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Abstract 
The standard Ginzburg-Landau (GL) equations are only valid in the vicinity of the critical temper-
ature. Based on the Eilenberger equations for a single band and s-wave superconductor, we derive 
a modified version of the standard GL equations to improve the applicability of the standard for-
malism at temperature away from the critical temperature. It is shown that in comparison with 
previous studies, our method is more convenient to calculate and our modified equations are also 
compatible with a dirty superconductor. To illustrate the usefulness of our formalism, we solve 
the modified equations numerically and give the magnetic field distribution in the mixed state at 
any temperature. The results show that the vortex lattice could be still observed even away from 
the critical temperature (e.g., T/Tc = 0.3). 

 
Keywords 
Modified GL Equations, Vortex Lattice  

 
 

1. Introduction 
As is well known, the Ginzburg-Landau (GL) theory is an effective phenomenological theory to describe super-
conductivity [1]. The main concept is that the free energy functional of superconductors can be expressed by the 
power series of order parameters in the vicinity of the critical temperature. Minimization of the functional gives 
the GL equations that can describe the spatial field distribution in superconductors. By solving the linearized GL 
equations, Abrikosov predicted the flux lattice and proposed the criterion of type II superconductors [2]. How-
ever, strictly speaking, the GL equations are only valid in the vicinity of the critical temperature [3].  

Since the classical work by Gorkov [3] [4], GL equations can be derived from the BSC theory via the Green 
functions. Then, based on the Gorkov equations, Eilenberger proposed a kind of simplified formalism via the 
quasi-classical Green functions [5]. A transformation of the Eilenberger equations from partial differential equa-
tions into ordinary differential equations enables the numerical study of the field distribution in the mixed state 
[6] [7]. But all of these works are based on the microscopic theory, which is not convenient enough compared 
with the GL theory. 

Vagov et al. extended the GL equations from the Gorkov theory [8]-[10], so that they can be applicable to any 
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finite temperature cases. However, to establish their formalism needs to calculate multiple integrals, and their 
formalism is only valid for a clean superconductor. In this paper, we develop a more convenient approach to de-
rive a set of modified GL equations from the Eilenberger equations, which are applicable to any finite tempera-
ture cases. Our formalism is not only valid for a clean superconductor, but also for a dirty one. Then, to illustrate 
the validity of our formalism, we will solve the modified equations numerically and investigate the temperature 
dependence of the field distribution in the mixed state. Here, we discuss the single band, s-wave superconductor, 
and we adopt the ansatz that the Fermi surface is a sphere.  

2. Theoretical Analysis 
Eilenberger defines the quasi-classical Green function ( ), ,g rω Fv  and the quasi-classical abnormal Green 

function ( ), ,f rω Fv  [5], where ( )2 1n Tω π= +  is the Matsubara frequency, and Fv  denotes the vector of 
Fermi velocity on the Fermi surface. Considering the isotropic impurity scattering, one can define the relaxation 
time for scattering impτ . The gauge-invariant gradient is *ie= ∇ − AΠ , and its conjugate is *ie+ = ∇ + AΠ , 
where A is the vector potential. The Eilenberger equations take the form 

( ) ( )/ 2 / 2 impf g f g g fω τ+ Π = ∆ + −⋅Fv                    (1a) 

( ) ( )* */ 2 / 2 impf g f g g fω τ+ + +⋅− Π = ∆ + −Fv                  (1b) 

2 1,g ff ++ =                                      (1c) 

where the angular bracket denotes an average over all Fv  on the Fermi surface. For a single band, s-wave su-
perconductor, the self-consistent equations about gap function and current density are given by 

( )/ 2 / ,clnT T T fωπ ω∆ = − ∆∑                             (2) 

( ) *2 0 Im .j TN e gπ
Ω

= ∑ Fv                                (3) 

Here ( ) 2 20 / 2FN m v π=  is the density of state. Actually the gap function ∆  is the order parameter in the 
GL theory. 

