ) ( ) ( ) ( )( )2 0 1 0

2
w w Pw Dwτ∆

= − +                            (35) 

( ) ( ) ( ) ( )( )3 0 2 0

2
w w Pw Dwτ∆

= − +                            (36) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )4 0 0 1 2 3 02 2 3
6

w w Pw Pw Pw Pw Dwτ∆
= − + + + +                 (37) 

( ) ( )1 4 .nw w+ =                                   (38) 

The value for τ∆  in Equations (34)-(38) can not be chosen arbitraryly but has to fulfill the wellknown 
CFL-criterion [5]. Accordingly, part of our investigations is also the influence of the CFL-number in case of 
different Mach numbers and ratios of specific heats. We use the formulation, presented by Hirsch in [5] to 
determine the step-size τ∆ :  

( )
1

2 2
1 1CFL

U V
X Y X Y

τ β
−

 
∆ = + + +  ∆ ∆ ∆ ∆ 

                    (39) 

Figure 3 shows the decrease of the residuum for different Ma∞  and γ . The local CFL-number is set to 0.6. 
The shock front remains fixed until an iteration number of 300 is reached. In this region  
( 0 iteration number 300≤ ≤ ) all graphs are similar. From the iteration number 300 on, the shock fitting method 
is allowed causing a massive increase of the residuum. This is followed by numerous iterations to adapt the 
shock front. The iteration number to achieve the final position and shape of the shock front depends on the Mach 
number and the ratio of the specific heats as Figure 3 shows. It also demonstrates that the reduction of the 
residuum is faster at higher free stream Mach numbers and lower ratios of specific heats. The massive reduction 
which is visible at all graphs after a certain number of iterations (e.g. at iteration ≈ 1500 for Ma 8=  and 

1.20γ = ) is caused due to the finally positioned shock front. Thus, only small corrections within the flow field 
are required afterwards. We found out that local CFL numbers with CFL 0.7>  did not lead to convergence for 
all investigated flow cases because local numerical instabilities caused oscillations which are not damped out 
sufficiently to decrease the residuum. 

To show the grid-independent solution, we selected a high Mach number flow case Ma 20∞ =  and 1.2γ = . 
The lift coefficient LC  was chosen to show grid independency. For our calculations only the lower part of the 
symmetric contour, Equation (39), is considered because this leads to values for LC  and MC  which are not 
equal to zero. For the flow solver the numbers of grid points on the body surface KX and normal to the wall MX 
were changed in a way given in Table 1. The results of the grid study can be seen in Figure 4. For the study on 
Mach number independence, we used 57 × 16 grid points as the deviation of less than ≈2% to a higher resolution  
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Table 1. Grid resolution cases.                                                        

Case KX MX LC  

A 112 32 0.4405 

B 57 16 0.4320 

C 30 8 0.4092 

 

 
Figure 3. Convergence dependency at CFL 0.6= .                                               

 

 
Figure 4. Grid dependency analysis.                                                        

 
is sufficient for our purposes. 

5. Results 
The developed 2D-code was tested on a hyperbolic blunt body contour. The contour has already been investi-
gated earlier by Mundt [14], and follows the equation  

2 2

1.
500 cm 88 cm

x y   
− =   

   
                               (40) 

The contour was analyzed between 500 cm 575.1 cmx≤ ≤ . The reference point for the pitching moment-the 
centre of gravity is calculdated to 29.7 cmx =  and 18.5 cmy = −  as the belower half of the body is 
considered only. The nose radius bR  is 15.49 cm. The analyzed Mach number range is between 3.5 up to 24. 
The grid consists of 16 × 57 nodes, including boundaries. Results for different aerodynamic coefficients at 
different free stream Mach numbers and ratios of specific heats are presented in Figure 5. 
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Figure 5. Aerodynamic coefficients at different Mach Numbers and ratios of specific heats. 

