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Abstract

The planetary bodies are more of a spheroid than they are a sphere thereby making it necessary to
describe motions in a spheroidal coordinate system. Using the oblate spheroidal coordinate sys-
tem, a more approximate and realistic description of motion in these bodies can be realized. In
this paper, we derive the Riemannian acceleration for motion in oblate spheroidal coordinate
system using the golden metric tensor in oblate spheroidal coordinates. The Riemannian accele-
ration in the oblate spheroidal coordinate system reduces to the pure Newtonian acceleration in
the limit of c® and contains post-Newtonian correction terms of all orders of c-2. The result ob-
tained thereby opens the way for further studies and applications of the motion of particles in ob-
late spheroidal coordinate system.
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1. Introduction

Most planetary bodies have been assumed to be spherical and consequently, many treatments of motion involv-
ing these bodies have been taken into consideration the spherical approximation of the bodies [1]-[3]. However,
despite the spherical assumption of planetary bodies, studies have shown that the oblate spheroid is a more ap-
proximate description of these bodies [4]-[7], thus the need for a description of the planetary bodies in terms of
the oblate spheroidal coordinate system.

It is worth noting that the description of the planetary bodies mentioned so far have been based on the theory
of orthogonal curvilinear coordinates [8] and with foundations on the Euclidean Geometry. However, following
the presentation of the work of Riemann in 1854 which laid the foundations for the Riemannian Geometry, there
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had been considerable interest in the Riemannian Geometry. Consequently, in this paper, we employ the Metric
Tensors in oblate spheroidal coordinate system [9] to derive the Riemannian acceleration for the oblate sphe-
roidal coordinate system.

2. Mathematical Formulation

2.1. Oblate Spheroidal Coordinate

In this formulation we have chosen the spheroidal coordinate system based on the approximate representation of
the planetary bodies as oblate spheroids. The surface generated by the rotation of an ellipse about its minor axis
is an oblate spheroid. The oblate spheroidal coordinate system (&,7,¢) is related to the Cartesian coordinate

system (x,y,z) as follows:

X = acosh &cos7 cos ¢, (1)
y = acosh &coszsin ¢, 2)
z=asinh &sing, ©))

where a is the ellipse’s focal distance and this distance is one-half the ellipse’s foci such that
£20, —gsnsg, 0<¢<2n @)

Therefore, the differential length of a line element ds in the oblate spheroidal coordinates (&,7,¢) is ob-
tained from

(ds)” =h?(d&)” +h2(dn)’ +h2(dg)’, (5)

where h,, h, ,andh, are the scale factors for the &, 7,and ¢ coordinates respectively. Hence, from the theory
of orthogonal coordinates [8] [10], we can write the scale factors explicitly as

h, =a(cosh® & - cos’ 77)]/2 (6)
2 2 \W2

h, =a(cosh? & - cos’ ) @)

h, =acosh cosn (8)

Following from Equations (1)-(3), we can define the space time position tensor in oblate spheroidal coordi-
nate system as the set of four labelled quantity x* as:

x"={x1,x2,x3,x°} ©)
Equation (9) can be written explicitly in terms of the coordinate axes as

X" ={&n,¢,ct} (10)

and in Einstein’s coordinates (xo) = (ct) , where t is time coordinate and c is the speed of light in vacuum.

2.2. Metric Tensor

A fundamental quantity in Riemannian coordinate geometry is the metric tensors. Therefore the metric tensor in
the oblate spheroidal coordinate system is necessary for the formulation of the Riemannian acceleration in the
spheroidal coordinate system. Thus the golden metric tensor in the oblate spheroidal coordinates, g,,, which is
a covariant metric tensor of rank 2 [9] is given as follows:

-1
Oy =a2(cosh2§—coszn)(l+Cé2 fj : (11)
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-1
Uy :az(coshzf—coszn)(hCi2 fj (12)
2 -1
Gy, = a’ coshzgcoszn[H—zfj , (13)
c
2
O = l+c_2f (14)
9.5 =0; otherwise (15)
where
f=f(&ne.xX) (16)

is the gravitational scalar potential. From Equations (11)-(15) we can obtain the corresponding contravariant
metric tensors, g, which is a tensor of rank 2. Therefore, by tensor transformation of Equations (11)-(15), we
obtain the corresponding contravariant tensor as:

(1+ % f j
g = ; an

a’ (cosh2 & —cos’ ’7) ’

(l+czzfj
gzz _

= , 18
a’(cosh? £ —cos’ ) 18)
(1+ % f )

33 C
_ 19
9 = o’ £cos’n (19)

2 -1

g°°:(1+c—2fj (20)
g =0; otherwise (21)

3. Acceleration

With the metric tensors in Equations (11)-(15) and Equations (17)-(21), we can proceed to define another quan-
tity which depends on the metric tensors. This quantity is the Christoffel’s symbols of the second kind or the
coefficient of affine connections. The coefficient of affine connection or Christoffels’s symbol of the second
kind is the set of labelled quantities, I, , given by definition [10] [11] as:
1
Fgﬂ :Eg# (gas,[;‘ + gﬁe,a - gaﬂ,s) (22)

Thus, using Equation (22), and with the metric tensors given by Equations (11)-(15) and Equations (17)-(21),
we can obtain all the nonzero terms of the coefficient of affine connections. Hence, after some mathematical
simplification, the non-zero terms of Equation (22) is obtained as follows:

1
r:(lJo = _E gllgoo,l (23)
rt oot = Lgn (24)
0=l =5 97051,
11 4
Iy = E 9701, (25)



