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Abstract 
We use the methods of “The Welch-Satterthwaite test”, “The Cochran-Cox test”, “The Generalized 
p-value test”, “Computational Approach test” to structure different Confidence Distributions, and 
use the Confidence Distributions to give an new solution the confidence interval of the difference 
between two population means where the populations are assumed to be normal with unknown 
and unequal variances. Finally, we find the most effective solution through the numerical simula-
tion. 

 
Keywords 
Behrens-Fisher Problem, Confidence Distribution, Interval Estimation Component 

 
 

1. Introduction 
1.1. Behrens-Fisher Problem 

Let 1 2, , ,
ii i inX X X , i = 1, 2, be i.i.d. samples from two normal populations ( )2,i iN µ σ , i = 1, 2. Four para-

meters 1 2 1 2, , ,µ µ σ σ  are assumed to be unknown and not necessarily equal. Behrens-Fisher problem is to give 
the interval estimation of the parameter 1 2θ µ µ= − . 

In the case of 1) 2 2
1 2σ σ=  but unknown; 2) 2 2

1 2 cσ σ =  and 1 2n n= , we can use frequentist approach to 
solve Behrens-Fisher problem. In general case, we usually use large sample theory to find the approximate con-
fidence interval [1]. 

1.2. Confidence Distribution 
In Bayesian inference, researchers typically rely on a posterior distribution to make inference on a parameter of 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.42036
http://dx.doi.org/10.4236/jamp.2016.42036
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


W. Y. Tao, W. Z. Ye 
 

 
287 

interest, where the posterior is often viewed as a “distribution estimator” [2] for the parameter. A nice aspect of 
using a distribution estimator is that it contains a wealth of information for almost all types of inference. In fre-
quentist inference, however, we often use a single point or an interval to estimate a parameter of interest. A sim-
ple question is: Can we also use a distribution function, or a “distribution estimator”, to estimate a parameter of 
interest in frequentist inference in the style of a Bayesian posterior? 

Confidence Distribution is one such a “distribution estimator” that can be defined and interpreted in a fre-
quentist framework, in which the parameter is a fixed and non-random quantity. The concept of confidence dis-
tribution has a long history, especially with its early interpretation associated with fiducial reasoning. Histori-
cally, it has been long misconstrued as a fiducial concept, and has not been fully developed under the frequentist 
framework. One nice aspect of treating a confidence distribution as a purely frequentist concept is that the con-
fidence distribution is now a clean and coherent frequentist concept. Recently as the development of Confidence 
Distribution’s applications (such as Monte Carlo simulation based on Confidence Distribution), this approach 
has again aroused general concern. 

To put it simply, Confidence Distribution is a distribution of the parameter, we can know almost all of the in-
formation of the parameter. But methods to the construction of the Confidence Distribution are not unique, so 
we can get different Confidence Distributions and then find the optimal one. 

The main work of this article is using the Confidence Distribution method to solve the Behrens-Fisher prob-
lem. Firstly, we define the Confidence Distribution; then, we construct Confidence Distribution through some 
test method and prove these distributions to meet the definition; finally we find the optimal solution Confidence 
Distribution through numerical simulation. 

2. Definition 
The concept of “confidence” was first introduced by Neyman (1934, 1937) in his seminal papers on confidence 
intervals, where frequentist repetition properties for confidence were clarified. The earliest use of the terminol-
ogy “confidence distribution” that we can find so far in a formal publication is Cox (1958). But for a long time 
nobody gives a complete and specific definition for Confidence Distribution. 

The following definition is proposed and utilized in Schweder & Hjort (2002) [3] and Singh et al. (2005, 2007) 
[4] [5]. 