 
We did not evaluate the aerodynamic coefficients on the leeward side of the body because the loacal forces 

are neglible due to the body’s aerodynamic shadow, see [3]. As already said, we only consider the lower part of 
the contour. As to be expected, with increasing Mach number the aerodynamic coefficients for lift, drag and 
pitching moment asymptotically approach a certain value, which from a certain Mach number Ma∞′  on—only 
depends on the ratios of the specific heats. 

The lift coefficient, see Figure 5(a), decreases with decreasing ratio of specific heats which are not effective 
isentropic exponents. At Ma 24∞ =  the lift coefficient declines continiously from 0.49LC =  at 1.4γ =  to 

0.41LC =  at 1.15γ =  which is a loss of approximately 16%. Regarding the drag coefficient in Figure 5(b) a 
similar behaviour can be observed. The drop is though lower and leads to 9%DC∆ ≈ . The lift-to-drag ratio  , 
see Figure 5(c), concludes the mentioned facts, resulting in a loss of about 9% from 1.4γ =  to 1.15γ = . The 
pitching moment coefficient is shown in Figure 5(d). It can be seen that this coefficient is asymptotically 
tending to 0.098 for all the analyzed ratios of specific heats. One has to realize that the trend of the investigated 
aerodynamic coeffcients is strongly influenced by the contour and the considered length of the body. Shorter 
bodies lead to very different values but the mentioned asymptotic behaviour remains. That means in particular 
that the pitching moment generally varies for different ratios of specific heats and only appears to be 
independent of the sepcific heats’ ratio for this special contour.  

Considering the graphs with const.γ =  in Figure 5(a) to Figure 5(d), the largest gradient is in the region of 
3.5 Ma 10∞< < . For higher Mach numbers the aerodynamic coefficients do not change more than 1.5%. In 
Figure 6 this gradient is analyzed more in detail. It describes the relative difference to the case 1.4γ =  for each 
aerodynamic coefficient. It becomes obvious that the relative difference is larger for lower γ . The occurance of 
low ratios of specific heats is typical for high-entalpy flows [7] and reaches its limit with 1p vc cγ = =  
corresponding to the wellknown Newtonian theory. Concluding the findings, Figure 6 indicates that flow field 
calculations with lower γ  reach their plateau at lower Mach numbers than flows with higher γ . However, the 
difference is not very distinctive. 

Figure 7 presents shape and location of the shock and the pressue coefficients along the body contour at 
different free stream Mach numbers and values of γ . The bow shock stand-off distance 0∆  reduces with 
increasing Mach number and decreasing γ , see Figure 7(a)-(c). Lower ratios of specific heats exhibit higher 
densities and lead to shock layers that are located closer to the body contour. We are able to derive an 
approximation for the finally iterated bow shock stand-off distance which provides very good results—error less 
than 5%—for the investigated body contour with bR  as the noase radius of the body:  

( )
0

Ma

2 1with
1 1 1bR

γρ
ρ ρ γ∞→∞

∆ +
= =

− −
                         (41) 

The pressure coefficient in Figure 7 declines continuously from its highest value at the stagnation point at  
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Figure 6. Relative difference of some aerodynamic coefficients to case 1.4γ = .               

 

 
Figure 7. Shock position and pressure coefficient along body contour.                            
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0 my =  to its minimum at the outlet boundary Figure 1. The values at the stagnation point are in very good 
agreement with the Rayleigh Pitot tube formula and changes with different γ . The lower γ , the higher the 
pressure coefficient at the stagnation area ,maxpC . The effect of a loss of pressure is particularly intense at the 
stagnation point region, yielding to a high pressure gradient along the body surface. The gradient’s amount is 
essentially higher along the body contour in the case of lower ratios of specific heats. So, we can explain the 
difference in the values of the aerodynamic coefficients, see Figure 5. 
Contour plots of one selected case are shown in Figure 8. The Mach number and the ratio of specific heats are 
set to Ma 24∞ =  and 1.15γ = . ( )b x  is Mundt’s body contour [14], ( )osws x  is the calculated shape and 
position of the bow shock. The initial conditions were set similar to Anderson’s [3] recommendations. One can 
see that the bow shock lies quite near to the body. This effect is typical for flows at very high Mach numbers and  
 

