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Abstract 
This work is aim at providing a numerical technique for the Volterra integral equations using Ga-
lerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Vol-
terra integral equations of the first and second kind respectively using orthogonal polynomials as 
trial functions which are constructed in the interval [ ]1,1−  with respect to the weight function 

( )w x x21= + . The efficiency of the proposed method is tested on several numerical examples and 
compared with the analytic solutions available in the literature. 
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1. Introduction 
Modelling of physical problems arising from every discipline of study are often transformed into integral equa-
tions, namely, Volterra linear and nonlinear integral equations of the first and second kind respectively. For this, 
several authors have studied and applied these equations from the viewpoint of obtaining an analytic and unique 
numerical solution. In recent years, there has been a growing interest in the Volterra integral equations mainly 
due to its applicability in many areas of mathematical physics (astrophysics, contact problem, heat transfer 
problem and reactor theory). Consequently, most conventional analytic integral equations solvers have been de-
veloped and implemented since the digital computer was introduced some decades ago. The considerations are 
whether these solvers give an accurate solution, use less computation time, implement and give a compact solu-
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tion form.  
However, most of these solvers such as the Adomial decomposition method (ADM), Laplace transform me-

thod (LTM) and the Successive substitution method (SSM) do not have solutions in compact form. Thus, nu-
merical stimulation in engineering science and in applied mathematics has become a powerful tool to model dif-
ficult phenomena, particularly, when analytic solutions are difficult to achieve. 

Many researchers have developed numerical methods for the solution of Volterra integral equations using 
various polynomials. Rahman [1] used Galerkin method with Hermite polynomial basis for the numerical solu-
tions of Volterra integral equations of the second kind. Shafigul et al. [2] used Galerkin method to explore the 
solutions of linear and nonlinear Volterra equations using both Hermite and Chebychev polynomial basis. 
Shahsavaran [3] solved Volterra integral equations of Abel type using Block pulse functions. Maleknejad et al. 
[4] worked on a new approach to the numerical solution of Volterra Integrals by using Bernstain’s approxima-
tion. Also, Kamyad et al. [5] worked on a numerical approach for solving equations with controlled error. Shirin 
and Islam [6] used these polynomials for solving Fredholm integral equations of the second kind. Amarantunga 
[7] described an augmented Galerkin technique for the solution of one dimension partial differential equation. 

However, in this paper, an effective and efficient Galerkin numerical algorithm is formulated with orthogonal 
polynomials as basis which are constructed in the interval [−1, 1] with respect to the weight function w(x) = 1 + 
x2. The proposed method is employed to solve linear Volterra integral of the first and second kind with regular 
and weak singular kernels, in details, in Section 3. Section 2 presents the concept of orthogonal polynomials. 
Section 4 presents numerical experiments of different kinds of Volterra integral equations to verify the proposed 
method. The results of each numerical example indicate convergence and error analysis are discussed. Finally, 
the conclusion is presented in Section 5. 

2. The Orthogonal Polynomials 
Let 

( ) ( ) ( )d
b

i j i ija
w x x x x hϕ ϕ δ=∫                               (1) 

with the Kronecker delta ijδ  defined as 
0,
1,ij

i j
i j

δ
≠

=  =
 

where the weight function w(x) is continuous and positive on [a, b] such that the moments 

( ) d , 0,1, 2,3,
b i
a

µ w x x x i= =∫                               (2) 

exist. 
Then the integral, 

( ) ( ) ( ), d
b

i j i ja
w x x x xϕ ϕ ϕ ϕ= ∫                             (3) 

denotes an inner product of polynomials iϕ  and jϕ . 
For orthogonality, 

( ) ( ) ( ) [ ], d 0, , 1,1
b

i j i ja
w x x x x i jϕ ϕ ϕ ϕ= = ≠ −∫                         (4) 

If 1ijδ = , then the polynomials are not only orthogonal but orthonormal. 
In this study, we adopt the weight function ( ) 21w x x= +  in the interval [ ] [ ], 1,1a b ≡ −  
The construction of , 1, 2,3,i iϕ =   of the approximant: 

( ) ( )( )
n

i i
i

y x a x y xϕ= ≅∑                                  (5) 

now follows: 

Construction of Orthogonal Basis Function 
For the purpose of constructing the basis function, we use additional property that 
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( )1 1nϕ =  

where  

( ) ( )
0

n n i
n iix C xϕ

=
= ∑                                  (6) 

satisfies the orthogonality property (4). 
Thus, the first six orthogonal polynomials ( )i xϕ ; 7i ≥  valid in [ ]1,1−  are given below. 