In the absence of magnetic fields, for a clean superconductor ( impτ → ∞ ), Equations (1) can be transformed 

into algebraicones, which yield 22
0 /g ω ω= + ∆  and 22

0 /f ω= ∆ + ∆ . 0g  and 0f  can be regarded as 
zero order terms, while the applied magnetic field and the impurity scattering are regarded as the perturbation 
[11]. Accordingly, the quasi-classical Green functions are expressed as  

0 1 2g g g g= + + +  and 0 1 2f f f f= + + + , 

where the subscripts 1, 2 indicate the first-order and second-order correction terms respectively. Substituting 
these forms into Equations (1), one will obtain a set of recursive relations. However, the behavior of this expan-
sion is similar o an asymptotic expansion in mathematics, which is valid only for the case that the anisotropy of 
g and f is weak in a weak magnetic field or in a dirty sample with strong impurity scattering, and otherwise it 
will be divergency. Therefore, to avoid such difficulties, we regard the Green functions in the vicinity of the  
critical temperature as the zero order terms. By introducing 1 / cT Tτ = −  and ( )0 1ω ω τ= − , the Eilenberger 
equations can be rewritten as 

( ) ( )0 0 / 2 / 2 ,impf g f g g fω τω τ− + Π = ∆ + −⋅Fv                   (4a) 

( ) ( )* *
0 0 / 2 / 2 .impf g f g g fω τω τ+ + +− − Π = ∆ + −⋅Fv                 (4b) 

In this form, for a clean superconductor at zero magnetic field, the zero order terms are 22
0 0 0/g ω ω= + ∆  

and 22
0 0/f ω= ∆ + ∆ . Owing to 0 cTω ≥ > ∆ , the factor 22

01 / ω + ∆  can be expressed as the convergent 

power series expansion of 2 2
0/ω∆ . Therefore, the quasi-classical Green functions f and g can be denoted by 
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the convergent power series expansion of 2 2
0/ω∆  and τ . In addition, considering the contribution of the  

magnetic field and impurity scattering, one can deal with Equations (4) by the perturbation procedure. On the 
account of several perturbation parameters in these expressions, we can choose the parameter τ  to control re-
levant quantities so that we can adopt a single-small-parameter series expansions for Equations (4). In our con-
sideration, Π⋅Fv  and 1/2τ  have the same order, and the impurity scattering is regarded as a parameter inde-
pendent of the former quantities.  

Thus, all correction terms for the quasi-classical Green functions can be obtained by the perturbation proce-
dure. Then, substituting the function f in the gap equation; collecting all the terms of 0/nτ ω∆  and calculating 

the summation, one can prove that 0/ /nτ ω ω∆ = ∆∑ . Next, express the term ( )ln 1 τ−  as the power series of 

τ . After some algebraic calculation, collecting all the terms with the order lower than 3τ , we will obtain a new 
equation 

( ) ( ) ( ) ( )

2 4 2 22 2 2 2 *
0 1 2 0 1 2 3

22* 2 2 * *
4

0

2 .
3

c c c a a a a

a b e B ie B oh

+= ∆ + ∆ ∆ + ∆ ∆ + Π ∆ + ∆ Π ∆ + ∆ Π ∆ + ∆ Π∆

 + ∆ Π∆ + Π Π ∆ + ∆ − ∇× ⋅Π∆ +  

            (5) 

Because of the spherical Fermi surface, the odd number of power about the operator Π⋅Fv  will vanish after 
the average over the Fermi surface. Similarly, the expansion of g is substituted in Equation (3), and the even 
number of power about the operator Π⋅Fv  will vanish. Finally, we will obtain the current density, 

( ) ( ) ( ) ( )2 2* * * 2 2 * *
0 1 0

2* 2 * 2 *
1

2[
3

1] [ ] .
3

j w w v ie B

ie B v j oh

+ + +

+ +

= + ∆ ∆ Π∆ − ∆Π ∆ + ∆ Π Π ∆ − ∆Π Π ∆ + ∆ ∇×

− ×∇ ∆ + Π ∆ Π∆ −Π ∆Π ∆ + ∇×∇× +
        (6) 

Oh represents the higher order correction. By introducing 0 1 / 2s impω ω τ= +  and defining the function 

