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Abstract 
The planetary bodies are more of a spheroid than they are a sphere thereby making it necessary to 
describe motions in a spheroidal coordinate system. Using the oblate spheroidal coordinate sys- 
tem, a more approximate and realistic description of motion in these bodies can be realized. In 
this paper, we derive the Riemannian acceleration for motion in oblate spheroidal coordinate 
system using the golden metric tensor in oblate spheroidal coordinates. The Riemannian accele- 
ration in the oblate spheroidal coordinate system reduces to the pure Newtonian acceleration in 
the limit of c0 and contains post-Newtonian correction terms of all orders of c−2. The result ob- 
tained thereby opens the way for further studies and applications of the motion of particles in ob- 
late spheroidal coordinate system. 
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1. Introduction 
Most planetary bodies have been assumed to be spherical and consequently, many treatments of motion involv-
ing these bodies have been taken into consideration the spherical approximation of the bodies [1]-[3]. However, 
despite the spherical assumption of planetary bodies, studies have shown that the oblate spheroid is a more ap-
proximate description of these bodies [4]-[7], thus the need for a description of the planetary bodies in terms of 
the oblate spheroidal coordinate system.  

It is worth noting that the description of the planetary bodies mentioned so far have been based on the theory 
of orthogonal curvilinear coordinates [8] and with foundations on the Euclidean Geometry. However, following 
the presentation of the work of Riemann in 1854 which laid the foundations for the Riemannian Geometry, there 
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had been considerable interest in the Riemannian Geometry. Consequently, in this paper, we employ the Metric 
Tensors in oblate spheroidal coordinate system [9] to derive the Riemannian acceleration for the oblate sphe-
roidal coordinate system. 

2. Mathematical Formulation 
2.1. Oblate Spheroidal Coordinate 
In this formulation we have chosen the spheroidal coordinate system based on the approximate representation of 
the planetary bodies as oblate spheroids. The surface generated by the rotation of an ellipse about its minor axis  
is an oblate spheroid. The oblate spheroidal coordinate system ( ), ,ξ η φ  is related to the Cartesian coordinate 

system ( ), ,x y z  as follows: 

cosh cos cos ,x a ξ η φ=                                   (1) 

cosh cos sin ,y a ξ η φ=                                   (2) 

sinh sin ,z a ξ η=                                      (3) 

where a is the ellipse’s focal distance and this distance is one-half the ellipse’s foci such that 
π π0, , 0 2π
2 2

ξ η φ≥ − ≤ ≤ ≤ ≤                               (4) 

Therefore, the differential length of a line element ds  in the oblate spheroidal coordinates ( ), ,ξ η φ  is ob-
tained from  

( ) ( ) ( ) ( )2 2 2 22 2 2d d d d ,s h h hξ η φξ η φ= + +                           (5) 

where , , and h h hξ η φ  are the scale factors for the , , and ξ η φ  coordinates respectively. Hence, from the theory 
of orthogonal coordinates [8] [10], we can write the scale factors explicitly as  

( )1 22 2cosh cosh aξ ξ η= −                                (6) 

( )1 22 2cosh cosh aη ξ η= −                                (7) 

cosh cosh aφ ξ η=                                   (8) 

Following from Equations (1)-(3), we can define the space time position tensor in oblate spheroidal coordi-
nate system as the set of four labelled quantity xµ  as:  

{ }1 2 3 0, , ,x x x x xµ =                                   (9) 

Equation (9) can be written explicitly in terms of the coordinate axes as  

{ }, , ,x ctµ ξ η φ=                                   (10) 

and in Einstein’s coordinates ( ) ( )0x ct=  , where t is time coordinate and c is the speed of light in vacuum. 

2.2. Metric Tensor 
A fundamental quantity in Riemannian coordinate geometry is the metric tensors. Therefore the metric tensor in 
the oblate spheroidal coordinate system is necessary for the formulation of the Riemannian acceleration in the 
spheroidal coordinate system. Thus the golden metric tensor in the oblate spheroidal coordinates, gαβ , which is 
a covariant metric tensor of rank 2 [9] is given as follows: 

( )
1

2 2 2
11 2

2cosh cos 1 ,g a f
c

ξ η
−

 = − + 
 

                       (11) 
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( )
1

2 2 2
22 2

2cosh cos 1g a f
c

ξ η
−

 = − + 
 

                        (12) 

1
2 2 2

33 2
2cosh cos 1 ,g a f
c

ξ η
−

 = + 
 

                         (13) 

00 2
21g f
c

 = + 
 

                                  (14) 