( )0 1xϕ =  

( )1 x xϕ =  

( ) ( )2
2

1 5 2
3

x xϕ = −   

( ) ( )3
3

1 14 9
5

x x xϕ = −   

( ) ( )2 4
4

1 333 2898 3213
648

x x xϕ = − +   

( ) ( )3 5
5

1 325 1410 1221
136

x x x xϕ = − +   

( ) ( )2 4 6
6

1 460 8685 24750 17589
1064

x x x xϕ = − + − +  

3. Mathematical Formulation of Integral Equation 
In this section, we first consider the Volterra integral of the second kind given by 

( ) ( ) ( ) ( ), d ,
x

a
y x k x s y s s f x a x bλ+ = ≤ ≤∫                        (7) 

where ( )y x  is the unknown function to be determined, ( ),k x s  is the kernel function, which is continuous or 

discontinuous integrable, ( )f x  being the known function satisfying ( ) 0f a =  and λ  is the constant. 
Now, we use the Galerkin method to find an approximate solution ( )ny x  of Equation (7). Let the approx-

imant be defined uniquely as Equation (5), where ( )i xϕ  are orthogonal polynomials of degree i constructed, 
ia  are the unknown parameters to be determined and n is the number of piecewise polynomials. 
Now, substituting Equation (5) into Equation (7), we get 

( ) ( ) ( ) ( )1 , d ,
xn

i ii a
x k x s s s f x a x bϕ λ ϕ

=
 + = ≤ ≤  ∑ ∫                     (8) 

We obtain the Galerkin equation by multiplying both sides of Equation (8) by ( ) ( ), 0 1i x i nϕ =  and then in-
tegrating with respect to x from a to x we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 , d d d , 0 1
b x bn

i i j ji a a a
x k x s s s x x f x x x j nϕ λ ϕ ϕ ϕ

=
  + = =    ∑ ∫ ∫ ∫           (9) 

Equation (9) is written in the matrix form as 
Ax b=                                          (10) 

where the elements of A, x  and b  are ija , ix  and jb  respectively, given by 

( ) ( ) ( ) ( ) ( ), d d , , 0 1
b x

ij i i ja a
a x k x s s s x x i j nϕ λ ϕ ϕ  = + =    ∫ ∫                  (11) 

[ ]T1 2, , ,i nx x x x=                                      (12) 

( ) ( ) ( )d , 0 1
b

j ja
b f x x x j nϕ= =∫                             (13) 

Now, the unknown parameters are determined with a solver, which in this case is the Gaussian elimination 
method, and substituting these parameters in Equation (5), we get the approximate solution  ( )y x  of the 
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integral Equation (7). 
Now, we consider the Volterra equation of the first kind given by  

( ) ( ) ( ), d ,
x

a
k x s y s s f x a x b= ≤ ≤∫                           (14) 

where ( )y x  is the unknown function to be determined, ( ),k x s  is the kernel function, which is continuous or 
discontinuous integrable, ( )f x  being the known function satisfying ( ) 0f a =  and λ  is the constant.  

Applying the same procedure as described above, we obtain the matrix form 
Ax b=                                        (15) 

where the elements of A, x  and b  are ija , ix  and jb  respectively, given by 

( ) ( ) ( ) ( ), d d , , 0 1
b x

ij i ja a
a k x s s s x x i j nλ ϕ ϕ  = =    ∫ ∫                     (16) 

[ ]T1 2, , ,i nx x x x=                                     (17) 

( ) ( ) ( )d , 0 1
b

j ja
b f x x x j nϕ= =∫                              (18) 

The unknown parameters are determined with a solver, which in this case is the Gaussian elimination method, 
and substituting these parameters in Equation (5), we get the approximate solution ( )y x  of the integral Equa-
tion (14). 

