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Abstract 
In this paper, Recurrence Quantification Analysis (RQA) is set as a practical nonlinear data tool to 
establish and compare surface roughness (Ra) through percentage parameters of a dynamical sys-
tem: Recurrence (%REC), Determinism (%DET) and Laminarity (%LAM). Variations in surface 
roughness of different machining procedures from a typical metallic casting comparator are ob-
tained from scattering intensity of a laser beam and expressed as changes in the statistics of 
speckle patterns and profiles optical properties. The application of the analysis (RQA) by Recur-
rence Plots (RPs), allowed to distinguish between machining procedures, highlighting features 
that other methods are unable to detect. 
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1. Introduction 
Surfaces generated by machining processes contain topographic characteristics determined by different working 

 

 

*Corresponding author. 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.44083
http://dx.doi.org/10.4236/jamp.2016.44083
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


O. S. Martinez et al. 
 

 
721 

conditions [1]. On the other hand, the “machinability” term may be generalize as “the ease or difficulty with 
which a material can be machined” [2]. However, characterizations of surfaces generated with machining 
processes are usually base on conventional methods as heigth registering by means of mechanical devices, 
where accuracy, scanning time and surface damage are consider as disadvantages to use it for surface roughness 
and shape information extraction. As machining processes, like other physical systems, may evolve in multiple 
spatial and temporal scales ruled by complex dynamics, mathematical transformation-based techniques as 
frequency and/or wavelets analysis have been developed to apply them on surface roughness characterization [3] 
[4]. Nevertheless, such techniques use conventional parameters as average roughness (Ra) and mean-square 
roughness (Rrms) to detect changes related to profile amplitudes, and for this reason an alternative technique 
which does not depend on such parameters is also necessary. 

Chaos theory may be considered for surface height fluctuations treatment, as it takes phenomena, which in 
spite of their apparent random nature, they are governed by deterministic laws which produce complex results as 
they are mutually combined. Among different chaotic signals analysis methodologies, Echmann et al. proposed 
the so called Recursive Plots (RPs) method [5]. This kind of signal graphic analysis reveals characteristics where 
heterogeneities and complicated contributions of the system are highlighted, impossible to detect by means of 
other different methodologies. In order to quantify the complex structure observed on RPs, Webber et al. 
proposed the Recurrence Quantification Analysis (RQA), which is based on quantification of the diagonal line 
structures of RPs [6]. Later, Norbert Marwan succesfully added quantifications based on vertical line structures 
[7]. On the other hand, Kolmogorov Entropy (K) is a quantitative measure of the rate of information loss of a 
system dynamics, where information loss in chaotic systems arises from the exponential divergence of very 
close trajectories. For periodic system its value is zero; for pure random system its value is positive infinity, 
making it impossible to predict the state of the system, and for the case of chaotic system, its value is finite and 
positive [8]. More recently, Pincus [9] introduced the Approximate Entropy (ApEn) to quantify the regularity 
and complexity of time series; its computing is based on the probability that patterns on a time series continue to 
be similar to the next ones on incremental comparisons; ApEn has been applied as a tool to detect changes on 
regularities [10], characterization of rotatory machines [11] and identification of dynamical unstabilities on 
machinary processes [12] [13]. 

The development of several non-contactive methods for surface roughness quantification is a well known 
topic, being optical techniques the most widely used to measure surface features [14]-[18]. In such a context, the 
speckle laser technique has been applied on different engineering and science areas, as for example to obtain 
roughness control parameters on metals and polymers using digital speckle patterns and optical profiles, 
respectively [14]-[23]. It may be thought that combined utilization of these non-contactive techniques with those 
based on non-linear data analysis as RPs, would complicate the problem making it into something intangible; 
nevertheless, recent studies stablished RQA as a valid technique to compare machinability on steels as same as 
metalic wearing on milling and vibration on turning processes, based on speckle images [2] [24] [25]. The aim 
of our present work is to introduce RQA and Kolmogorov Entropy methods as practical analysis tools to com-
pare surface roughness (Ra) from different machining processes with known surface roughness. Analysis data, 
obtained from a scattered laser beam, reveal changes on statistical properties of optical speckle patterns as re-
lated to corresponding mechanical changes. 