Definition 2.1: Given: Θ  is the parameter space of the unknown parameter of interest θ ; X is the sample 
space corresponding to sample data 1, , nx x x=  . We called the function ( ) ( ),n nH H x⋅ = ⋅  a confidence dis-
tribution (CD) for a parameter θ , if 
1) For each given x X∈ , ( )nH ⋅  is a cumulative distribution functionon Θ ; 

2) At the true parameter value 0θ θ= , ( ) ( )0 0,n nH H xθ θ≡ , as a function of the samplex, follows the uni-
form distribution U [0,1]. 

Also, the function ( )nH ⋅  is an asymptotic confidence distribution, if the U [0,1] requirement is true only 
asymptotically. 

Theorem 2.1: If for each given x X∈ , ( )nH ⋅  is a cumulative distribution function on Θ , then we can get 

that at the true parameter value 0θ θ= , ( ) ( )0 0,n nH H xθ θ≡ ,as a function of the samplex, follows the uniform 
distribution U [0,1]. 

Proof: The cumulative distribution function ( )nH ⋅  has an inverse function if ( )nH ⋅  is continuous. Given 

( ) ( )1
n nH τ −⋅ = ⋅ , for any ( )0,1α ∈  and θ ∈Θ , we can get that 

( ){ } ( ){ }1: :n nx H xθ α θ τ α−≤ = ≤  

At 0θ θ= , we can get that 

( )( ) ( )( )1
0 0n nP H Pθ α θ τ α α−≤ = ≤ =  

Thus, ( ) ( )1
n nH θ τ α−=  follows the uniform distribution U [0, 1]. 
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3. Structure and Proof 
There is no fixed method to structure Confidence Distribution, we only need to construct to meet the definition 
of confidence distribution. Here we use some test method of Behrens-Fisher problem to structure Confidence 
Distribution. 

3.1. WS Distribution 
Firstly, we use one of the most widely used method—“Welch–Satterthwaite test” (WST) [6] [7] to structure 
Confidence Distribution. The known conclusion is: 

2 2
1 2

1 2 , 2
1 2

k
s sX X t
n nα

∗− ± ⋅ +  

where  

( ) ( )
2

1 1in
i ij i ijs X X n

=
= − −∑ , , 2kt α

∗   

is the 2α  quantile of a Student's t distribution with k degrees of freedom. 
On the basis of the conclusion above, we can easily get a probability distribution function (PDF) of θ : 

( )
( )

1
2 2

1 2

2 2
1 2

1 2

1
1 2 1

π
2

k

ws

k
X X

f
k ks s k

n n

θ
θ

+
−+   Γ    − −    = +    Γ +   

 

Theorem 3.1: ( )wsf θ ’s corresponding cumulative distribution function ( )wsF θ  is a Confidence Distribu-
tion of 1 2θ µ µ= − . 

Proof: According to the probability distribution function (PDF) of the Student’s t distribution: 

( ) [ ]
1

2 2
1

2 1
π

2

k

t

k

f
k kk

θ µ
θ

+
−+ Γ   −   = +

    Γ 
 

 

where k is the degree of freedom, µ  is the non-central parameter. ( )wsf θ  is derived from ( )1 2,t k X X−  

multiplied by a constant, so ( )wsF θ  is a cumulative distribution function, meet the condition 1) in Definition 

2.1; according to Theorem 2.1, meet the condition 2) in Definition 2.1. So ( )wsf θ  is a Confidence Distribu-
tion of 1 2θ µ µ= − . 

3.2. CC Distribution 
The most prominent test after the WST is the one proposed by Cochran and Cox (1950) [8]. The known conclu-
sion is: 

( )
( )

2 2
1

1 2 2 2
1

i i ii

i ii

t s n
X X

s n
=

=

− ±
∑
∑

 

where  

( ) ( )
2

1 1in
i ij i ijs X X n

=
= − −∑ , 1, 2ii nt t α−=   

is the 2α  quantile of a Student’s t distribution with in  degrees of freedom. 
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On the basis of the conclusion above, we can easily get a probability distribution function (PDF) of θ : 

( )( )
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Theorem 3.2: ( )ccf θ ’s corresponding cumulative distribution function ( )ccF θ  is a Confidence Distribu-
tion of 1 2θ µ µ= − . 