The absolute error for this formulation is defined by absolute error 

( ) ( )ny x y x−  

4. Numerical Examples 
To illustrate the effectiveness of the proposed method, we demonstrate the method with five numerical examples 
which include first and second kind with regular and weakly kernels. For all examples considered, the solutions 
obtained by the proposed method are compared with the exact solutions available in the literature. The rate of 
convergence of each of the Linear Volterra integral equations is composed as  

( ) ( )1r i iE y x y x δ+= − <   

where ( )iy x  is the approximate solution by the proposed method using the nth  degree polynomial approxi-

mation and δ  varies from 610−
 for 10n ≥  (See [2]). 

Example 1: Consider the linear Volterra integral equation of the first with continuous kernel [2] 

( ) ( ) 2 3
0

5 3 3 d 5 , 0 1
x

x t u t t x x x+ − = + ≤ ≤∫                         (19) 

The exact solution is ( ) 2u x x= . Using the derived formula of Equation (15) and solving for 1n ≥ , we get 

the approximate solution ( ) 2u x x= , which is the exact solution. This result agrees with [2] experiment with 
Chebychev polynomial basis for 1n ≥ . 

Example 2: Consider the first Abel’s linear Volterra integral equation [2] of the form 

( )
( ) ( )2 3

0

1 2d 105 56 48 , 0 1
105

x
u t t x x x x

x t
= − + ≤ ≤

−
∫                 (20) 

The exact solution is ( ) 3 2 1u x x x= − + . Results have been shown in table 1 for 2n = . The maximum ab-
solute errors obtained is in order of 410−  for 2n = . For 3n = , we obtain the approximate solution as 
( ) 3 2 1u x x x= − +  which is the exact solution itself. On the other hand, the approximate solutions are same as 

exact solutions in the case of Chebychev polynomial basis for 10n =  by [2] experiment. Also, the absolute er-
rors were obtained in the order of 710−  for 10n =  by [4] with Bernstein’s polynomials. 

Example 3: Consider the second Abel’s linear Volterra integral equation of the form [1] 

( )
( )

( )
5

2 2
0

1 16d , 0 1
15

x
u x u t t x x x

x t
+ = + ≤ ≤

−
∫                         (21) 
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The exact solution is ( ) 2u x x= . Using orthogonal polynomials and derived formula in (10) for 2n = , we 

get the approximate solution as ( ) 2u x x= , which is the exact solution. On the other hand, the absolute errors 

were obtained in the order 510−  by [1] experiment with Hermite polynomials basis. 
Example 4: Consider the first Abel’s linear Volterra integral equation of the form [2] 

( )
( )

0

1 d , 0 1
x ru t t x x

x t
= ≤ ≤

−
∫                             (22) 

where r is any positive number. The exact solution of the integral Equation (22) given by 

( ) ( )( )
( )

2 12 1
2

Γ2
π Γ 2

r rr
u x r x

r

− −
=  

In one numerical example r is chosen as 5r =  and 3
2

. 

For 5r = , the exact solution is ( )
9
21280

315
u x x= . Results have been shown in Table 2 for 2n =  and 3. 

The maximum absolute errors obtain is in the order of 310−  and 410−  for 2n =  and 3 respectively. 

For 3
2

r = , the exact solution is ( ) 3
4

u x x= . Using the proposed method for 1n ≥ , we obtain the approx-

imate solution as ( ) 3
4

u x x= , which is the exact solution. This result is in line with [2] results with Hermite and 

Chebychev polynomial basis 1n ≥ . 
Example 5: Consider the second Abel’s linear Volterra integral equation of the form [1] 

( ) ( )
0

d e , 0 1
x xu x u t t x− = ≤ ≤∫                                (23) 

The exact solution is ( ) ( )e 1xu x x= + . Results is shown in Table 3 for 2n =  and 3. The maximum abso-
lute errors obtain in the order for 310−  and 410−  for 2n =  and 3 respectively. On the other hand, the abso-
lute errors were obtained in the order 410−  for 4n =  by [1] experiment with Hermite polynomials basis. 

