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Abstract 
A generalized antithetic time series theory for exponentially derived antithetic random variables 
is developed. The correlation function between a generalized gamma distributed random variable 
and its pth exponent is derived. We prove that the correlation approaches minus one as the expo-
nent approaches zero from the left and the shape parameter approaches infinity. 
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1. Introduction 
Serially correlated random variables arise in ways that both benefit and bias mathematical models for science, 
engineering and economics. In one widespread example, a mathematical formula is used to create uniformly 
distributed pseudo random numbers for use in Monte Carlo simulation. The numbers are serially correlated be-
cause they are generated by a formula. The benefit is that the same pseudo random numbers can be recreated at 
will, and two or more simulation experiments can be compared without regard to the pseudo random numbers. 
The correlation is designed to be very small so as not to bias the results of a simulation experiment. Still, some 
bias is unavoidable when using serially correlated numbers (Ferrenberg, Lanau, and Wong [1]). 

Another wide spread example is a regression model in which the dependent variable is serially correlated. The 
result is biased model parameter estimates because the independence assumption of the Gauss-Markov theorem 
is violated (see Griliches [2], Nerlove [3], Koyck [4], Klein [5]). Similarly, the independence assumption of 
Fuller and Hasza [6] and Dufour [7] would not apply. The absence of any relevant information from a model 
will express itself in the patterns of the error term. If complete avoidance of bias requires normally distributed 
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data, then the absence of normality is like missing information. Bias may also be due to missing data points 
(Chandan and Jones [8], Li, Nychka and Amman [9]). Assume that a perfect model is postulated for a given 
application in which the population to which the data belong is known exactly. The model must be fitted to a 
sample of data, not the population. However, once the sample is taken, the distribution is automatically 
truncated and distorted, and the fitted model is biased. Regardless of the method of fitting, however small, 
sampling bias is unavoidable. One approach aimed at improving model performance is to combine the results 
from different models. For an extensive discussion and review of traditional combining see Bunn [10], Diebold 
[11], Clemen [12], Makridakis et al. [13], and Winkler [14]. 

Economics researchers have commented on serial correlation bias. Hendry and Mizon [15] and Hendry [16] 
considered common factor analysis (Mizon [17]) and suggested that serial correlation is a feature for re- 
presenting dynamic relationships in economic models. This in turn implies that economics allows for serial 
correlation (see Pindyck and Rubinfield [18]). Time domain methods for detecting the nature and presence of 
serial correlation were considered by Durbin and Watson [19] and Durbin [20]. Spectral methods were con- 
sidered by Hendry [16], Osborn [21] and Espasa [22]. Even if serial correlation can be a tool for studying the 
nature of economics, it is detrimental to long range forecasting models. Whatever the source of bias may be, the 
only possibility for long range forecasting is to completely eliminate the bias.  

1.1. Background  
Inversely correlated random numbers were suggested by Hammersley and Morton [23] for use in Monte Carlo 
computer simulation experiments. In that application, a single computer simulation is replaced by two simula- 
tions. One simulation uses uniformly distributed ( )0,1  random numbers in r. The other simulation uses 1 r− . 
The expectation is that the average of the results of these two simulations has a smaller variance than for either 
one. In practice, the variance sometimes decreases, but sometimes it increases. See also Kleijnen [24]. 

The theory of combining antithetic lognormally distributed random variables that contain negatively cor- 
related components was introduced by Ridley [25]. The Ridley [25] antithetic time series theorem states that “if 

0, 1, 2,3,tX t> =   is a discrete realization of a lognormal stochastic process, such that ( )2ln ~ ,tX N µ σ ,  
then if the correlation between tX  and p

tX  is ρ , then 
0 , 0
lim 1

p σ
ρ

− +→ →
= − .” Antithetic variables can be com-  

bined so as to eliminate bias in fitted values associated with any autoregressive time series model (see the Ridley 
[25] antithetic fitted function theorem, and antithetic fitted error variance function theorem). Similarly, antithe- 
tic forecasts obtained from a time series model can be combined so as to eliminate bias in the forecast error. 
Ridley [26] applied combined antithetic forecasting to a wide range of data distributions. Ridley [27] demon- 
strated the methodology for optimizing weights for combining antithetic forecasts. See also Ridley and Ngne- 
pieba [28] and Ridley, Ngnepieba, and Duke [29]. The antithetic variables proof in Ridley [25] was for the 
special case of tX  lognormally distributed. 