( ) 0, 1 / m n
sm n ω ωΛ = ∑ , the coefficients of each term are given by,  

( ) ( ) ( ) ( )
2

2
0 2,1 2,1 1, 2

6
Fva oτ τ τ = Λ + Λ + Λ +   

( ) ( ) ( )
2

1 3 4,1 3, 2
12

Fva o τ= − Λ + Λ +   , ( ) ( )
2

2 4,1
12

Fva o τ= − Λ +   , 

( ) ( )
2

3 2 4,1
12

Fva o τ= − Λ +   , ( ) ( ) ( )
2

4 2 4,1 3, 2
12

Fva o τ= − Λ + Λ +   , 

( ) ( )
4

2 3, 2 ,
80

Fvb o τ= Λ +    

( )
2

0
1

2c

c o
T

ττ τ
π

 
= + + 

 
, ( ) ( )( )1 3,0 1 2c oτ τ= −Λ + + , ( ) ( )( )2

3 5,0 1
4

c o τ= Λ + , 

( ) ( ) ( ) ( ) ( )( )
* 2

2
0

i 0
Λ 2,1 Λ 1, 2 Λ 2,1

12
c Fe N T v

w o
π

τ τ τ= + + + , 

( ) ( ) ( ) ( )
* 2

1
0

Λ 3, 2 2Λ 4,1
24

c Fie N T v
w o

π
τ= − + +   , 

( ) ( ) ( )
* 4

0
0

Λ 3, 2
40

c Fie N T v
v o

π
τ= +   , ( ) ( ) ( )

* 4

1
0

Λ 4,1 .
40

c Fie N T v
v o

π
τ= +                 (7) 

These are valid for arbitrary impurity concentration. ( )o τ  represents the higher order correction in each 
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coefficient. The general form is too complicated to give analytical coefficients. However, if our concern is fo-
cused on a clean limit case, indicating 0sω ω= , the function ( ),m nΛ  can be expressed by Riemann zeta 

function, i.e., ( ) ( ) ( ), 2 1 ( ) / 2 m nm n
cm n m n Tζ π ++Λ = − + , where ζ  denotes the Riemann zeta function. On the 

other hand, if the impurity scattering is strong enough that 1 / 2s impω τ→ , the function ( ),m nΛ  can also be 

expressed by ( ) ( ) ( ) ( ), 2 1 2 ( ) / 2
n mm

imp cm n m Tτ ζ πΛ = − .  

Since Equation (5) and Equation (6) always contains the higher order corrections, they cannot be solved di-
rectly. By considering the perturbation procedure again, ∆  is written as 0 1 2∆ = ∆ + ∆ + ∆ +  and j as 

0 1 2j j j j= + + + . Equation (5) and Equation (6) can be separated by collecting all the terms according to the 
order of τ , and finally a set of recursion relation will be derived, so that the inconvenience caused by the high-
er order corrections will be eliminated. Besides, since the operator Π  contains the vector potential A, which  
subjects to the relation Aj = ∇×∇× , the operator Π  should also be written as 0 1Π = Π +Π +  (where 

*
0 0ie AΠ = ∇ − , *

1 1ie AΠ = − ). As a result, by collecting all the terms of the order 3/2τ , we will obtain 

( ) ( ) ( ) 20 0 02
0 0 0 0 0 1 0 00 ,a c c ψ= Π ∆ + ∆ + ∆                           (8a) 

( ) ( )0 * *
0 0 0 0 0 0 0 0 .j w += ∆ Π ∆ − ∆ Π ∆                             (8b) 

Here, the numbers in the superscript bracket stand for the order inside the coefficient. Near the critical tem-
perature ( )1τ  , the higher order terms can be neglected, and only the functions 0∆  and 0j  should be con- 
sidered. In fact, Equations (8) are the standard GL equations. But if the temperature is much lower than the crit-
ical temperature, the effect caused by τ  becomes so obvious that the higher order terms about τ  must be re-
tained. Hence the functions 1∆  and 1j  need to be calculated. By collecting all the terms of the order 5/2τ , the 
equations read as, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 20 0 0 0 02 2 * 2 2 2 *
0 0 1 0 1 1 0 1 0 1 1 0 0 0 2 0 0 0

