
Journal of Applied Mathematics and Physics, 2015, 3, 1654-1661 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/jamp 
http://dx.doi.org/10.4236/jamp.2015.312190   

How to cite this paper: Musah, R., Mensah, S.Y., Seini, I.Y. and Abukari, S.S. (2015) Anomalous Viscosity of Vortex Hall 
States in Graphene. Journal of Applied Mathematics and Physics, 3, 1654-1661.  
http://dx.doi.org/10.4236/jamp.2015.312190   

 
 

Anomalous Viscosity of Vortex Hall States in 
Graphene 
Rabiu Musah1, Samuel Y. Mensah2, Ibrahim Y. Seini1, Sulemana S. Abukari2 
1Department of Applied Mathematics, Faculty of Mathematical Sciences, University for Development Studies, 
Navrongo Campus, Upper East, Ghana 
2Department of Physics, Laser and Fiber Optics Center, University of Cape Coast, Cape Coast, Ghana 

  
 
Received 2 October 2015; accepted 22 December 2015; published 25 December 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We study temperature effect on anomalous viscosity of Graphene Hall fluid within quantum 
many-vortex hydrodynamics. The commonly observed filling fraction, ν  in the range 0 2ν< <  is 
considered. An expression for anomalous viscosity dependent on a geometric parameter-Hall ex-
pansion coefficient is obtained at finite temperatures. It arises from strained induced pseudo- 
magnetic field in addition to an anomalous term in vortex velocity, which is responsible for re- 
normalization of vortex-vortex interactions. We observed that both terms greatly modify the 
anomalous viscosity as well as an enhancement of weakly observed v fractions. Finite values of the 
expansion coefficient produce constant and infinite viscosities at varying temperatures. The infin-
ities are identified as energy gaps and suggest temperatures at which new stable quantum hall 
filling fractions could be seen. This phenomenon is used to estimate energy gaps of already meas-
ured fractional Quantum Hall States in Graphene. 
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1. Introduction 
Graphene is a monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice. Since 
its discovery in 2004, graphene has attracted a great deal of attention mainly due to its exceptionally high crystal 
and electronic quality. Shear viscosity has been studied in graphene [1] [2]. The shear viscosity establishes 
transverse velocity gradients that obstruct coherent electron flow. Under some conditions, one has relativistic 
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particles in graphene forming a quantum Hall fluid; a strongly correlated sates of matter, which flows just like 
fluid and without such shearing resistance or dissipation. The viscosity measured in the quantum Hall fluid is 
what is termed Anomalous (also called Hall or dissipationless) viscosity [3]. Quantum fluids are particularly in-
teresting especially due to the remarkable natural phenomenon occurring in superconductivity, superfluidity, ul-
tracold atoms. Fractional Quantum Hall (FQH) Effect is yet another example. The ground states of FQH states 
are holomorphic in nature and gapped. These gapped states are characterized by a universal anomalous viscosity. 
The viscosity is revealed when stress tensor becomes sensitive to stress preserving deformations of the fluid. In 
this context, the origin of the anomalous term is due to fluid velocity diverging at microscopic scale which de-
forms a metric locally and causes dilatation of particle coordinates. The divergences due to individual particles 
are collectively manifested at macroscopic scale as an anomalous term. Another important term arising from 
metric deformations at finite temperature is Hall expansion coefficient. It is well established that graphene can 
respond to local deformations by producing strain which in turn induces giant pseudo-magnetic fields as much 
as 10 T in strained graphene [4] and 300 T in graphene nanobubbles [5]. The induced field allows vortices in the 
system to feel an effective magnetic field. It is the Hall expansion coefficient that captures the contribution. 

Recently, there has been a great deal of interest and renewed focus on the anomalous viscosity, Aη  of quan-
tum fluids. In particular, a universal relation ( )4Aη ρ=    for FQH states of generic bulk systems was ob-
tained [6] by studying the response to metric deformations, where   is plank constant, ρ  is fluid density and 
  is so called shift of FQHS. In [7], ( )8πA Bη κ=  was obtained for the FQH states of relativistic particles in 
graphene by electromagnetic and gravitational response, where κ  is the relativistic analogue of  . The same 
general result, including anomalous term, was also obtained by Abanov within effective hydrodynamic theory [8] 
and within Euler vortex hydrodynamics [5]. However, all these results lack finite temperature effects which can 
have remarkable consequence on Aη  and other transport properties. 