Proof: ( )ccf θ  is composed of two t distribution obtained through convolution formula, so the ( )ccF θ  is a 
cumulative distribution function, meet the condition 1) in Definition 2.1; according to Theorem 2.1, meet the 
condition 2) in Definition 2.1. So ( )ccf θ  is a Confidence Distribution of 1 2θ µ µ= − . 

3.3. GP Distribution 
Taking advantage of the computational resources that are available today, the generalized p-value test (GPT) [9] 
uses a suitable pivot to come up with a simple test procedure. The known conclusion is: 

1 22
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where 2Zα  is the 2α  quantile of a standard normal distribution; 2
1~

ii nV χ − . 

On the basis of the conclusion above, we can easily get a probability distribution function (PDF) of θ : 
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2) The probability distribution function (PDF) of 
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3) The probability distribution function (PDF) of x z= : 
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Theorem 3.3: ( )gpf θ ’s corresponding cumulative distribution function ( )gpF θ  is a Confidence Distribu-
tion of 1 2θ µ µ= − . 

Proof: ( )gpf θ  is composed of two chi-square distribution and a normal distribution obtained through con-

volution formula, so the ( )gpF θ  is a cumulative distribution function, meet the condition 1) in Definition 2.1; 

according to Theorem 2.1, meet the condition 2) in Definition 2.1. So ( )gpf θ  is a Confidence Distribution of 

1 2θ µ µ= − . 

3.4. CA Distribution 
According to the classical Likelihood Ratio Tests and parameters bootstrap method, Chang and Pal (2008) [10] 
proposed Computational Approach Test (CAT). The known conclusion is: 

( ) ( )( )1 22 2
1 2 2 1 21 2ˆ ˆRML RMLX X Z n nα σ σ− ± +  

where 2Zα  is the 2α  quantile of a Standard normal distribution; parameters in ( ) ( )
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On the basis of the conclusion above, we can easily get a probability distribution function (PDF) of θ : 



W. Y. Tao, W. Z. Ye 
 

 
291 

( )
( ) ( )

( )
( ) ( )

2

1 2

1 2 2 22 2
1 21 21 21 2

1 exp
ˆ ˆ2ˆ ˆ2π

ca

RML RMLRML RML

X X
f

n nn n

θ
θ

σ σσ σ

  − −  = −  +   +     

 

Theorem 3.4: ( )caf θ ’s corresponding cumulative distribution function ( )caF θ  is a Confidence Distribu-
tion of 1 2θ µ µ= − . 

Proof: ( )caf θ  is a normal distribution with a mean value of ( )1 2X X−  and a variance of  

( ) ( )
2 2

1 21 2ˆ ˆRML RMLn nσ σ +  , so the ( )caF θ  is a cumulative distribution function, meet the condition 1) in Defi-

nition 2.1; according to Theorem 2.1, meet the condition 2) in Definition 2.1. So ( )caf θ  is a Confidence 
Distribution of 1 2θ µ µ= − . 

In this section, we construct four different Confidence Distributions to solve the Behrens-Fisher problem. 
Through this method, we the Confidence Distribution method, we can get almost all of the information of the 
parameter 1 2θ µ µ= − . 

4. Numerical Simulation 
4.1. Effectiveness 
First of all, we need to consider the effectiveness of the Confidence Distribution in Behrens-Fisher problem. 
Here, we define the effectiveness of the Confidence Distribution: 

( )2 1 2 1 2P F X X Fα αη −= < − <  

In this problem, we have a very small sample. In the numerical simulation, we define: 

( )2 1 2 1 2

1

i i

n
i

I F X X F

n
α α−

=

< − <
∑  

where, I is a indicative function. The more η̂  is close to α , the more Confidence Distribution is efficient. 
After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using 

the save as command, and use the naming convention prescribed by your journal for the name of your paper. In 
this newly created file, highlight all of the contents and import your prepared text file. You are now ready to 
style your paper. 