5. Conclusion 
In this paper, we have employed the Galerkin method based on the orthogonal polynomial basis tool which was 
constructed and has been developed to solve first and second kind Volterra integral equations. The numerical 
results obtained by the proposed method show an excellent rate of convergent even as n increases, which is 
shown in Tables 1-5. Also, the numerical solutions coincide with the exact solutions even at few numbers of  

 
Table 1. Computed Absolute Error of examples 1 for n = 2.                                                      

x Exact Solutions Approximate Solutions Absolute Error 

0.00 1.0000000 1.0372960 3.7296E−02 

0.10 0.9910000 0.9907925 2.0746E−04 

0.20 0.9680000 0.9519814 1.6019E−02 

0.30 0.9370000 0.9208625 1.6138E−02 

0.40 0.9040000 0.9208625 6.5641E−03 

0.50 0.8750000 0.8974359 6.7016E−03 

0.60 0.8560000 0.8817016 1.7660E−02 

0.70 0.8530000 0.8736597 2.0310E−02 

0.80 0.8720000 0.8733100 8.6527E−03 

0.90 0.9190000 0.8956876 2.3312E−02 

1.00 1.0000000 0.9184149 8.1585E−02 
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Table 2. Computed Absolute Error of examples 4 for n = 2.                                                      

x Exact Solutions Approximate Solutions Absolute Error 

0.00 0.0000000 0.0854492 8.5449E−02 

0.10 0.0000409 0.0056061 5.5652E−03 

0.20 0.0009255 −0.0361694 3.7095E−02 

0.30 0.0057385 −0.0398773 4.5616E−02 

0.40 0.0209421 −0.0055176 2.6460E−02 

0.50 0.0571629 0.0669098 9.7468E−03 

0.60 0.1298465 0.1774048 4.7558E−02 

0.70 0.2598309 0.3259674 6.6137E−02 

0.80 0.4738648 0.5125977 3.8733E−02 

0.90 0.8050833 0.7372955 6.7788E−02 

1.00 1.2934497 1.0000610 2.9339E−01 

 
Table 3. Computed Absolute Error of examples 4 for n = 3.                                                      

x Exact Solutions Approximate Solutions Absolute Error 

0.00 0.0000000 −0.0213623 2.1362E−02 

0.10 0.0000409 0.0062002 6.1593E−03 

0.20 0.0009255 0.0097061 8.7806E−03 

0.30 0.0057385 0.0063387 6.0023E−04 

0.40 0.0209421 0.0132812 7.6608E−03 

0.50 0.0571629 0.0477171 9.4458E−03 

0.60 0.1298465 0.1268295 3.0169E−03 

0.70 0.2598309 0.2678019 7.9710E−03 

0.80 0.4738648 0.4878174 1.3953E−02 

0.90 0.8050833 0.8040594 1.0239E−03 

1.00 1.2934497 1.2337112 5.9738E−02 

 
Table 4. Computed absolute error of examples 5 for n = 2.                                                      

x Exact Solutions Approximate Solutions Absolute Error 

0.00 1.0000000 1.0628855 6.2886E−02 

0.10 1.2156880 1.2243500 8.6620E−03 

0.20 1.4656833 1.4456876 1.9996E−02 

0.30 1.7548164 1.7268981 2.7918E−02 

0.40 2.0885546 2.0679816 2.0573E−02 

0.50 2.4730819 2.4689380 4.1439E−03 

0.60 2.9153901 2.9297675 1.4377E−02 

0.70 3.4233796 3.4504699 2.7090E−02 

0.80 4.0059737 4.0310452 2.5072E−02 

0.90 4.6732459 4.6714936 1.7523E−03 

1.00 5.4365637 5.3718149 6.4749E−02 



J. E. Mamadu, I. N. Njoseh 
 

 
382 

Table 5. Computed absolute error of examples 5 for n = 3.                                                       

x Exact Solutions Approximate Solutions Absolute Error 

0.00 1.0000000 0.9945330 5.4670E−03 

0.10 1.2156880 1.2167930 1.1050E−03 

0.20 1.4656833 1.4679686 2.2853E−03 

0.30 1.7548164 1.7556649 8.4845E−04 

0.40 2.0885546 2.0874877 1.0669E−03 

0.50 2.4730819 2.4710422 2.0398E−03 

0.60 2.9153901 2.9139341 1.4560E−03 

0.70 3.4233796 3.4237689 3.8930E−04 

0.80 4.0059737 4.0081521 2.1784E−03 

0.90 4.6732459 4.6746893 1.4434E−03 

1.00 5.4365637 5.4309860 5.5777E−03 

 
polynomials employed to find the approximate solution. Thus, the method is effective, efficient and reliable for 
the solution of other integral equations of other types. 
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