In the following, we consider flows of quantized Hall vortices in the graphene Hall fluid as elementary ob-
jects forming themselves a highly correlated quantum fluid. In the regime of long-wave slow motion, an accu-
rate hydrodynamic description becomes possible and does, in its own validity, not depend on the microscopic 
behavior of the electronic fluid. Vortex-vortex interactions will then be responsible for appearance of vortex 
FQH Effect. The hydrodynamics of vortex matter presented here differs from Euler hydrodynamics [9] by an 
anomalous term. Within this many-vortex approach, the anomalous term has been derived for bulk single com-
ponent non-degenerate systems [5] without the Hall expansion coefficient. 

The remaining of the paper is organized as follows. In Section 2 we obtained vorticity equation from Euler 
hydrodynamic equation for graphene. From the Euler equation, we obtained a quantized Helmholtz-Kirchoff 
vortex solution. Vortex flux and momentum conservation laws are subsequently derived. The stress tensor is 
deduced from which the anomalous viscosity is read off. In Section 3, we analyzed behavior of the anomalous 
viscosity under density and temperature profiles for different filling fractions of the quantum hall vortex fluid. 
We made comparisons of our results to some recent experimental findings of FQHE energy gaps and concluded 
in Section 4 highlighting possible applications of the results. 

2. Theory 
2.1. Euler Hydrodynamics and Point Vortices 
Two dimensional Euler hydrodynamics can be straightforwardly derived following Boltzmann transport equa-
tion at local equilibrium [10]. Particle distribution is reduced to continuity and Euler equations for density and 
momentum 

0 and 0t tD D pα α αρ = + =u ∇                                   (1) 

respectively. Where t tD ≡ ∂ + ⋅u ∇  and u  is macroscopic fluid velocity connected with the microscopic elec-
tron velocity, Fv k=v k . p is the partial pressure per density and α  is the fluid component index. For gra-
phene, ( ), , ,α ′ ′≡ ↑ ↑ ↓ ↓K K K K . , ′K K  and ,↑ ↓  are the valley and spin indexes, respectively. Taking the 
curl of the Euler Equation (1), we get 

0tD αω =                                           (2) 

where the quantity, ω = ×u∇  is vorticity which is non-zero for rotational incompressible flows. ω  is consi-
dered as frozen into the fluid and constitute its own fluid. The continuity equation for the vortex fluid 0t vD αρ = , 
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also holds. A solution for Equation (2) exists and consists of point-like vortices. The fluid velocity is 

( )
Ω

–
j

j j

u i z i
z z t

α
α α

α α

Γ
= − + ∑                                 (3) 

where z x iy= + , x yu u iu= − , j
αΓ  is the circulation of thj  vortex belonging to fluid component α , and 

Ω  which is identified with cyclotron frequency of the fluid particles. Assuming a flow in which the circulation, 
( )Γ Γi

α α=  is both minimal and chiral so that in the limit, vN →∞  rotation is compensated by the large num-
ber of vortices. If magnetic field is present, the vortices of all components are smoothly distributed with fixed  
mean density, ( )( )0 1 π αρ = Γ Ω . Borhn-Sommerfeld phase-space quantization leads to quantization of the  

circulation vm α αβΓ =  . Where vm  is inertia vortex flow and αβ  is an integer. The equation for the slow 
motion of vortices is easily obtained from Equation (3). It is given by  

( ) ( )
.

–
j

i i
j i j

v i z i
z t z t

α
α α

α α

Γ
= − Ω + ∑                               (4) 

Equation (4) is the Helmholtz-Kirchoff equation for vortices. We will specialize in the zero energy state of the 
system where K  and ′K  components of the fluid decouple. Dynamics are then localized in either sublattice 
and the α  dependence may be dropped. 