N. E.]. Omaghalj, S. X. K. Howusu

and

and

and

1
riz = Fél = E gllgu,z
1
ris = Fél = E 911911,3
1
réz = _E gllgzz,l

1
Féa = _E 911933,1

1
rgo = _E g 22goo,z
1
rgz = Fgo = E gzzgzz,o
1
rfl = _E 922 O112
1
Ffz = F;l = E 922922,1
1
2 —2g?
2=5 9702,
1
ng = rgz = 2 922922.3

1
2 -_1,2
33 5 07033,

o :_%933900,3
e =I5 :%933933,0
Iy :_%933911,3
I =13, :3933933,1
5 =_%933922,3
ng = ng 2%933933,2

1
ng = E 933933,3

1
rgo = E googoo,o
1
rgl = rfo = E 900900,1

1
ng = rgo = E googoo,z

(26)

(27)

(28)

(29)

(30)
(31)
(32)
(33)
(34)
(35)

(36)

37)
(38)
(39)
(40)
(41)
(42)

(43)

(44)

(45)

(46)
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1

F83 = rgo = E googoo,s (47)
re,=—1g» (48)

1~ 2 g gll,O
re,=—L1g» (49)

22 2 g gZZ,O
%, =—=g%g (50)

33 2 33,0

and

', =0; otherwise (51)

Therefore, the equations given by (23)-(51) denote all the coefficients of affine connection or Christoffel’s
symbols of the second kind, where for example, g,,, denotes derivative of g,, with respect to the coordinate
axes ¢ etc.

The first rank tensor, a“, defined [11] in terms of the Christoffel’s symbols as:

at =% + T4 XX’ (52)
is called the Riemannian space-time or 4-dimensional “linear acceleration” tensor; x and X denote one time

and two times differentiation with respect to time respectively. However, by tensor analysis [11], the physical
components of the acceleration in oblate spheroidal coordinates, a,, is given by

a, =(a..a,a,a,) (53)
where
a; = (911)% a’ (54)
a, =(0, )% a’ (55)
a, = (05, )% a’ (56)
ay = (oo )% a’ (57)

The Equations (54)-(57) are the physically measurable four dimensional acceleration components along the
corresponding coordinate axes (&,7,¢,ct) respectively.

Now, substituting Equations (23)-(51) into Equation (52) and after some mathematical simplification, we can
then write Equations (54)-(57) explicitly.

Consequently, Equation (54) for a. then becomes:

. 2 .2
,% asmh2§(1+fj

1 .. 2 .. ..
a. :a(coshz‘f—coszn)z(1+£2 fj E+ ¢ / {gg—ﬁﬁ—cosz 77¢¢}
c 2 2 o
2(cosh & —cos 77)2
1 1
2acoszsing : 1+C£2f) 2577— 1 : 1+0%sz f'l>'<°>'<°

(cosh? & —cos® n)? c’a(cosh? & - cos® 77)? (58)

1

a(coshzé—COSZry)E 5 \a (.. cosh? £cos? 7y .
_ (l+c—2fj foéé—nn-——>"—-5—

¢’ cosh? & —cos’ i

1
2a(cosh’ ¢ —cos’n)? (2 Y3 ' 3 -
( 2 ) (14‘0_2 f j { f,oxog M f'3§¢}

C

3
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Equation (55) for a, then becomes:

. 2 2
. 5 1 acosnsmry[lJrzfj
a =a(cosh2§—coszn 2(1+C—2 J ¢ ; {ff—ﬁﬁ—COShs‘ZW}

(cosh? & - cos® )2

1

asinh2 2 1 2 V2, o
d (1+—2fj En— 1£1+C_zfj f,%x°x°

(cosh? & —cos® )2 ¢ c’a(cosh? & —cos’ )2 (59)
a(cosh’ & - cos? ’7) 12 3f .. .. cosh®&cos’n .
+ +— -+ ———
c? ( c? j 2107 cosh2§—coszry¢¢
1
2a(cosh? & —cos? i7)? 5 Y\ . .
- ( > ) (1+C—2fj {£X%7+ 1,17+ f 7ig)
Equation (56) for a, then becomes:
1
. 2 ,)2
» _% asinh 25(1+2 fj
a¢:acosh§cosn(1+—2f) ¢+ ¢ &p
c cosh £cosn
1
2 - _— s
_ 2acosh §cosnsmf7(l+£2fj 277¢5— : 1 (1+£2sz 0K
cosh&cosn c cacosh&cosn c ' (60)
a(cosh® & —cos® 2 Vs .. .. cosh®&cos’n .
A 2 )(1+—2fj £y {6+ 0804y
c” cosh &cosn c cosh® &—cos” i
3
2acosh & cos 2 VY20, 0, : g
—# 15| X0+ £, 86+ 1)
c c
and Equation (57) for a, then becomes:
1 A
a, :(1+32 f jz K +%(1+£Z fj ’ {% £ K00 — £ X0+ ,X%7 + f3x°¢5}
c c c ' ' ' '
(61)

a?(cosh? & —cos? - . 2 2.
. ( ¢ 77)[1+3fj 2 f0{§§+ﬁﬁ+ cosh? £cos? 77 ¢¢}
c , P R —"

c? 2 cosh? & —cos? i

where (fyl, f,, s, fyo) denotes derivative of f with the coordinate axes (&,7,4,ct) respectively.

4. Results and Discussion

In this paper, we have derived the Riemannian acceleration for the oblate spheroidal coordinate system
(&,m,4,ct) . These results are presented in Equations (58)-(61) for the corresponding axes of the oblate coordi-
nate system. The results derived for the linear acceleration vector in Equations (58)-(61) reduce to the pure

Newtonian linear acceleration in the limit of c®. The results derived here in Equations (58)-(61) contain post
Newtonian correction terms of all orders of ¢
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