The implication for using a biased mathematical model to investigate economic, engineering and scientific 
phenomena is that estimates obtained from the model are biased. Estimates of future values extrapolated from 
the model are also biased. As the forecast horizon increases, the bias accumulates and the extrapolations diverge 
from the actual values. This is most pronounced in the case of investigations into global warming phenomena. 
There, the horizon is by definition very far into the future. The smallest bias will accumulate, so much so that 
conclusions may be as much an artifact of the mathematical model as they are about climate dynamics. Com- 
bining antithetic extrapolations can dynamically remove the bias in the extrapolated values. 

1.2. Proposed Research  
The antithetic gamma variables discussed in this research are defined as follows. 

Definition 1. Two random variables are antithetic if their correlation is negative. A bivariate collection of 
random variables is asymptotically antithetic if its limiting correlation approaches minus one asymptotically 
(see antithetic gamma variables theorem below).  

Definition 2. ( ){ },X tξ  is an ensemble of random variables, where ξ  belongs to a sample space and t 
belongs to an index set representing time, such that tX  is a discrete realization of a gamma stationary 
stochastic process from the ensemble, ( )~ ,tX α βΓ , and , 1, 2,3,tX t =   are serially correlated.  

In this paper, we extend the discovery by Ridley [25] beyond the lognormal distribution. The gamma 
distribution is very important for technical reasons, since it is the parent of the exponential distribution and can 
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explain many other distributions. That is, a wide range of distributions can be represented by the gamma 
distribution. We will explore these possibilities by examining the correlation between X and pX  when X is 
gamma distributed. Of particular interest is the correlation between X and pX  as 0p −→ . A graph of the 
correlation between X and pX  as 0p +→  and 0p −→  is shown in Figure 1. We begin by reviewing the 
obvious results for the case when p is positive. The correlation is positive when p is positive and exactly one 
when p is one. This is expected. As p moves away from one, the correlation decreases. As p approaches zero 
from the right, the correlation falls, albeit very slowly. This is also expected. In the case when p is negative, the 
correlation behaves quite differently. The result is entirely counterintuitive. As expected, the correlation is 
negative. But, unlike when p is positive, as p approaches zero from the left, the absolute value of the correlation 
increases. Furthermore, the actual correlation approaches minus one, not zero.  

One purpose of this paper is to derive an analytical function for the correlation between X and pX  when X is 
gamma distributed. A second purpose is to explore by extensive computation, the behavior of the correlation as 
p approaches zero from the left. The trivial case of p equal zero where the correlation is zero, is of no interest. 
We are interested in p inside a delta neighborhood of zero, not zero. Finally, we prove that the limiting value of 
the correlation is minus one. 

The paper is organized as follows. In Section 2 we review the gamma distribution. In Section 3 we derive the 
analytic function for the correlation. In Section 4 we prove its limiting value. In Section 5 we use MATLAB [30] 
to compute correlations for a wide range of values generated from the gamma distribution. In Section 6 we 
outline the method for using antithetic variables to dynamically remove bias from the fitted and forecast values 
obtained from a time series model. Examples include computer simulated data. Section 7 contains conclusions 
and suggestions for further research. 

2. The Gamma Distribution  
The gamma distribution is very important for technical reasons, since it is the parent of the exponential 
distribution and can explain many other distributions. Its probability distribution function (pdf) (see Hogg and 
Ledolter [31]) is:  

( ) ( )
11 exp , if 0

; ,
0, if 0,

XX X
f X

X

α
αα β ββ α

−  
− ≥  = Γ  

 <

                        (1) 

where 0α >  is the shape parameter and 0β >  is the scale parameter. The gamma function is defined as  

( ) 1
0

e d .XX Xαα
∞ − −Γ = ∫                                     (2) 

A graph of the gamma probability density function for 0.6β =  and various values of 1.1,3,5,9,11α =  is 
shown in Figure 2.  

 

 
Figure 1. Behavior of ρ as p approaches 0.                                      
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Figure 2. Exploring the effect of varying parameter values in the pdf of the gamma 
distribution.                                                                                                                                         

3. Correlation between X and Xp  
Let 0tX > , 1, 2,3, ,t =   be a discrete realization of a generalized gamma stochastic process. For p∈ , 
from Appendix A, the pth moment of the gamma distribution is given by  

( )
( )

.p p
t

p
X

α
β

α
Γ +

  =  Γ
                                  (3) 

Therefore, since ( ) ( )1α α αΓ + = Γ , the mean is  

[ ] ( )
( )

1
,tX

α
β αβ

α
Γ +

= =
Γ

  

the second moment is  

( )
( ) ( )2 2 22

1 ,tX
α

β β α α
α

Γ +
  = = +  Γ

  

and the variance is  

[ ]( )22 2 2.t tX Xσ αβ = − =                                (4) 

Let ρ  be the correlation between tX  and p
tX . Then  

( )
( ) ( ){ }

[ ]

( ) ( ){ }

1

1 1
2 2

Cov ,
,

Var Var Var Var

p p p
t t t t t

p p
t t t t

X X X X X

X X X X
ρ

+   −   = =
  

                 (5) 

and  

( ) ( )22Var .p p p
t t tX X X   = −      

Using Equation (3)  

( ) ( )
( )

( )( )
( )( )

2

2 2
2

2
Var .p p p

t

pp
X

αα
β β

α α

Γ +Γ +
= −

Γ Γ
                       (6) 

Therefore, using Equations (3) and (6), Equation (5) becomes  
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( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )( ){ }
( ) ( )

( ) ( ) ( )( ){ }

1 1

1 1
2 22 21 1

2 2 2 2

1 111 22 222 2

1 1

2 2

1
1

.