2.2. Temperature Effect on Dynamics of Hall Vortices and Viscosity Anomaly 
In the quantum Hall regime of dissipationless flow, fluid particles do not carry heat flux, but vortices do. Vor-
tices move in response to temperature gradient, T∇ . This can be captured in a vortex density defined through 
momentum flux as 

( ) ( ){ }, , , .
2

v
v

mP r T r T vρ=                                (5) 

Using the identity ( ) ( )π 1r zδ ≡ ∂  and the ward identity  

( )( ) ( ) ( )( )2 2
2 1 1i i j i ij i i iz z z z z z z z

≠
− − ≡ − − −∑ ∑ ∑  [5] in Equation (5), we get 

( ) ( ) ( )*, , log , .
4v v vP r T m r T u r Tρ ρΓ = + ∇  

                        (6) 

Equation (6) is crucial in these studies. In particular, our results are based on the second term which dictates 
discussions that follows. The term is responsible for anomalous behavior of the fluid when approaching a vortex. 
It is a quantum or micro-scale phenomenon which manifests itself at classical regime due to possible broken 
translation symmetry associated with lattice scale deformations. Its presents renormalize the vortex-vortex inte-
ractions in Equation (4). It also creates stresses perpendicular to the fluid flow with no work or dissipation. The 
associated transport coefficient (viscosity) is expected to be dissipationless. The momentum conservation fol-
lowing from broken translation invariance in the presence of external forces yields  

a b ab v aP Fρ+∇ Π =                                    (7) 

where the stress tensor is ( )* *
ab v v Am u u u uρ ηΠ = ⋅ + ∇ +∇  and ( ) ( )*∇ ⋅ ≡ ∇× ⋅ . F E v B= + ×  is the external 

force. The kinetic coefficient Aη  is the anomalous (dissipationless) viscosity. Except for the temperature de-
pendence, the dessipationless viscosity has the same structure as the universal relation obtained in literature for 
graphene Fractional quantum Hall states [7]. i.e., 

( ) ( ), , .
4
v

A v
mr T r Tη ρ
Γ

=                                 (8) 

In order to have a complete description of our system, one need to quantize Equation (6). The process physi-
cally leads to interpretation of the quantized circulation as the filling factor of the fractional vortex Hall states 
[5]. A connection between ( )( )Γ vm=    and the so called shift,   of a Hall state is easily established. For  
Graphene, ( )1 4α

α β= −∑ . Except for the re-definition of Γ , the quantized vortex velocity assumes the  
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same form as Equation (6). Taking the curl and utilizing the relation ( )02πΓ vu ρ ρ∇× = − , we have 

( ) ( ) ( )*
0

,
2π , log , .

4π
A

v v
r T

u r T r T
η

ρ ρ ρ
 

∇× = Γ − + ∆ Γ 
                      (9) 

2.3. Effective Magnetic Field 
As we have pointed out in the introduction, geometric deformations can lead to induction of giant synthetic 
magnetic fields. Vortices feel this contribution in addition to external magnetic field as an effective field, vB  
The anomalous viscosity for the graphene-vortex system takes the shape, ( ) ( ) ( ), , 8π , ,A vr t T e B r t Tη κ=  with 

Gκ ν=   and ( )G eBρ ν=  . The Fourier transform of vB  in time-domain yields frequency-dependent vis-
cosity 

( ) ( ), , , ,
8πA v
er T B r Tκη ω ω =  

 
                              (10) 

where i jr z z= − . To compute vB , we decomposed it into ( ) ( ) 0,v vB B r T Bω . 0B  is the applied field. First 
we need to compute vB  from Equation (9). To do that, we require that in the ground sate 0v∇× =  which 
yields ( ) ( )( ) ( )*

0, 4 1 2 Δ log ,v G vB r T B e B r Tν= − − . Expanding vB  in small temperature gradients to get an 
iterative expression for the magnetic field, 

( ) ( ) ( ){ }* *
0, Δ log Δ log 1

2v vB r T B B r T r
e

ξ γ = − + − ∇     

                   (11) 

where 1 2 1Gξ ν= −  is the anomalous term. The Hall expansion coefficient is defined as ( )( )1 .vB B Tγ = − ∂ ∂  
The minus sign is inferred from recent experimental results on graphene at low-temperatures [11]-[14]. Because 
strain in graphene induces giant synthetic magnetic fields, at finite temperatures γ  can have great conse-
quences on the system’s electronic transport properties. Thus, the coefficient can characterize stress and know-
ing it can be very critical in strain engineering. In Equation (11) and throughout the work we used a Gaussian 
profile for the temperature. 