4.2. Optimality 

Both ( )1H ⋅  and ( )2H ⋅  are Confidence Distribution of θ , if 1,1 2 2,1 2H Hα α− −≤  and 1, 2 2, 2H Hα α≥ , then we 

call ( )1H ⋅  is better than ( )2H ⋅  at the confidence level on 1 α−  [5] [11].  

4.3. Numerical Simulation 
In the case of similar effectiveness, we consider the length of the confidence interval, the shorter length of the 
confidence interval corresponding Confidence Distribution is optimum (Table 1). 

According to the result of numerical simulation, we can see: 
1) With the increase of sample size, the effectiveness of each Confidence Distribution increase; 
2) In the small sample size, the effectiveness of ws and ca is relatively high; 
3) In the relatively big sample size, cc, ws, ca are relatively stable and highly effective. 

5. Conclusion 
We construct four different Confidence Distributions. Through the numerical simulation we can find the optimal 
Confidence Distribution. In small sample size and relatively big sample size, the effectiveness of ws care rela- 
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Table 1. Under the condition of 0.05α = , the effectiveness η̂  of the different confidence distribution.                  

( )1 2,n n
 

Confidence 
Distribution 

The Effectiveness η̂  under Different 2 2
1 2σ σ  

0.1 0.5 1.0 2.0 5.0 10.0 

(10,5) 

ws 0.05013 0.05176 0.06225 0.07228 0.07980 0.08321 

cc 0.03434 0.03055 0.03165 0.03644 0.04346 0.04502 

gp 0.02250 0.02140 0.02230 0.02560 0.02880 0.03160 

ca 0.04623 0.04372 0.04188 0.03812 0.03595 0.02665 

(10,10) 

ws 0.05188 0.04839 0.04753 0.04914 0.05024 0.05241 

cc 0.04484 0.03752 0.03537 0.03864 0.04152 0.04535 

gp 0.03520 0.02930 0.02880 0.03020 0.03320 0.03500 

ca 0.04256 0.04820 0.04873 0.04724 0.04582 0.04413 

(10,25) 

ws 0.05027 0.04988 0.04931 0.04601 0.04079 0.03856 

cc 0.04852 0.04565 0.04140 0.04126 0.04155 0.04287 

gp 0.03910 0.03380 0.03600 0.03820 0.03850 0.04150 

ca 0.04182 0.04590 0.04836 0.04993 0.04918 0.04825 

(25,25) 

ws 0.04943 0.04893 0.04977 0.04971 0.05103 0.05054 

cc 0.04827 0.04434 0.04498 0.04455 0.04619 0.04806 

gp 0.04230 0.04050 0.03870 0.04120 0.04250 0.04370 

ca 0.04927 0.04982 0.04979 0.04930 0.04791 0.04632 

(25,50) 

ws 0.05004 0.05028 0.04868 0.04860 0.04694 0.04606 

cc 0.04863 0.04744 0.04626 0.04471 0.04649 0.04848 

gp 0.04530 0.04600 0.04470 0.04250 0.04380 0.04520 

ca 0.04837 0.04962 0.04938 0.04987 0.04880 0.04973 

(50,50) 

ws 0.04986 0.05027 0.04988 0.04900 0.04970 0.04990 

cc 0.04876 0.04757 0.04747 0.04731 0.04894 0.04998 

gp 0.04930 0.04900 0.04760 0.04500 0.04680 0.04820 

ca 0.04928 0.04904 0.04978 0.04885 0.04903 0.04820 

 
tively close, so we can compare the length of the confidence interval. Due tows come from the Student’s t dis-
tribution, ca comes from the standard normal distribution and the Student’s t distribution is a fat tail distribution, 
so ca is better than cc and ws. Therefore, this paper argues that the ca distribution is the optimal Confidence 
Distribution to solve the Behrens-Fisher problem. 
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