22

p p

p p

p p p p

p p p p

p p
p p

p pp p

α α α α
β αβ α

α α α α
ρ

α α α α
β β αβ α

α α α α

α α
α

α α α α α

α α α α αα α α
α

+ +Γ + + Γ + Γ + + Γ +
− −

Γ Γ Γ Γ
= =
      Γ + Γ + Γ + Γ +   − −         Γ Γ Γ Γ         

Γ + + Γ +
−

Γ Γ Γ + + − Γ +
= =

Γ Γ + − Γ +Γ + Γ − Γ +
Γ

         (7) 

Since ( ) ( ) ( )1p p pα α αΓ + + = + Γ + , Equation (7) becomes,  
( )

( ) ( ) ( )( ){ }
11

2 22

.

2

p p

p p

α
ρ

α α α α

Γ +
=

Γ Γ + − Γ +

                          (8) 

From Equation (4) 
1
2 σα

β
= , and the correlation can be expressed in terms of σ  as  

( )

( ) ( ) ( )( ){ }
1

2 2

,

2

p p

p p

β α
ρ

σ α α α

Γ +
=

Γ Γ + − Γ +

 

or  
2

1
2 22 2 2

.

2

p p

p p

σβ
β

ρ

σ σ σσ
β β β

  
 Γ +    =

                   Γ Γ + − Γ +                          

                     (9) 

The gamma function ( )αΓ  results in a complex number when the argument is negative. This is avoided if  

2
p α
< . In any case, since we are only interested in p approaching zero from the left, this condition will always  

be satisfied when 0α > . 

4. Antithetic Gamma Variables Theorem  
Theorem 1. If 0tX > , 1, 2,3,t =  , is a discrete realization of a generalized gamma stochastic process with 
shape parameter α , then if ρ  is the correlation between tX  and p

tX , then  
( )

( ) ( ) ( )( ){ }
110 , 0 , 2 22

lim lim 1.

2
p p

p p

p p
α α

α
ρ

α α α α
− −→ →∞ → →∞

Γ +
= = −

Γ Γ + − Γ +

 

See proof in Appendix B.  

5. Correlation versus p  
The effect of p on the correlation is demonstrated by calculating the correlation coefficient from Equation (8) for 
various values of α  and β . The correlation coefficients are listed in Table 1 and plotted in Figure 3 and 
Figure 4. From Figure 3 and Figure 4, for all values of α , the correlation coefficient gets closer to 1−  as 

0p −→ . For all values of p, the correlation coefficient gets closer to 1−  as α  increases. From Figure 3, 
smaller values of α  produce distributions that are more asymmetrical, and larger values produce distributions  
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Figure 3. 

0
lim
p

ρ
−→

 using Equation (8) for 5,10,15, 20α =  and 25; 0.5p = −  to 0.005− .                                                                     

 

 
Figure 4. 

0 ,
lim

p α
ρ

−→ →∞
 using Equation (8).                                                                                                                                         

 
that are more symmetrical. Also, as α  increases the standard deviation increases. This is indicative of greater 
spread about both sides of the mode of X. Equation (9) expresses the correlation in terms of σ . In practice the 
value of α  will be that for the actual data under study. It cannot be modified. Still, one might say that it 
appears that the effect of p on reversing the correlation is greatest for symmetrical distributions. 

To validate Equation (8), the MATLAB [30] random number generator GAMRND (α , β , n) is used to 
generate 10000n =  random numbers tx , from the gamma distribution in Equation (1) with parameters 

25α = , 0.5β = . The correlation is estimated from the sample correlation coefficient ( ρ̂ ). One application of 
the correlation reversal is to remove bias in values extrapolated from a time series model (see Appendix C). The 
gamma distribution is immediately applicable when 25α ≥ , such that ρ  is approximately minus one. For 

25α < , the difference between ρ  and minus one may introduce an error in estimating values extrapolated 
from the time series model. The sample correlation coefficient is obtained from  
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( )( ) ( ) ( )
1

2 22

1 1 1

ˆ
n n n

p p p p
t t t t

t t t
x x x x x x x xρ

= = =

 = − − − − 
 

∑ ∑ ∑ , where, 
1

n

t
t

x x n
=

= ∑ , 
1

n
p p

t
t

x x n
=

= ∑ , 1, 2, ,t n=  .  