Finally, to obtain ( )vB ω  we recall that the Magnus force acting on vortices has the form 

( )0ˆ .v v vF m z v uρ ρ ρ= Ω × −                                (12) 

The term in brackets is written in such a way that the force stays constant in order that fluctuations in the zero 
energy states are bounded. Replacing v in Equation (12) and using v v vF P i m vρ ω ρ= = −  up to leading order in 
gradient expansion, we get 

( )
( )

( )

2
0

22
2

1
2

.

1
Ω 2

v

B k
B

k

ξ

ω
ω ξ

  +     =
    − +        





                            (13) 

3. Results and Discussion 
We now discuss the behavior of anomalous viscosity. Here, we observed how small temperature gradients affect 
viscosity of vortex fluid quantized on Hall states having filling fraction within 0 2Gν< < . 

In Figure 1, we first simulate viscosity for different filling fractions with the intention to associate detectability 
of a fraction to the viscosity. The observation is motivated by the fact that some Gν -values are generally strong 
and are easily seen in quantum hall experiments. We noticed deviation of the Aη -curves from some mean viscos-
ity, 00.55Aη η= ±  (not shown in either plots) which passes through the 00, 0Tξ γ= =  (red) line close to its 
mid-point. The positive and negative signs are for the left and right plots in the figure. The amount of deviation 
measures the strength of (ability to observe) a Hall state. Thus from Figure 1, it is clear that both 1 3Gν =  and 

2 3Gν =  give the highest deviations which collaborate experimental results [15] [16]. The negative sign is cru-
cial and may suggest the weak observation of these filling fractions in experiments. 
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Figure 1. Temperature gradient enhanced observations of weak fractions. (Left) 0 1Gν< < . (Right) 1 2Gν< < . Parameters: 

0 4.0 KT = , 0.9γ = , 0.1ω Ω =  and 2 0.2k = .                                                                            
 
In Figure 2, we observe the anomalous viscosity over varying temperature, T. At some critical values, CT , the 

viscosity grows to positive and negative infinities for 3 7Gν =  and 2 3Gν = , respectively. Figure 2(c) and 
Figure 2(d) was similarly obtained for fractions within 1 2Gν< < . Above and below CT , Aη  is robust (flat). 
This particular character places graphene as an important industrial material where temperature and viscosity are 
of utmost importance. 

In Figure 3, we plotted Aη  in the neighborhood of infinites initially excluded from Figure 2. We extracted 
the critical temperatures CT  giving rise to anomalous viscosity infinities, ,Aη∞  and study ( ),C GTη ν  behavior 
as shown in Figure 4. The following characterized the appearance of observed temperature continuums in the plot. 
The wider empty spaces, which enclose critical temperatures at which fractional fillings are observed, mean sev-
eral new fractions are more likely to be found within the respective regions. However, experiments are limited in 
their ability to observe many of these fractions. It is no surprise that current experiments are still reporting newer 
fractions [15] [16]. In fact, to explain the hidden fractions from experiments, we provide a physical meaning to 
the infinities in the anomalous viscosity which should connect well with experiments. We interpret ,Aη∞  as a 
measure of device sensitivity which in turn is proportional to system parameters. What this interpretation actually 
means is that under standard conditions and with improved device precision and sensitivity, experiments should 
be able to expose as much as possible FQHS. 