2. Experimental Setup and Analysis Tools 
2.1. Optical Profiles and Speckle Patterns 
A λ = 533 nm, 50 mW output power green DPSS laser was used as the light source. A 40× microscope objective 
combined with a f = 50 mm biconvex lens were used to expand and collimate the laser beam. An Alfa a 200 
CCD camera with a 3872 × 2592 pixels resolution and 6.095 × 7.253 mm pixel size was used for capturing and 
recording of speckle patterns. A roughness comparator (Microfinish, Figure 1) was used as the sample to be il-
luminated by the laser to obtain optical profiles and speckle patterns corresponding to the comparator sections 
characterized by different roughness ranges: 0.1 - 0.2 µm (lapped), 0.4 - 0.8 µm (rectified) and 1.6 - 12.7 µm 
(profiled). The green laser beam was directed to a point in the central part of each section to be analyzed on the 
comparator (Figure 2(a)), where a mechanical translational system allowed the longitudinal displacement 
through the sections in order to obtain the corresponding optical point scanning. The generated scattered light at 
a θ = 45˚ reflection angle, containing information about surface point-to-point irregularities and variations, was  
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Figure 1. Microfinish surface roughness comparator.                                                              
 

 
Figure 2. Experimental setup: λ = 533 nm, Plaser = 50 mW, θ = 45˚, flens = 50 mm. (a) Point-to-point optical profiles 
obtaining, (b) Surface speckle patterns obtaining.                                                                           
 
collected by means of a biconvex lens (f = 200 mm) and directed to a power photodetector coupled to a data ac-
quisition unit, which was also coupled to a PC in order to record it for latter analysis. For speckle optical 
patterns obtaining (Figure 2(b)), the green laser beam was amplified to a ∼10 mm diameter with a 40X micro-
scope objective combined with a f = 50 mm biconvex lens. A ∼78.53 mm2 area of the comparator was illumi-
nated with the laser beam considering that its corresponding reflected speckle pattern, recorded with a CCD Alfa 
a 200 camera, contains the variations and irregularities existing on this surface area. 

An application software was used for digital data processing of each recorded speckle pattern. Intensity pro-
files (1 × 1616 pixel vectors) corresponding to ∼78.53 mm2 illuminated cross-section were obtained; the result-
ing vector represents the image average intensity profile which also contains information about surface varia-
tions and irregularities of the considered surface area. 

2.2. RPs and RQA 
The point-to-point and surface speckle optical profiles were used to perform a qualitative analysis of the consi-
dered surface section of the comparator by means of RPs; for a quantitative analysis the RQA technique were 
also used. The Visual Recurrence Analysis application software (VRA Ver. 4.9) was used for RPs building [26]; 
here an one-dimensional time series is expanded to a high-dimensional space where underlying system dynam-
ics is generated inside an artificial phase-space called embedding space [27], and where trajectories in the re-
build space are topologically equivalent to the original space [28]. For such a reason, determination of time-  
delay (τ) is necessary to perform a correct rebuild of the process dynamics, same as a proper embedding dimen-
sion (m). The mutual information function is used for optimal delay time value determining and also for 
phase-space rebuilding [29]; if optimal time-delay value is too short, the coordinates used for rebuild could be 
not enough independent for carrying new information about the system trajectory through the phase-space. 
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Moreover, if optimal time-delay is too long, coordinates may be random with respect to each other. For embed-
ding dimension value selection (m), the false nearest neighbor method is used [30]. The m value determines the 
number of components of the states-system rebuild vector where for noiseless time series, using embedding di-
mension high values causes no problems. Oh the other hand, for time series containing noise, this is amplified 
and the quality of prediction is deteriorated, so it is necessary to fix a proper m value, in such a way that the sys-
tem dynamics is optimally resolved. 

In this work, the Commandline Recurrence Plots application software was used for complex structures quan-
tification [31], where only these RQA following parameters were considered: Recurrence Rate (%REC), Deter-
minism (%DET) and Laminarity (%LAM). Recurrence Rate is the percentage of recurrence points in the 
phase-space, excluding main diagonal points: 

,2 , 1

1% N
i ji j

REC R
N =

= ∑                                   (1). 