2220 0 0* 4 * *
3 0 0 0 4 0 0 0 0 0 0 0 0 0

2 41 1 1 0 02
0 0 0 0 0 1 0 0 2 0 0 0 1 0 0

0

2
3

2 ,

a c c a a

a a b e B ie B

a c c c a

+= Π ∆ + ∆ + ∆ ∆ + ∆ ∆ + ∆ Π ∆ + ∆ Π ∆

 + Π ∆ ∆ + ∆ Π ∆ + Π ∆ + ∆ − ∇× Π∆  

+ Π ∆ + ∆ + ∆ ∆ + ∆ ∆ ⋅Π Π ∆

⋅

+

        (9a) 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

21 0 0* * * * * *
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1

2 20 * 2 2 * * *
0 0 0 0 0 0 0 0 0 0 0 0 0

0 02 * 2 * * *
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

2[

]

]
3

[ ,

j w w w

v ie B ie B

v w

+ + +

+ +

+ + +

= + ∆ ∆ Π ∆ − ∆ Π ∆ + ∆ Π ∆ + ∆ Π ∆ − ∆ Π ∆ − ∆ Π ∆

+ ∆ Π Π ∆ − ∆ Π Π ∆ + ∆ ∇× − ×∇ ∆

+ Π ∆ Π ∆ −Π ∆ Π ∆ + ∆ Π ∆ − ∆ Π ∆

    (9b) 

Obviously, these equations have much more complicated form than Equations (8). The contribution caused by 
temperature and magnetic field reveals the nonlinear relation, which cannot be derived from the standard GL 
equations. That is to say, the Equations (9) is a set of modified relation for Equations (8). As the GL equations 
have been modified, the free energy functional should also be modified as, 

( )

( ) ( )

22 4 6 2 2 2 2 *
0 1 2 0 1 2

22 22*2 2 * 2 2
3 0

1 1
2 3

1 .
3

F c c c a a a

a b e B j B ohψ

+= ∆ + ∆ + ∆ + Π∆ + ∆ Π∆ + ∆ Π ∆

 + Π∆ + Π ∆ + ∆ + + +  

           (10) 

Following previous recursive procedure, the free energy can be calculated in the same way as well. In addi-
tion, the standard GL equations give linear relations between characteristic lengths (penetration length and co-
herent length) and temperatures. However, if the higher order terms are considered, the linear relations need to 
be modified to nonlinear relations as well. 
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The same result has been reported in a series of Vagov’s papers, which is derived from the Gorkov equations 
[8]-[10]. However, to establish their formalism needs to calculate complex multiple integrals. And it is difficult 
to discuss the convergence property of each term. As a result, they only present the case for a clean supercon-
ductor. In our derivation, the quasi-classical version avoids the calculation of the multiple integral. We only 
need to consider the iteration of the quasi-classical Green function, so that the convergence property of each 
term in our formalism is clear. Besides, form above discussion, it is obvious that our modified equations are not 
only application to a clean superconductor but also to a dirty superconductor. And the only differences between 
them are the coefficients.  

Next, we will investigate the magnetic field in a bulk superconductor to illustrate the validity of our formal-
ism. 

3. Numerical Simulation 
Abrikosov had studied the vortex lattice by solving the standard GL equations near the upper critical field. Ac-
cording to his work, more general solutions of the GL equations were elaborated by Z. Hao et al. [12] and 
Brandt [13] [14] by means of different numerical methods. However, their works are based on the standard GL 
equations, so their theoretical results are valid near the critical temperature. Now, we discuss the magnetic field 
distribution at any temperature by means of our modified GL equations. 

