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Abstract 
The Fermi-Dirac (FD) and Bose-Einstein (BE) integrals were applied to a quantum system to esti-
mate the density of particles and relaxation time in some magnetic alloys at low temperatures. An 
integral part in the energy equations of vibrations (phonons), spin waves (magnons), and elec-
trons was mathematically treated. Comparison between theoretical and experimental results gave 
good semi-empirical relations and some physical constants. 
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1. Introduction 
The contributions of the Bloch-Grüneisen and Debye integrals family to phonons, photons, magnons and elec-
trons energy in solids were treated in previous parts [1] [2]. This part will highlight the important part of the in-
tegrals, where the authors’ interests are mostly concerned with the application of the Fermi-Dirac (FD) and 
Bose-Einstein (BE) integrals to real physical problems [3]-[10]. The general equations of these integrals may be 
given as follows: 
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( ) ( ),F F B BE kT E kTε ε µ ε ε µ− = − − = − , and , ,FE E µ  are the energy of the system, Fermi energy, and 
the chemical potential respectively; ( )1nΓ +  is gamma function, and ( ) ( ),s polyloL x g s xi =  is the polyloga-
rithm function, where ( ) ( )1sLi sζ=  is Riemann zeta function. It seems to calculate the internal energy in sol-
ids; one has to follow complicated methods to get energy equations that contain FD and BE integrals, where the 
general bosons energy and fermions energy relationships may be given by a best and simplest form as follows 
[11]-[14]: 
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The main problems in the solid state of physics are the relaxation time, the density of particles, and the chem-
ical potential, especially, those they are disorder magnetic alloys like spin glass or Kondo alloys [15]-[17]. 

The aim of this paper is to calculate some physical variables through a semi-empirical relation by comparing 
between theoretical and experimental results with the help of Fermi-Dirac and Bose-Einstein Integrals. 

2. Physical Vision to Integrals of FD and BE 
Many attempts were made to, mathematically, simplify FD and BE integrals [8]-[10], Equation (1) could be ap-
plied exactly to semiconductors for fermions (n-type) and holes (p-type), but in pure metals and alloys, this equ-
ation needs a simple modification to fit with the distribution functions of fermions and bosons in metals, the 
number of fermions or bosons in a quantum gas system may be given by: 
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where ( ) ( ), ,N f gε ε  are, respectively, a number of particles, distributionfunction, the density of states. For 
bosons, suppose ; ex z βµβε −= ≡  then from (3): 
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The Poly-logarithm function Lis(ζ) defined as: 
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By applying the result of Equation (5) to Equation (4), and made a Series Expansion for the integral at 0µ = , 
one could find the density of bosons as follows: 
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Because the chemical potential of phonons, magnons, photons equal to zero (for these particles they do not 
have a conservation law) then from (6): 
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For bosons that have 0µ ≠ , a phase transition occurs at a critical temperature Tc when 0µ = . Where  
bosons 0µ =  for photons, phonons, and magnons, and bosons 0µ ≠  for others, which need a very complicated  

treatment. 
For fermions, and from (3), which subject to a series expansion of the integral at 0µ = , the result will be 

given as follows: 
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Fermi energy expresses its fermions energy, but the most calculations of Fermi energy considered as constant 
or taken at T = 0, and merged with a total energy, but the reality is not so, fermions chemical potential  

( ( )fermions ,Fn Tµ ) connected with the number of fermions ( ) ( )
3 2 3 228π 3 2 0N V m h µ=  and temperature. The  

chemical potential can be computed by the use of the Sommerfeld approximation [18] [19]:  
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( )fermions 0 F FE kTµ = = , is called the Fermi energy, When the ( )fermions Tµ  takes in its place in the Equation  
(8), the density of fermions will get the exact relation as a function of fermions chemical potential and 
temperature.  

3. Results and Discussion 
Fermi-Dirac and Bose-Einstein integrals are the cornerstones to calculate the thermal energy and its derivative in 
all materials (2, 3, 6, 8). This part will shed light on the relaxation time ( )τ  and the number of particles (fer-
mions and bosons) in the resistivity by comparing between theoretical and experimental expressions, where as 
previous works [20]-[23] were concentrated on the general behavior of resistivity, phase diagrams of Kondo and 
spin glasses, maximum and minimum of resistivity, s-d and RKKY interactions. At low temperatures, there are 
competitions between different interactions, like electron-electron, electron-phonon, electron-magnon, electron- 
impurity interaction, s-d interaction in Kondo alloys, and RKKY interaction in spin glass alloys. All these me-
chanisms may be found at the same time in the total resistivity, and separate them from each other are avery dif-
ficult process. Total resistivity in pure metals, normal and magnetic alloys contain many terms and may be writ-
ten as follows: 
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where , , ,totm n eτ  are the effective mass, number density, effective relaxation time, and charge of electron re-
spectively, , , , , , ,α β χ γ δ η κ  are Coefficients of temperature. The terms in (10) belong to residual resistivity, 
antiferromagnetic (AFM), electron-election (e-e), ferromagnetic (FM), electron-phonon (e-ph), spin glass (SG), 
Kondo effect resistivities. The relaxation time and the number of particles (fermions and bosons), could be cal-
culated from experimental data analysis and compare them with theoretical expressions to get a semi-empirical 
formula for each parameter. For this reason, it is supposed that the number of particles could be calculated from 
thermal energy and specific heats of my previous work [2], and crude experimental database for the temperature 
dependence behavior of resistivity to some magnetic alloys (AuMn alloys) has been collected [24]-[26] and 
analyzed as in Figure 1, which shows a general diagram of experimental resistivity as a function of low temper-
atures. 

Data analysis of the resistivity as a function of temperature by the least-squares method made it possible to 
determine all temperature coefficients. From Figure 1(a) and by using least square method, a suit fitting gave 
this expression: 
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Figure 1. Resistivity behavior as a function of temperature with positive and negative slopes (AuMn mixture of 
spin glass and Kondo alloys).                                                                              
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Data analysis from Figure 1(b) by the same above method, the least square method gave this expression: 
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Data analysis from Figure 1(c), mathematical analysis gave this expression: 
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Data analysis from Figure 1(d) by the least square method, analysis gave this expression: 
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Comparing between theoretical Equation (10) and experimental Equations (11)-(14), and collect them in a 
Semi-empirical equation to form a general relaxation time equation, which may be written as follows: 
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Equation (15) will give the values of relaxation time for all mechanisms. In addition, one could determine a 
relaxation time by a special method for Kondo effect and spin glass could be applied to relaxation time for these 
systems. The relaxation time for these regimes may be given as follows [20]-[23]: 
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where, respectively, ( ), , , ,a f K sd FE T T J n E  are activation energy, freezing temperature, Kondo temperature, 
integral constant, and ( )Fn E  number density at Fermi level. 

4. Conclusion 
Equivalence between internal energy and resistivity and specific heat allows concluding useful semi-empirical 
relationships, and with the assistance of the integrals of the FD and BE, many problems have been resolved, 
such as the particles density and relaxation time. It is necessary to collect many experimental results from all 
other techniques, and then make a comparison between those results to choose the best. 
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