Implicit periodic processes are characterized by higher %REC values. Determinism is the percentage of re-
currence points forming parallel segments on the main diagonal, which length reaches or exceeds minimum 
length threshold; %DET allows to tell between dispersed recurrence points and those points organized in di-
agonal patterns, and contains information about duration of a stable interaction as longer is an interaction, as 
higher is the %DET value: 
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where l is diagonal line length parallel to the identity line; P(l) is the frequency distribution of diagonal lines and 
Rij is the recurrence of a state. Laminarity is the percentage of recurrence points included in linear segments 
vertical to the diagonal; %LAM measures chaotic transitions and is related to the quantity of laminar phases in 
the system (intermittence): 
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2.3. Kolmogorov Entropy (K) and Approximate Entropy (ApEn) 
The Kolmogorov Entropy is a measure of information loss index (o gain) along an attractor of certain data set. 
Numerically speaking, K may be estimated as the Rényi Entropy, being the Information Theory of Shannon En-
tropy a particular case. On the other hand, the product of the Shannon Entropy and the Boltzmann constant is the 
Thermodynamic Entropy [8]. The Kolmogorov Entropy is defined as follows [8] [32]: 

( ) ( )
1 21 20 , , ,, , ,

1 1lim lim lim ln
1 NN

m r q
q r t N i i ii i i

K X p
N t q→∞ →∆ →∞= −
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               (4) 

where {X = xi} is the random variable and ( )ix x t i t= = ∆ ; 
1 2, , , N

q
i i ip �  is the joint probability than x (t = ∆t) tra-

jectory is in the i1, x (t = 2∆t) in i2, and x (t = N∆t) in iN. Here, application software RRCHAOS [33] have been 
applied for the maximum-likelihood estimation of Kolmogorov Entropy (KML), proposed by Schouten [34]; 
KML is usually expressed in bits/seconds, where a finite positive value (0 < KML < ∞) means that underlying 
time series/data is chaotic, a value equal to zero (KML = 0) represents an ordered system (regular, cyclic or con-
stant), and an infinite value (KML → ∞) infers that the system is an stochastic one (random) [8]. 

The Approximate Entropy (ApEn) quantifies the regularity and complexity in real time series, where time se-
ries with higher ApEn values may present considerable irregularity fluctuations (more complex), while lower 
ApEn values would indicate more regular time series (less complex). Given its simplicity, ApEn has been ap-
plied in many fields of science and engineering including psychology, geophysics and financial systems. A de-
tailed description of the method may be found on specialized literature [8]-[11]. The Approximate Entropy es-
timated for a finite value N is defined by: 

( ) ( ) ( ) ( )11, , , , , , .mm

s
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For calculation of ApEna Matlab code implementation by Danny Kaplan was used here [35] [36]. 

3. Results and Discussion 
3.1. Data Series and Computed Parameters 
In Figure 3, data series of optical profiles and speckle patterns are shown, corresponding to different conven-
tional machineries which surface roughness vary between Ra = 0.2 - 12.7 µm. 

For qualitative (RPs) and quantitative (RQA) optical and speckle profiles analysis, a mutual information func-
tion analysis was performed to obtain the optimal time-delay value (τ) and consequently, by using the false 
neighbor method, it was used to obtain the embedding dimension value (m) where maximum dimension value 
was set on 10 and then, from obtained τ and computed m, RPs were generated with VRA software [26]. The cor-
responding RQA analysis was performed using Commandline Recurrence Plots software [31] considering τ and 
m values; the average phase-space diameter was also computed to obtain the optimal Threshold Radius (ε) [36] 
[37]. A set of the parameters described above is shown in Table 1. 

3.2. Qualitative Analysis 
The analysis consisted in generating RPs from the optical and speckle patterns of different machining processes 
for different surface roughness degrees. In Figure 4, corresponding RPs generated without threshold value ε are 
displayed. 
 

 
0 200 400 600 800 1000 1200 1400 1600

-2

-1

0

1

2

3

 

 
M

ax
im

um
 In

te
ns

ity

No. Data [pixels]

 0.2 µm

  
(a)                                                  (b) 

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

 

 

Ph
ot

od
et

ec
to

r S
ig

na
l [

VD
C]

time [sec]

 0.4 µm

  
0 200 400 600 800 1000 1200 1400 1600

-4
-3
-2
-1
0
1
2
3
4

 

 

M
ax

im
um

 In
te

ns
ity

No. Data [pixels]

 0.4 µm

  
(c)                                                  (d) 

0 50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2

3

 

 

Ph
ot

od
et

ec
to

r s
ig

na
l [

VD
C]

time [sec]

 0.8 µm

  
0 200 400 600 800 1000 1200 1400 1600

-4
-3
-2
-1
0
1
2
3
4

 

 

M
ax

im
um

 In
te

ns
ity

No. Data [pixels]

 0.8 µm

  
(e)                                                  (f) 

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3  0.2 µm

 
 

Ph
ot

od
et

ec
to

r S
ig

na
l [

VD
C]

time [sec] 



O. S. Martinez et al. 
 

 
725 

0 50 100 150 200 250 300 350 400 450 500

-4

-3

-2

-1

0

1

2

3

 