0; otherwisegαβ =                                 (15) 

where  

( )0, , ,f f xξ η φ=                                  (16) 

is the gravitational scalar potential. From Equations (11)-(15) we can obtain the corresponding contravariant 
metric tensors, gαβ , which is a tensor of rank 2. Therefore, by tensor transformation of Equations (11)-(15), we 
obtain the corresponding contravariant tensor as: 

( )
2

11
2 2 2

21
,

cosh cos

f
cg

a ξ η

 + 
 =

−
                             (17) 

( )
2

22
2 2 2

21
,

cosh cos

f
cg

a ξ η

 + 
 =

−
                             (18) 

2
33

2 2 2

21

cosh cos

f
cg

a ξ η

 + 
 =                                (19) 

1
00

2
21g f
c

−
 = + 
 

                                 (20) 

0; otherwisegαβ =                                 (21) 

3. Acceleration 
With the metric tensors in Equations (11)-(15) and Equations (17)-(21), we can proceed to define another quan-
tity which depends on the metric tensors. This quantity is the Christoffel’s symbols of the second kind or the 
coefficient of affine connections. The coefficient of affine connection or Christoffels’s symbol of the second 
kind is the set of labelled quantities, µ

αβΓ , given by definition [10] [11] as: 

( ), , ,
1
2

g g g gµ µε
αβ αε β βε α αβ εΓ = + −                              (22) 

Thus, using Equation (22), and with the metric tensors given by Equations (11)-(15) and Equations (17)-(21), 
we can obtain all the nonzero terms of the coefficient of affine connections. Hence, after some mathematical 
simplification, the non-zero terms of Equation (22) is obtained as follows: 

1 11
00 00,1

1
2

g gΓ = −                                     (23) 

1 1 11
01 10 11,0

1
2

g gΓ = Γ =                                   (24) 

1 11
11 11,1

1
2

g gΓ =                                     (25) 
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1 1 11
12 21 11,2

1
2

g gΓ = Γ =                                  (26) 

1 1 11
13 31 11,3

1
2

g gΓ = Γ =                                  (27) 

1 11
22 22,1

1
2

g gΓ = −                                    (28) 

1 11
33 33,1

1
2

g gΓ = −                                    (29) 

and 
2 22
00 00,2

1
2

g gΓ = −                                    (30) 

2 2 22
02 20 22,0

1
2

g gΓ = Γ =                                  (31) 

2 22
11 11,2

1
2

g gΓ = −                                    (32) 

2 2 22
12 21 22,1

1
2

g gΓ = Γ =                                  (33) 

2 22
22 22,2

1
2

g gΓ =                                    (34) 

2 2 22
23 32 22,3

1
2

g gΓ = Γ =                                 (35) 

2 22
33 33,2

1
2

g gΓ = −                                   (36) 

and  
3 33
00 00,3

1
2

g gΓ = −                                    (37) 

3 3 33
03 30 33,0

1
2

g gΓ = Γ =                                   (38) 

3 33
11 11,3

1
2

g gΓ = −                                    (39) 

3 3 33
13 31 33,1

1
2

g gΓ = Γ =                                  (40) 

3 33
22 22,3

1
2

g gΓ = −                                    (41) 

3 3 33
23 32 33,2

1
2

g gΓ = Γ =                                  (42) 

3 33
33 33,3

1
2

g gΓ =                                     (43) 

and  

0 00
00 00,0

1
2

g gΓ =                                    (44) 

0 0 00
01 10 00,1

1
2

g gΓ = Γ =                                  (45) 

0 0 00
02 20 00,2

1
2

g gΓ = Γ =                                   (46) 
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0 0 00
03 30 00,3

1
2

g gΓ = Γ =                                   (47) 

0 00
11 11,0

1
2

g gΓ = −                                     (48) 

0 00
22 22,0

1
2

g gΓ = −                                     (49) 

0 00
33 33,0

1
2

g gΓ = −                                     (50) 

and 
0; otherwiseµ

αβΓ =                                    (51) 

Therefore, the equations given by (23)-(51) denote all the coefficients of affine connection or Christoffel’s 
symbols of the second kind, where for example, 11,1g  denotes derivative of 11g  with respect to the coordinate 
axes ξ  etc. 

The first rank tensor, aµ , defined [11] in terms of the Christoffel’s symbols as: 

a x x xµ µ µ α β
αβ= + Γ                                      (52) 

is called the Riemannian space-time or 4-dimensional “linear acceleration” tensor; x  and x  denote one time 
and two times differentiation with respect to time respectively. However, by tensor analysis [11], the physical 
components of the acceleration in oblate spheroidal coordinates, aµ , is given by  

( ), , , cta a a a aµ ξ η φ=                                    (53) 

where 

( )
1

1211a g aξ =                                       (54) 

( )
1

2222a g aη =                                      (55) 

( )
1

3233a g aφ =                                      (56) 

( )
1

0200cta g a=                                      (57) 

The Equations (54)-(57) are the physically measurable four dimensional acceleration components along the 
corresponding coordinate axes ( ), , ,ctξ η φ  respectively. 