 
Figure 8. Contours at Ma 24∞ =  and 1.15κ = .                                        
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is besides this amplified by the low ratio of specific heats which leads to a higher density increase. Our solution 
of Oswatisch’s equations leads to a smooth approximation of pressure contours pC , see Figure 8(a). Lines of 

const.S = , see Figure 8(c), are due to Crocco’s theorem, Equation (1), identical to streamlines. S  in this case 
is the already introduced difference of oblique and normal shock entropy rise, see Equation (17). Thus, it is 
mandatory that the line 0S =  lies on the body contour which is also applicable in Figure 8(c). By moving 
from this contour in body-normal direction a gradient is visible which is caused by the dependency of the 
entropy in terms of the shock angle, Equation (17). Figure 8(d) describes iso Mach lines. In comparison to flow 
cases with lower free stream Mach numbers Ma∞  the sonic line turns counterclockwise. Behind the bow shock 
the Mach number along the body increases continuously and smoothly. 

6. Conclusion and Outlook 
In this paper, for the first time a technique is introduced solving Oswatitsch’s system of partial differential 
equations containing the Mach number independence principle succesfully. We present the governing equations, 
characterize the system and show that a time-dependent solution method is applied in order to take into account 
the character of subsonic flows at blunt bodies. It is found out that the used Runge-Kutta-algorithm needs to be 
added by higher values of numerical viscosity in order to achieve convergence in the case of the flow around a 
hyperbolic blunt body contour with subsonic and supersonic regions. One significant result is that lower ratios of 
specific heats require a lower Mach number to achieve Mach number independence. From the numerical point 
of view it is important to mention that the local CFL number has to be lower than 0.7. Further investigations will 
compare results of Oswatitsch’s equations with results of Euler equations especially in terms of the aerodynamic 
coefficients. Limitations such as the transfer to chemically reacting flows and the validity on 3D configurations 
are part of further investigations. 
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Nomenclature 
a  Speed of sound [m/s] ( )s x  shock contour [-] 
( )b x  body contour [-] t  Time [s] 
B  Solution vector [-] T  Temperature [K] 

DC  Drag coefficient [-] ,U V  x-, y-velocity (norm.) [-] 

LC  Lift coefficient [-] ,u v  x-, y-velocity [m/s] 

MC  Pitching moment [-] u∞  free stream velocity [m/s] 

pC  Pressure coefficient [-] v  vector of velcocity [m/s] 

pc  Spec. heat at const pres. [J/kg⋅K] ,X Y  Cartesian coordinates (norm.) [-] 

vc  Spec. heat at const vol. [J/kg⋅K] ,x y  Cartesian coordinates [m] 
D  Numercial viscosity [-] W  Total velocity (norm.) [-] 

iD  Variable  , ,α β δ  Variables  
h  Specific enthalpy [J/kg] 0∆  Bow shock stand-off distance [m] 
,I K  Matrix [-]   Glide ratio [-] 
k  Relaxation factor [-] γ  isentropic coefficient p vc c  [-] 

2 4,k k  Dissipation factor [-] λ  Eigenvalues  
l  Characteristic length [m] ρ  Density [kg/m3] 

M  Matrix [-] ρ  nomalized density [-] 
Ma  Mach number [-] τ  Time (norm.) [-] 
n  interation step [-] φ  Shock angle [˚] 
R  ln ρ  [-] ref  reference (Index)  

bR  Nose radius [m] tot  total (Index)  

SR  Specific gas constant [J/kg⋅K] ∞  free stream related (Index)  
s  Entropy [J/kg⋅K]    
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