 

Ph
ot

od
et

ec
to

r S
ig

na
 [V

D
C

]

time [sec]

 1.6 µm

  
0 200 400 600 800 1000 1200 1400 1600

-4
-3
-2
-1
0
1
2
3
4
5

 

 

M
ax

im
um

 In
te

ns
ity

No. Data [pixels]

 1.6 µm

  
(g)                                                  (h) 

0 50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2

3

4

 

 

Ph
ot

od
et

ec
to

r S
ig

na
l [

VD
C]

time [sec]

 3.2 µm

  
0 200 400 600 800 1000 1200 1400 1600

-3

-2

-1

0

1

2

3

4

 

 

M
ax

im
um

 In
te

ns
ity

No. Data [pixels]

 3.2 µm

  
(i)                                                  (j) 

0 50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2

3

 

 

Ph
ot

od
et

ec
to

r S
ig

na
l [

VD
C]

time [sec]

 6.4 µm

  
0 200 400 600 800 1000 1200 1400 1600

-3

-2

-1

0

1

2

3

 

 

M
áx

im
os

 d
e 

In
te

ns
id

ad

No. Datos [pixels]

 6.4µm

  
(k)                                                  (l) 

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

 

 

Ph
ot

od
et

ec
to

r S
ig

na
l [

VD
C

]

time [sec]

 12.7 µm

  
0 200 400 600 800 1000 1200 1400 1600

-3

-2

-1

0

1

2

3

4

 

 

M
ax

im
um

 In
te

ns
ity

No. Data [pixels]

 12.7 µm

  
(m)                                                  (n) 

Figure 3. Optical and speckle profiles, (a) (b): Lapped, Ra = 0.2 µm. (c) (d): Rectified, Ra = 0.4 µm. (e) (f): 
Rectified, Ra = 0.8 µm. (g) (h): Profiled, Ra = 1.6 µm. (i) (j): Profiled, Ra = 3.2 µm. (k) (l): Profiled, Ra = 6.4 µm. 
(m) (n): Profiled, Ra = 12.7 µm.                                                                       

 
The information about the dynamics of a time series/data is usually obtained from the density of points and 

line structures in a RPs [25]; a recursive homogeneous plot without a structure typically indicates an autonom-
ous or stationary process such as white noise, unlike oscillating systems which present periodic recurrent or di-
agonally orientated structures (diagonal lines or discernible patterns). The presence of vertical or horizontal lines 
indicates a presence of intermittence or laminarity, whereas sudden changes on the process or the dynamics as 
same as extreme events are characterized by white areas or bands [7].  
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(a)                                                  (b) 

 
(c)                                                  (d) 

 
(e)                                                  (f) 
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(g)                                                  (h) 

 
(i)                                                  (j) 

 
(k)                                                  (l) 
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(m)                                                  (n) 

Figure 4. RPs obtained from optical and speckle patterns: (a) (b): Lapping, Ra = 0.2 µm. (c) (d): Rectified, Ra = 0.4 µm. (e) 
(f): Rectified, Ra = 0.8 µm. (g) (h): Profiled, Ra = 1.6 µm. (i) (j): Profiled, Ra = 3.2 µm. (k) (l): Profiled, Ra = 6.4 µm. (m) (n): 
Profiled, Ra = 12.7 µm.                                                                                      
 
Table 1. Parameters computed for RPs and RQA analysis.                                                         

Process Surface Speckle pattern resolution: 
1616 × 1080 pixels 

Ra 
[µm] 

Optical profiles Speckle profiles 

τ m ε τ m ε 

Lapped 

  

0.2 29 10 3.54 5 4 2.04 

Rectified   

0.4 23 10 3.54 4 4 2.76 

  

0.8 29 5 2.55 5 5 3.03 

Profiled 

  

1.6 26 10 3.45 3 3 2.44 

  

3.2 38 4 2.16 5 5 3.13 

  

6.4 30 7 2.46 3 3 2.43 

  