The results are shown in Table 2. The coefficients are almost identical to the theoretical values obtained from 
Equation (8) and listed in Table 1. In practice, the data may include relatively few observations. To investigate 
the small sample correlation coefficient, the correlation coefficient is calculated for 100n = .  

6. Bias Reduction  
Consider an autoregressive time series tx  of n discrete observations obtained from a gamma distribution with a 
large shape parameter to which a least squares model 1t t tx x −= Φ +  , 2, ,t n=   is fitted. Let the fitted values be 
ˆtx . Next, consider the combined weighted average fitted values ( ),ˆ ˆ ˆ1 ,c t t tx x xω ω ω′= + − −∞ ≤ ≤ ∞ . The para- 

meter ω  is a combining weight. The fitted values ˆtx  and ˆtx′  are antithetic in the sense that they contain compo- 
nents of error t̂  and t̂′ , respectively, that are biased and when weighted, t̂ω  and ( ) ˆ1 tω ′−   are perfectly nega-  
tively correlated. The antithetic component ˆtx′  is estimated from ( )( )ˆˆ ˆ ˆ

ˆ ˆ ˆ , 1, 2,3, ,p p
p p

t x txx x
x x r s s x x t n′ = + − =  ,  

 
Table 1. Behavior of ρ  as 0p −→  using Equation (8) with various values of α .                                                                     

0p −→  5α =  10α =  15α =  10α =  25α =  

0.5p = −  0.8817−  0.9423−  0.9618−  0.9715−  0.9772−  

0.25p = −  0.9204−  0.9605−  0.9737−  0.9803−  0.9843−  

0.1p = −  0.9395−  0.9697−  0.9789−  0.9848−  0.9878−  

0.05p = −  0.9452−  0.9724−  0.9816−  0.9862−  0.9888−  

0.025p = −  0.9479−  0.9738−  0.9825−  0.9868−  0.9895−  

0.015p = −  0.9490−  0.9743−  0.9828−  0.9871−  0.9897−  

0.005p = −  0.9500−  0.9748−  0.9832−  0.9874−  0.9899−  

0.0025p = −  0.9503−  0.9759−  0.9833−  0.9833−  0.9875−  

0.0013p = −  0.9504−  0.9751−  0.9833−  0.9874−  0.9900−  

0.0005p = −  0.9505−  0.9751−  0.9833−  0.9875−  0.9900−  

0.00025p = −  0.9505−  0.9751−  0.9833−  0.9872−  0.9900−  

0.0001p = −  0.9505−  0.9751−  0.9833−  0.9875−  0.9900−  

 
Table 2. Values of ρ̂  for 0p −→ , 25α = , 0.5β = .                                                                     

0p −→  100n =  10000n =  

0.5000p = −  0.9785−  0.9772−  

0.4500p = −  0.9799−  0.9802−  

0.3500p = −  0.9826−  0.9816−  

0.3000p = −  0.9839−  0.9830−  

0.2500p = −  0.9851−  0.9842−  

0.2000p = −  0.9863−  0.9855−  

0.1500p = −  0.9874−  0.9867−  

0.1000p = −  0.9888−  0.9879−  

0.0500p = −  0.9905−  0.9890−  

0.0001p = −  0.9905−  0.9900−  
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where the exponent of the power transformation is set to the small negative value 0.001p = − , r denotes sample 
correlation coefficient and s denotes sample standard deviation (see Appendix C for an outline of how inverse 
correlation can be used to eliminate bias in ,ˆc tx ). The expectation is that if ˆtx  are biased, then ,ˆc tx  will 
exhibit diminishing bias as 0p −→ . If ˆtx  are unbiased then 1ω =  and the combined fitted values are just 
the original fitted values. The corresponding combined forecast values are ( ) ( ) ( ) ( ),ˆ ˆ ˆ1c n n nx x xτ ω τ ω τ′= + − . 