Now, substituting Equations (23)-(51) into Equation (52) and after some mathematical simplification, we can 
then write Equations (54)-(57) explicitly. 

Consequently, Equation (54) for aξ  then becomes:  

( )
( )

{ }

( ) ( )

( )

1
2

1
1 222 2 22

2 1
2 2 2

1 1
2 2 0 0

,11 2 1 2
2 2 2 2 22 2

1
2 2 2

2

2sinh 2 1
2cosh cos 1 cos

2 cosh cos

2 cos sin 2 1 21 1
cosh cos cosh cos

cosh cos 21

a f
ca a f

c

a f f f x x
c c

c a

a

c

ξ

ξ
ξ η ξ ξξ ηη ηφφ

ξ η

η η ξη
ξ η ξ η

ξ η

−

−

−

 +    = − + + − − 
  −

   + + − +   
   − −

−
− +

    

 



  

( ) { }

3
2 22

,12 2 2

1
32 2 2
2 0

,0 ,2 ,32 2

cosh cos
cosh cos

2 cosh cos 21

f f
c

a
f f x f f

c c

ξ ηξξ ηη φφ
ξ η

ξ η
ξ ξη ξφ

−

−

   − −   −   

−  − + + + 
 

   

 

   



         (58) 
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Equation (55) for aη  then becomes: 

( )
( )

{ }

( ) ( )

( )

1
2

1
1 222 2 2

2 1
2 2 2

1 1
2 2 0 0

,21 2 1 2
2 2 2 2 22 2

1
2 2 2

2 2

2cos sin 1
2cosh cos 1 cosh

cosh cos

sinh 2 2 1 21 1
cosh cos cosh cos

cosh cos 21

a f
ca a f

c

a f f f x x
c c

c a

a

c c

η

η η
ξ η η ξξ ηη ξφφ

ξ η

ξ ξη
ξ η ξ η

ξ η

−

−

−

 +    = − + − − − 
  −

   + + − +   
   − −

−
+ +

   

  



  

( ) { }

3
2 22

,2 2 2

1
32 2 2
2 0

,0 ,1 ,32 2

cosh cos
cosh cos

2 cosh cos 21

f f

a
f f x f f

c c

ξ ηξξ ηη φφ
ξ η

ξ η
η ξη ηφ

−

−

   − +   −   

−  − + + + 
 

   

 

 

  

        (59) 

Equation (56) for aφ  then becomes:  

( )

1
2

1
22

2

1 1
2 2 2 0 0

,32 2 2

32 2
2

,32 2

2sinh 2 1
2cosh cos 1

cosh cos

2 cosh cos sin 2 1 21 1
cosh cos cosh cos

cosh cos 2+ 1
cosh cos

a f
ca a f

c

a f f f x x
c c a c

a
f f

c c

φ

ξ
ξ η φ ξφ

ξ η

ξ η η ηφ
ξ η ξ η

ξ η
ξξ η

ξ η

−

−

−

−

 +    = + + 
 

   − + − +   
   

−  + + 
 

  



  

 

 

{ }

2 2

2 2

3
2 0

,0 ,1 ,22 2

cosh cos
cosh cos

2 cosh cos 21a f f x f f
c c

ξ ηη φφ
ξ η

ξ η φ ξφ ηφ
−

 
− 

− 

 − + + + 
 

 

   



          (60) 

and Equation (57) for cta  then becomes:  

( )

1 1
2 20 0 0 0 0 0

,0 ,1 ,2 ,32 2 2

52 2 2 2 22

,02 2 2 2

2 2 2 11 1
2

cosh cos 2 cosh cos1
cosh cos

cta f x f f x x f x f x f x
c c c

a
f f

c c

ξ η φ

ξ η ξ ηξξ ηη φφ
ξ η

−

−

     = + + + − + +    
     

−   + + + +   −   

 

     

   

 

          (61) 

where ( ),1 ,2 ,3 ,0, , ,f f f f  denotes derivative of f with the coordinate axes ( ), , ,ctξ η φ  respectively. 

4. Results and Discussion 
In this paper, we have derived the Riemannian acceleration for the oblate spheroidal coordinate system 
( ), , ,ctξ η φ . These results are presented in Equations (58)-(61) for the corresponding axes of the oblate coordi-
nate system. The results derived for the linear acceleration vector in Equations (58)-(61) reduce to the pure  
Newtonian linear acceleration in the limit of 0c . The results derived here in Equations (58)-(61) contain post 
Newtonian correction terms of all orders of 2c− . 
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