12.7 46 4 2.55 2 2 1.97 



O. S. Martinez et al. 
 

 
729 

As it can be observed on Fig. 4, surface roughness Ra offers an initial visual inspection for identification of 
changes on dynamics of the structure, reflected on RPs textures which are defined as small scale patterns and 
revealed by the color and/or texture type (generated by the machining process) in the RP. The optical profiles 
(Figure 3(a), Figure 3(c), Figure 3(e), Figure 3(g), Figure 3(i), Figure 3(k), Figure 3(m)) and their corres-
ponding RPs (Figure 4(a), Figure 4(c), Figure 4(e), Figure 4(g), Figure 4(i), Figure 4(k), Figure 4(m)) 
present certain discernible patterns or diagonally oriented structures as surface roughness increases; this agrees 
with surface texture of each process shown on Table 1, which might implies that sharp cutting forces produced 
during machining process generate very regular signals, and therefore a better machinability. On the other hand, 
speckle profiles (Figure 3(b), Figure 3(d), Figure 3(f), Figure 3(h), Figure 3(j), Figure 3(l), Figure 3(n)) only 
present vertical and horizontal lines as roughness degree increases, which indicate no presence of oscillations 
with some periodicity (i.e. no correlation among them), and also implying a stochastic behavior. This last may 
be related to the effect of surface roughness on the speckle pattern formation (Table 1), where this generates a 
random intensity distribution, as the result of multiple interference of light scattered from each irregularity on 
the rough surface. 

3.3. Quantitative Analysis 
Although RPs offer an initial visual comparison of surface roughness, it is necessary to evaluate it in a quantita-
tive way. In order to perform Recurrence Quantification Analysis (RQA), the m, τ, and ε parameters (indicated in 
Table 1) are necessary, as also to consider the Euclidean distance as a parameter to determine the distance be-
tween new vectors; in our case a minimum diagonal of 2 was considered. In Figure 5(a) the Recurrence Rate 
(%REC) was calculated for optical and speckle profiles as a function of surface roughness Ra; the 
age %REC for the profiles was 47.69% y 60.23%, respectively, which implies that analyzed surface textures 
were generated by processes with certain degree of periodicity. 
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Figure 5. RQA analysis of optical and speckle profiles as a function of Ra.                                   
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The calculated Determinism (%DET) is shown in Figure 5(b), where high %DET values can be adverted for 
different Ra degrees. The average %DET was 99.756% for optical profiles and 91.534% for speckle ones; this is 
reflected on surface texture nature of machining processes (see Table 1 images) as %DET reaches higher values 
when machining produces signals with more stable (regular) correlation and interaction degrees, due to cutting 
forces presented in the process. Unlike the above, if cutting forces during machining process were unstable (ir-
regular), it may generate signals with low %DET values, and therefore, a low machinability. 

In Figure 5(c), the calculated Laminarity (%LAM) is presented; as %LAM may be defined as an alternation of 
states or phases in dynamical systems, in our particular case this could be interpreted as the alternation of regular 
(stable) and irregular (unstable) surface textures, due to cutting forces. The average value %LAM for optical and 
speckle profiles was 99.856% and 95.006%, respectively. 

Figure 6 represents the maximum likelihood Kolmogorov Entropy (KML) calculated from optical and speckle 
series. For the optical ones, KML exhibit a lower rate of information creation for every lapping, rectified and 
profiled cases, where an average value KML = 0.02 bits/seg was obtained; this value is characteristic for regular 
oscillating (certain periodicity degree) and therefore less complex series, which is reflected on the optical pro-
files shown in Figure 3. For the case of speckle profiles, a KML = 0.676 bits/seg (Ra = 0.2 µm) correspond to 
the zone I (lapping process); at zones II (rectified process) and III (profiled process), increments with maxima 
values at KML = 1.237 bits/seg (Ra = 0.8 µm), KML = 1.043 bits/seg (Ra = 1.6 µm) and KML = 1.13 bits/seg (Ra 
= 3.2 µm) were obtained. Such increments may be associated with a high sensitivity to external conditions or 
perturbations as the alternation of regular and irregular texture surfaces, for example, presented on speckle pat-
tern intensities. 

Regarding Approximate Entropy (ApEn) calculation shown in Figure 7, for optical profiles the obtained 
ApEn = 0.07717 low average value evidences the presence of regular oscillations, while for speckle profiles the 
calculated ApEn = 1.89, higher than obtained for optical profiles, may be associated to different irregularities 
between the processes as surface roughness increases, which reflected on the speckle pattern intensities. An ad-
vantage of ApEn with respect to KML is its computational effectiveness as same as its algorithm, which may 
produce acceptable results from certain relatively small number of observations. 

4. Conclusion 
The RQA, KML and ApEn analysis methods can be suggested as practical comparison tools for the surface 
roughness (Ra) on different reliefs. From the presented results and considerations, one might conclude that such 
techniques are very sensitive to changes on mechaning conditions and can be thoroughly employed to establish  
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and compare the machinability of different types of metallic materials. A combined application of optical 
methods together with those based on nonlinear data analysis is here outlined. 
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