A shift parameter λ  similar to that discussed by Box and Cox [32] is used to facilitate the power trans- 
formation and further improve the combined fitted mse. λ  (determined by grid search) can be added to each 
value of tx  to obtain t tz x λ= +  prior to applying the power transformation and subtracted after conversion 
back to their original units, leaving the mean unchanged. While the data may be from stationary time series, they 
are of necessity a truncated sample. Any truncated data sample will fall short of the complete distributional 
properties of the population from which they are drawn, and therefore the property of stationary data. The  

antithetic time series is rewritten and computed from ( )( )ˆˆˆ ˆ
ˆˆ ˆ ˆp p

p p
t z tzz z

x x s s z zρ′ = + − , 1, 2,3, ,t n=  , where  

0.001p = − , 
ˆˆ

ˆ pzz
ρ  is the sample correlation between ẑ  and ˆ pz , where ẑs  and 

ˆ pz
s  are sample standard 

deviations in ˆtz  and ˆ p
tz  respectively, and where λ  and ω  are chosen so as to minimize the combined 

fitted mse for ( ),ˆ ˆ ˆ1c t t tx x xω ω ′= + − . The antithetic forecast values are computed from  

( ) ( ) ( )( )ˆˆˆ ˆ
ˆˆ ˆ ˆp p

p p
n z nzz z

x x s s z zτ ρ τ′ = + − , 1, 2,3, , Nτ =  . 

Of the terms p, λ , and ω , only p is unique to antithetic time series analysis, and it is not a fitted parameter. 
When implemented, p is actually a constant set to 0.001− , an approximation of 0− . Also, since ˆ 1pzz

ρ = − , the 
transformation involving p is linear, and does not imply that the original model should have been non-linear. 
Like the use of λ  here, it is common practice to apply various transformations such as logarithm, square root 
and Box and Cox [32] that add no new information, but make the data better conform to the assumptions of a 
postulated model. If there were no bias, or if antithetic combining did not reduce bias, then ω  would simply be 
equal to one and the original postulated model only would apply. 

Computer Simulation 
To illustrate, consider a model fitted to computer simulated data based on stationary autoregressive processes, 
containing 1060 observations generated from 250 ,t t tx y e+= +  1, 2,3, ,1060t =  , where to avoid initialization pro- 
blems, the first 250 values are dropped from 10.8 ,t t ty y e−= +  1, 2,3, ,1310,t = 

 0 0y =  and ( )~ ,te α βΓ , 
0.6β = , 5,10,15,20,25α =  are obtained from MATLAB [30]. From the 1060 values, different models are 

fitted from the first 50, 51,  , 60 values. Each model is used to forecast 1000 one-step-ahead forecast values 
corresponding to periods 51 - 1050, 52 - 1051,  , 61 - 1060. This simple first order autoregressive model is 
chosen for its ease of understanding and transparency. It is perfect for the population from which the data are 
sampled. The sample sizes are typical of what can be expected in practice, and the outcomes from model fitting 
are subject to sampling bias. 

The results are shown in Table 3. As α  increases, the fitted mse’s increase, indicative as expected, of the 
increase in the variance in the data. The combined fitted mse’s are all lower than the original fitted mse’s. The 
average gain is a reduction in fitted mse of 5.5%. This demonstrates that for a wide range of gamma 
distributions, combining antithetic fitted values can reduce the component of error that is due to systematic bias, 
leaving only random error. The fitted mse and 1000 period forecast horizon mse sensitivities to forecast origin 
(n) are shown in Table 4. As n increases from 51 to 60, the combined fitted mse’s are lower than the original 
fitted mse’s. The average gain is a reduction of 11.1%. The average gain in the combined forecast mse over the 
original forecast mse is a reduction of 6.9%. The forecast mse sensitivities to forecast horizon (N) are shown in 
Table 5. As N increases from 100 to 700, the combined forecast mse's are lower than the original forecast mse’s. 
The average gain is a reduction of 6.1%. 

7. Conclusion  
The correlation between a gamma distributed random variable and its pth power was derived. It was proved that 
the correlation approaches minus one as p approaches zero from the left and the shape parameter approaches 
infinity. This counterintuitive result extends a previous finding of the similar result for lognormally distributed 
random variables. The gamma distribution was modified so as to emulate a range of distributions, showing that  
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Table 3. Fitted mean square error (mse) for gamma distributed autoregressive processes of length 50n = , 0.001p = − , 
0.6β =  and various values of α .                                                                                                                                         

α  λ  ω  Fitted mse 

   Original Combined Reduction % 

5 370 −46 1.377 1.209 12.2 

10 520 −39 4.753 4.394 7.6 
15 481 −17 6.892 6.732 2.3 
20 575 −11 6.922 6.824 1.4 
25 529 −43 9.686 9.304 3.9 

Average 5.5 
 
Table 4. Fitted mean square error (mse) and one thousand period forecast mean square error (mse) for gamma distributed 
autoregressive processes of length n, 0.001p = − , 0.6β = , 5.α =                                                                      