Because of the spatial periodicity of vortex lattice, the order parameter and the vector potential can be ana-
lyzed with the help of the Fourier series. In practical computation, the order parameter ∆  is a complex-value 
function, which does not perform the spatial periodicity, so it cannot be expressed as the Fourier series directly.  
Introduce the square of the magnitude of the order parameter, 2u = ∆ , which is a real-value and periodic func-

tion, where exp( )iϕ∆ = ∆ , so that u can be expressed by the Fourier series expansion. As for the phase of the 
order parameter, it is hardly to write an explicit expression. Since the working factor is the phase gradient ϕ∇  

instead of the phase itself, we can introduce the super velocity *eϕ= ∇ −q A  to express it. Obviously, the in-

duced magnetic field */ e= −∇×B q  can also be denoted by the Fourier series expansion. 
Here, we consider a large enough bulk superconductor and set the direction of the magnetic field along the z 

axis. In this way, the order parameter and the magnetic field are only determined by variable x and y, so that our 
problem is simplified to a 2 dimensional (2D) case. Since every flux line carries the flux quantum with integer 
number, the flux lines are periodically embedded in unit cells one by one. In 2D space, the period of the vortex  
lattices is described by the vector 1 2 2R ( , )mn mx nx ny= +  (m, n integer), where 1x a= , 2x bcosθ= , 2y bsinθ= , 
and a or b is the length of the sides of a parallelogram unit cell; θ is the angle between a and b. Correspondingly 
the reciprocal lattice vector is ( )2 1 22 , /my mx nx Sπ= − +mnK . The size of the unit cell will be determined by 

the relation 0 0 0 1 2qN B S B x yφ = = , where 0φ  is a flux quantum; 0B  is the average induced field; S is the area 

of a unit cell and qN  is the number of flux quantum. Here, we consider the hexagonal structure ( , / 3a b θ π= = ) 
[15], so u and B are respectively expressed as 

( )max

,
[1 exp ],mnn m

u a i− ⋅= ∑ mnK r                             (11) 

( )max
0 ,

( exp ) ,mnn m
B b i= ∇× = ⋅+∑ mn zB q K er                        (12) 

with r = (x, y). The Fourier coefficients mna  and mnb  are complex numbers. Since u and B are real-valued 

functions, there are conjugate relations between different coefficients, *
mn m na a− −= , *

mn m nb b− −= . Besides, we  
only define the expression of B, but not define specific expression of q, because q can be expressed by the 
Maxwell equations. Our task is to determine the coefficients of the ansatzs (11) and (12) to make the modified 
equations true. In order to find the proper coefficients, we can employ a fast Fourier transformation method in-
troduced by Ref. [13]. The iteration procedure for the Fourier coefficients can be achieved by the modified GL 
equations. According to this method, each equation can be expressed as the form, 

( )2 2α , ; , , , ,i iu u F x y u B u u−∇ + = ∇ ∇                          (13a) 
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( )2 2, ; , , , .i iB B G x y u h u uβ−∇ + = ∇ ∇                          (13b) 

Obviously, the Laplacian 2∇  on the left side of equations yields the factor 2− mnK . The remaining terms are  
put to the right side as a kind of “inhomogeneity”, whose coefficients are determined by the last iteration. Using 
the orthogonality of the Fourier series expansion, one can obtain a set of new coefficients. Then, we substitute 
new coefficients into the right side, and repeat this step constantly, until obtain the optimal solution. Here the 
parameters α and β are chosen artificially to control the iteration procedure convergence. Therefore, coefficients 
are given by, 

( ) ( ) ( )2 2, ; , , , exp / ,mna F x y u B u u i α= ∇ ∇ +⋅− rmn mnK K                 (14) 

( ) ( ) ( )2 2, ; , , , exp / .mnb G x y u B u u i β= ∇ ∇ +⋅− rmn mnK K                  (15) 

Here the angular bracket denotes the integral over a unit cell. This method is computed much faster than di-
rect optimization methods. After a few steps of iterating, they will yield the coefficients. Thus, the vortex lattice 
at any temperature will be determined.  

We have mentioned above that the modified GL equations for a clean superconductor and a dirty supercon-
ductor only have the different coefficients, so the equations will yield the similar results for both cases. Here, we  
only discuss the case for a clean superconductor with 24κ =  to elaborate on the temperature effect on the 

magnetic field distribution. The GL parameter κ  of clean superconductor is 3 2 2 2 518 / 7 (3)c FT m e vκ π ξ= , 
which does not depend on temperature. 