The intuitive meaning of the infinities ,Aη∞  can be clarified further. Another important interpretation can be 
made. ,Aη∞  corresponds, up to a factor of some function ( )( )Gf ν  of the filling fraction, the activation energy 
gap, Δ

Gν
 measured in Kelvin, K. To estimate the gap, we write ( )

G G Cf Tν ν∆ =  and expand ( )Gf ν  in the 
neighborhood of one of the transition points; 1 2Gν ∼  and 1Gν ∼  as shown in Figure 4. After applying some 
simplifying approximations, we obtained ( ) ( )1

GG G Gf νν λ ν ν= − . Where 
Gν

λ  is the degeneracy of Gν -fraction. 
For example, with 1 3Gν =  and 1 3 1λ = , we have 1 3Δ 18.14 K= . Similarly, one has 2 5Δ 5.47 K= ,  

3 7Δ 5.22 K= , 4 7Δ 3.95 K= , 3 5Δ 3.68 K= , 2 3Δ 9.25 K= . These values agreed favorably with results re-
cently announced in [15] [16]. 

Generally, important aspects of the anomalous viscosity are the anomalous, ξ  and thermal Hall, γ  terms. 
Their effects come in two folds. 1) They reconstruct vortex density by introducing non-linearities in the fluid dy-
namics making flows at different fractionally quantized Hall states distinguishable. 2) ξ  captures temperature 
variations due to strain effects through γ  as soon as vortices are formed. The combined effect make viscosity 
more robust over wider temperature range and can even enhanced observation of weaker fractional quantum Hall 
states. Controlling these parameters can improve observablity of weaker fractions and expose weaker ones. 
Moreover, knowing these parameters may be critical in strained-engineered devices. Since device sensitivity to 
stress-preserving deformation depends on the factors.  

The anomalous and Hall expansion terms shift Δ
Gv  to higher values. We found 1 3Δ 18.14 K=  that has been 

difficult to measure in experiments or wrongly estimated in theory. We found that our estimated gaps compares 
favorably with literature results [15] [16]. 
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Figure 2. Temperature gradient enhanced observations of weak fractions. (Top) 0 1Gν< < . (Bottom) 1 2Gν< < . Plots 
concentrates on the flat regimes and intentionally exclude infinities. Parameters: 0 4.0 KT = , 0.9γ = , Ω 0.1ω =  and 

2 0.2k = .                                                                                                            
 

 
Figure 3. Normalized viscosity-temperature plot in the neighborhood of infinities (previously excluded in Figure 1). Poles 
(infinities) correspond to critical temperatures, CT . Parameters: 0.9γ = , Ω 0.1ω =  and 2 0.2k = .                               

4. Conclusions 
In conclusion, we have computed dissipationless (anomalous) viscosity of quantum vortex Hall states in graphene 
within hydrodynamics using quantum many-vortex picture of Euler hydrodynamics. The hydrodynamics formal-
ism allowed a great deal of simplifications as the microscopic theory is completely unnecessary and only few va-
riables, ρ  and v  are employed. 

We constructed a general expression to compute viscosity of a fractional quantum Hall fluid. The temperature 
dependence is also analyzed. Using a Gaussian temperature profile, we demonstrated strongly that anomalous 
viscosity can be used as tool to measure strength of fractional fillings of Hall fluid. Relying on this principle, we 
actually showed that experimental observable fractions correspond to infinities in viscosity at some critical  
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Figure 4. - -A C GTη ν  plot. Full squares indicate critical temperatures. 
Transition points at 0.5Gν =  and 1.0 separate different critical tempera-
ture continuum (empty spaces containing black squares), which hosts frac-
tionally quantized Hall states. The amount of area of the continuums regions 
is proportional to the number distinct Gν  fractions.                            

 
temperatures. We associate the temperatures to energy gaps within 0 2Gν< <  Hall states, and employ idea to 
further estimate the bulk excitation gaps of the states. The critical temperatures are contained within some tem-
perature continuum. We physically interpreted the continuum as a host of many, yet undiscovered Hall states. 
Away from the infinite viscosity limits, the viscosity curves exhibited flatness, which is an indicative region for 
dissipationless transport. 

Finally, our results could be applied to strained-engineered devices to control viscosity. The studies should be 
able to guide future experiments towards observing new fractions. In particular, the temperature continuums may 
be probed, though away from the transition zones, for new fractions by controlling the Hall expansion coefficient 
parameter. Moreover, our work may clarify issues or resolve conflicts of different reported energy gaps, specifi-
cally, the 1 3Δ  gap. 
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