Forecast origin n 
λ  ω  Fitted mse Forecast mse 

  Original Combined Original Combined 

50 370 −46 1.377 1.209 6.158 5.760 

51 411 −46 1.351 1.185 6.230 5.407 
52 252 −46 1.354 1.202 6.493 5.641 
53 446 −39 1.397 1.266 6.071 5.943 
54 310 −55 1.371 1.160 6.070 5.611 
55 261 −37 1.356 1.254 5.941 5.549 
56 465 −41 1.345 1.189 6.108 5.720 
57 400 −39 1.331 1.218 6.234 5.592 
58 507 −36 1.312 1.191 6.142 6.224 
59 405 −32 1.290 1.175 6.044 5.687 
60 354 −62 1.434 1.207 5.600 5.300 

Average 1.356 1.205 6.099 5.676 
Combined reduction % 11.1 6.9 

 
Table 5. Forecast mean square error (mse) for gamma distributed autoregressive processes of length 50n = , 0.001p = − , 

0.6β = , 5α = .                                                                                                      

Forecast horizon N 
Forecast mse 

Original Combined Reduction% 

100 5.973 5.581 6.6 
150 6.529 6.059 7.2 

200 5.426 5.220 3.8 

250 6.559 6.152 6.2 

300 6.455 6.181 4.2 
350 6.390 6.051 5.3 
400 5.982 5.630 5.9 
450 5.906 5.554 6.0 
500 5.972 5.607 6.1 

550 6.114 5.699 6.8 

600 6.063 5.616 7.4 
650 5.818 5.401 7.2 

700 5.632 5.243 6.9 

Average 6.063 5.692 6.1 
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antithetic time series analysis can be generalized to all data distributions that are likely to occur in practice. The 
gamma distribution is unimodal. A suggestion for future research is to investigate the correlation between a 
random variable and its pth power when its distribution is multimodal. Another suggestion is to compare the 
effectiveness of the Hammersley and Morton [23] antithetic random numbers with antithetic random numbers 
constructed from the method described in this paper. Combining antithetic extrapolations can dynamically 
reduce bias due to model misspecifications such as serial correlation, non-normality or truncation of the dis- 
tribution due to data sampling. Removing bias will eliminate the divergence between the extrapolated and actual 
values. In the particular case of climate models, removing bias can reveal the true long range climate dynamics. 
This will be most useful in models designed to investigate the phenomenon of global warming. Beyond the 
examples discussed here, antithetic combining has broad implications for mathematical statistics, statistical 
process control, engineering and scientific modeling. 
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Appendix 
Appendix A: pth Order Moment for the Gamma Distribution  
The pth moment of the gamma distribution is derived as follows:  

( ) ( )
1 1

0 0

1 1e d e d .
x x

p p p
tX x x x x xα αβ β

α αβ α β α

− −∞ ∞− + −  = =  Γ Γ∫ ∫                   (A.1) 

Multiplying and dividing by ( )p pαβ α+ Γ + , Equation (A.1) becomes  
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Since 
( ) ( )11 e ; ,

x
p

p x f x p
p

α β
α α β

β α

−
+ −

+ = +
Γ +

, is the pdf for a gamma function with the parameter pα + ,  

( )
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1 e d 1,
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p x x
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−∞ + −
+ =
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and equation (A.2) becomes  
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X

α
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  

Appendix B: Proof of the Antithetic Gamma Variables Theorem  
By applying the Taylor expansion around 0p =  to Equation (8) we have  

( ) ( ) ( ) ( ) ( )
2

3 ,
2
pp p O pα α α α′ ′′Γ + = Γ + Γ + Γ +                      (B.1) 

where ′Γ , ′′Γ  are the first and second derivatives of Γ  and ( )3O p  represents the remainder.  

( )( ) ( )( ) ( )( ) ( ) ( )
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2 2 22

2 3 3

2p p p

p p O p

α α α α α

α α α α
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′′ ′ ′′+ Γ Γ + Γ Γ +
                 (B.2) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2 32 2 2p p p O pα α α α α α α′ ′′Γ Γ + = Γ + Γ Γ + Γ Γ +             (B.3) 

The combination of equations (B.1)-(B.3) reduces Equation (8) to  
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 
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Therefore,  
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By using the polygamma function (see Abramowitz and Stegun [33])  
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Equation (B.4) is transformed into  
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The digamma function for real 0α > , as α →∞  is  
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(see also Bernado [34]). 
Its derivative is the polygamma function  
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And,  
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From which, ( ) ( )1lim 1
α

α α
→∞

Ψ = . Finally, the limit in Equation (B.5) is  
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Appendix C: Inverse Correlation and Bias Elimination  
Consider a gamma distributed time series tX  with a large shape parameter from which tx  are observations. 
We have shown that for very small negative p, tx  and p

tx  are nearly perfectly correlated, albeit negatively, so 
we can express p

tx  in the original units of tx , by means of the linear regression of tx  on p
tx  as follows:  