Since the filed distribution is determined by the average induced field 0B , we can recall the relation 
/aH F B= −∂ ∂  to determine the applied field aH , where F is the free energy functional. In terms of the virial 

theorem, it can be simplified as [16] 

0 / 2 2a kin fieldB B F F⋅ = +                                  (16) 

In our modified free energy functional (10), kinF  is given by 

( ) ( ) ( )2 222 2 2 222 * *2 2 * 2
0 1 2 3

1
3kinF a a a a b e B jψ+  = Π∆ + ∆ Π∆ + ∆ Π ∆ + Π∆ + Π ∆ + ∆ +  

 

Keeping the magnetic field unchanged, we change the temperature to investigate the magnetic field distribu-

tion. Here, introduce ( )3 2
0 32 0 / 7 (3)c cB T Nπ ξ=  to make the magnetic field dimensionless, i.e., using 0/ ch B B=  

in the next. The average induced field is set to 0 2h = , and the temperature is 0.1,0.3,0.5,0.7,0.9τ =  respect- 
tively. The results are shown in Figure 1. The different colors stand for different magnitudes of the magnetic 
field, and the applied filed is labeled on each figure. This result is more reliable than the result derived from the 
standard GL equations. From Figure 1, on the condition of 0.1τ = , the magnetic field is near the upper critical 
field, and the interaction of flux lines is extremely strong. The fluctuation of induced field is so small that the 
field can be regarded as homogeneous field. As for 0.7τ =  or 0.9τ = ，the fluctuation of induced field is not 
small, and the independent flux lines can be observed more easily. 

Further, we take into account the magnetic field dependence of the vortex lattice away from the critical tem-
perature. Here, we choose the condition of 0.7τ =  ( 0.3 cT T= ). When the cases of 14h =  and 15h =  are 
computed respectively, the numerical simulation yields negative value of correction terms for 14h = , while 
yields positive value for 15h = . This phenomenon is interesting. According to the standard GL equations, the 
upper critical field at 0.7τ =  is given by 2 16.8ch κτ= = . It seems to be no problem. But if we recall the WH 
theory for a clean superconductor [17], the upper critical field at 0.7τ =  is given by 2 14.81ch = . The reason 
is explicit. On the condition of 15h = , the vortex lattice will be unstable or inexistence because the magnetic 
field is higher than the upper critical field. That is to say we cannot obtain the correct solution on the condition 
of 15h = . Therefore, according to the modified equation, we can also determine the vortex more accurately. To 
assure the stable vortex lattice, the average induced field should be lower than the upper critical field. Here, we 
choose the case of 0.5,1,5,10,14h =  to compute respectively, and the results are in Figure 2. In this figure, for 
the case of 14h = , the scale of adjacent vortex is about 0.15 unit length, while the scale extends to 0.78 unit 
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length for the case of 0.5h = . Hence, we conclude that the filed effect on the scale of unit cells is much more 
prominent than the deformation of vortex. 

From Figure 1 and Figure 2, we numerically prove that the vortex lattice will exist away from the critical 
temperature, which cannot be derived from the standard GL equations. So we can conclude that the modified 
equations improve the applicability of the standard formalism. 

 

 

Figure 1. Left panels: contour plots of ( )h r  for 2h =  with the different temperatures parameters 0.1,0.3,0.5,0.7,0.9τ =  
respectively, and the applied fields are noted on the figure correspondingly; right panels: field profile along the red line and 
blue line shown in the left panels. 

 

 

Figure 2. Left panels: contour plot ( )h r  for 0.7τ =  and different induced magnetic fields, 0.5,1,5,10,14h =  respec-
tively, and the applied fields are noted on the figure correspondingly; right panels: field profile along the red line and blue 
line shown in the left panels. 
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4. Conclusion 
In this paper, we derived the modified version of the standard GL equations for an s-wave superconductor from 
the Eilenberger equations. Comparing with other studies, our derivation assures that each term in expansion will 
not be divergency when finite terms are taken into account, and greatly simplifies the complex calculations. In 
addition, our modified equations are valid for both a clean and a dirty superconductor at any temperature. With 
the help of the Fourier series, the modified equations were solved numerically, which could help us analyze the 
magnetic field distribution away from the critical temperature. Based on this, we theoretically proved the exis-
tence of the vortex lattice at low temperature. As a result, we confirmed that the modified equations improve the 
applicability of the standard formalism. 
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