0 1 ,p
t t tx c c x ε= + +  

where tε  is an error term. 
As p approached zero from the left, near perfect correlation between tx  and p

tx  ensures that the error term 
becomes negligible, and a near perfect estimate is obtained from  

0 1 .p
t tx c c x′ = +                                     (C.1) 

Now, suppose that  

( )1 , 2, , ,t t tx f x t n−= + =   

is a time series model. If there is any bias due either to serial correlation in t  or sampling error in estimating 
the model, the estimated model will be biased such that ( )1Cov , 0t tx − ≠ . The estimated parameters of this 
model will be biased. That is unavoidable. Therefore, any estimate ˆtx  of tx  from this model will also be 
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biased. 
To remove this bias, we power transform ˆtx  to obtain ˆ p

tx . Then, we use Equation (C.1) to convert ˆ p
tx  

back to the original units of ˆtx . Hence  

0 1ˆ ˆ ˆ ˆ ,p
t tx c c x′ = +  

where 0ĉ  and 1̂c  are least squares estimates obtained from the regression of ˆtx  on ˆ p
tx , and the error 

approaches 0.  

( )1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .p p p p
t t tx x c x c x x c x x′ = − + = + −  

Denoting sample standard deviation by s and correlation coefficient by 
ˆˆ

ˆ pxx
ρ ,  

( )( )ˆˆ ˆ ˆ
ˆˆ ˆ ˆp p

p p
t x txx x

x x s s x xρ′ = + −  

(see also the Ridley [25] antithetic fitted function theorem). 
Both estimates ˆtx  and ˆtx′  contain errors. These errors contain two components. One component is purely 

random and one component is bias. Combining the estimates dynamically cancels the bias components, leaving 
only the purely random components. See Appendix D for the proof of how this can occur. The combining 
weights discussed in Appendix D are theoretical, expressed in terms of errors that are unknown and un- 
observable, so we must rely on the approximation as follows. The combined estimate ,ˆc tx  is obtained from  

( ),ˆ ˆ ˆ1 ,c t t tx x xω ω ′= + −  

where ω−∞ < < ∞ , and the value of ω  is chosen so as to minimize the mse  
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Consider the error in ,ˆc tx , ,ˆ ˆt c t te x x= − . Then ( ){ }22
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= =
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′ ′ ′= − + − −∑ ∑  Setting the derivative to zero and solving 
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′ ′ ′= − − −∑ ∑ . This optimal ω   yields the minimum mse, because  
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=
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The steps for obtaining the combined antithetic fitted values are outlined as follows:  
Step 1: Estimate the model parameters and fitted values ( )1ˆ , 2,3, , .t tx f x t n−= =    
Step 2: Set 0.001.p = −   
Step 3: Calculate ( )( ) ( )2

2 2
ˆ ˆ ˆ ˆ ˆ .n n

t t t t t tt tx x x x x xω
= =

′ ′ ′= − − −∑ ∑   

Step 4: Calculate ( ) ( )( )( )ˆ, ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ1 , 2,3, , .p p

p p
c t t x txx x

x x x s s x x t nω ω ρ= + − + − =   

Likewise, the unbiased combined estimate of a future value at time τ  is obtained from  
( ) ( ) ( ) ( ),ˆ ˆ ˆ1 .c n n nx x xτ ω τ ω τ′= + −  

Appendix D: Antithetic Fitted Error Variance Reduction  
Consider a gamma distributed time series tX  with a large shape parameter. Next, consider a minimum mean 
square error fitted value obtained from a stationary first-autoregressive process ( )1t X t X tX Xµ φ µ−= + − +  , 
given by ( )1

ˆˆ ˆ ˆt X t XX Xµ φ µ−= + −  where [ ]X tXµ =   and ˆ Xµ  and φ̂  are least-squares estimates of µ  
and φ , respectively, such that  

( )( ) ( )2
1 1

2 2

ˆ ,
n n

t X t X t X
t t

X X Xφ µ µ µ− −
= =

= − − −∑ ∑  

( ){ }( ) ( )2
1 1 1

2 2

ˆ ,
n n

X t X t X t X t X
t t

X X Xφ µ φ µ µ µ µ− − −
= =

= + − + − − −∑ ∑  
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( ) ( ) ( )2 2
1 1 1

2 2 2

ˆ ,
n n n

t X t t X t X
t t t

X X Xφ φ µ µ µ− − −
= = =

 = − + − − 
 
∑ ∑ ∑  

( ) ( )2
1 1

2 2

ˆ .
n n

t t X t X
t t

X Xφ φ µ µ− −
= =

= + − −∑ ∑  

Therefore, as n →∞ , and since tX  is stationary so that ( ) ( )1Var Vart tX X −= , and since the errors are 
serially correlated so that ( )1Cov , 0t tX − ≠ ,  

( ) ( )1
ˆ Cov , Vart t tX Xφ φ −= +                             (D.1) 

(see also Fuller [35], p. 404). Consider ˆ
tX  as an estimate of tX . From (D.1), and given that the time series is 

stationary, then as n →∞  and ˆ X Xµ µ→ ,  

( ) ( ) ( ){ }( ) [ ]1 1 1
ˆ Cov , Var ,t X t X t t t t X t tX X X X X X uµ φ µ µ− − −= + − + − = +  

where  

( ) ( ){ }( )1 1Cov , Vart t t t t Xu X X X µ− −= −                       (D.2) 

due only to errors resulting from serial correlation. Therefore,  

( ) ( ) ( ){ } ( )2
1Var Cov , Var Var .t t t t tu X X X−=                      (D.3) 

Next, consider another fitted value ˆ
tX ′ , obtained from the linear projection of the asymptotically antithetic 

series p
tX  on tX , without the introduction of any new error,  
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p
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Substituting for ˆ
tX  
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        (D.4) 

where ρ  is the correlation between tX  and p
tX , and  

( ) ( ){ } ( )( ){ }1 2

1
0, 0

ˆˆ ˆlim Var Var
pp p

t t t X t X t
p

u X X X X
σ

ρ µ φ µ
− −

→ →
 ′ = + − −                (D.5) 

is the antithetic error due to the serial correlation, but corresponding to ˆ
tX ′ . 

The expansion of ( )( ) ( )1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ

p p

X t X X t XX Xµ φ µ µ φ φµ− −+ − = + −  will 

contain the constant ( )ˆˆ ˆ
p

X Xµ φµ− , the product of p and some function of 1tX −  and ( )1
ˆ p

tXφ −  as follows: 

( ) ( ) ( ) ( ) ( )1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

p p p pp p
X t X X X t t X X tX pf X X Xµ φ φµ µ φµ φ µ φµ φ− − − −+ − = − + + → − +  as 0p → . Substituting  

into Equation (D.5),  

( ) ( ){ } ( ){ }1 2

1
0, 0

ˆ ˆˆ ˆlim Var Var .
pp p p p

t t t X X t t
p

u X X X X
σ

ρ µ φµ φ
− −

→ →
 ′ = − + −                (D.6) 

Now  

( ){ } ( ) ( ) ( ) ( ) ( )22Var 1 Var 1 Var 2 1 Cov , .t t t t t tu u u u u uω ω ω ω ω ω′ ′ ′+ − = + − + −  

Substituting from Equation (D.2) and (D.6) and since ˆ Xµ  and φ̂  are fixed for the data and model,  

( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ){ } ( )

22 2

0, 0

2
1 1

1 2

1 1

Var 1 = lim Var 1 Var Var

ˆ Var 2 1 Cov , Var

ˆVar Var Cov , .

p
t t t t t

p

p p
t t t t

p p p
t t t t

u u u X X

X X X

X X X X

σ
ω ω ω ω ρ

φ ω ω ρ

ρ φ

−→ →

− −

− −

′+ − + −

× + −

× ×

  
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Substituting for ( )1 1Cov , p
t tX X− −  and ( )1Var tX −  

( ){ } ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }

22 2 2

0, 0

1 2 1 2

1

ˆVar 1 lim Var 1 Var

ˆ2 1 Cov , Var Var Var Var Var .

p
t t t t

p

p p p
t t t t t t t

u u u X

X X X X X X

σ
ω ω ω ω ρ φ

ω ω ρ φ ρ

−→ →

−

′+ − = + −

+ − 
 

Substituting from (D.3) and factoring out ( )Var tX   

( ){ } ( ) ( ){ } ( )

( ) ( ) ( ){ } ( )

2 22 2 2
1

0, 0

2
1

ˆVar 1 lim Cov , Var 1

ˆ2 1 Cov , Var Var

p
t t t t t

p

p
t t t t

u u X X

X X X

σ
ω ω ω ω ρ φ

ω ω ρ φ

− −
→ →

−

′+ − = + −

+ − 




 

and since 2 1ρ →  (see Appendix B), and ˆ pφ  and 2ˆ 1pφ →  as 0p −→ , then 

( ){ } ( ) ( ){ } ( )2
1Var 1 Cov , Var 1 Vart t t t t tu u X X Xω ω ω ω−′+ − = + −  from which we see that there are many  

ways in which the combined error variance can be less than the original error variance in Equation (D.3). In  
particular when ( ) ( ){ } 1

11 Cov , Vart t tX Xω
−

−= −  , the error variance due to systematic serial correlation  

vanishes. The only error variance remaining will be due purely to random error unexplained by the original 
model. 
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