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Abstract

A Cauchy problem for the semi-linear elliptic equation is investigated. We use a filtering function
method to define a regularization solution for this ill-posed problem. The existence, uniqueness
and stability of the regularization solution are proven; a convergence estimate of Hélder type for
the regularization method is obtained under the a-priori bound assumption for the exact solution.
An iterative scheme is proposed to calculate the regularization solution; some numerical results
show that this method works well.
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1. Introduction

Let Q be abounded, connected domain in R”‘l(n >1) with a smooth boundary éQ and assume that H is a
real Hilbert space. We consider the following Cauchy problem of a semi-linear elliptic partial differential

equation
uy, (v, x)-Lu(y,x)=f(y.xu(y.x)), xeQ, 0<y<T,
u(y,x)=0, xedQ, 0<y<T, L1)
u(0,x)=e(x), XeQ,
u, (0,x)=0, XeQ,

where L :D(L,)cH —H denotes a linear densely defined self-adjoint and positive-definite operator with
respect to x. The function ¢ is known, and f:RxR"'xH — H is an uniform Lipschitz continuous
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function, i.e., existing k >0 independentof w,veH , yeR, xeR"" such that
[ (yoxw)= £ (3 x09)] < K] (12

Further, we suppose A, (n >1) be the eigenvalues of the operator L, i.e., for the boundary value problem

LX, =4X, inQ,
(1.3)
X, =0, on 0Q,
there exists a nontrivial solution X, eH.And 2, (n>1) satisfy
O<A4 <A <4< and limA, =, (1.4)

n—o

Our problem is to determine u(y,-) from problem (1.1).

Problem (1.1) is severely ill-posed, i.e., a small perturbation in the given Cauchy data may result in a dramatic
error on the solution [1]. Thus regularization techniques are required to stabilize numerical computations, (see [1]
[2]). We know that, as the right term f =0, it is the Cauchy problem of the homogeneous elliptic equations.
For the homogeneous problem, there have many regularization methods to deal with it, (see [3]-[8]). We note
that, these references mainly consider the Cauchy problem of linear homogeneous elliptic operator equation, but
the literature which involves the semi-linear cases is quite scarce. In 2014, [9] considered the problem (1.1),
where the authors used Fourier truncated method to solve it and derived the convergence estimate of logarithmic
type. Recently, there are some similar works about the Cauchy problem for nonlinear elliptic equation, and they
have been published, such as [10] [11].

In the present paper, we adopt a filtering function method to deal with this problem. The idea of this method
is similar to the ones in [4] [5] [12] [13], etc. However, note that our method here is new and different from
them in the above references (see Section 2). Meanwhile we will derive the convergence estimate of Holder type
for this method, which is an improvement for the result in [9].

This paper is organized as follows. In Section 2, we use the filtering function method to treat problem (1.1)
and prove some well-posed results (the existence, uniqueness and stability for the regularization solution). In
Section 3, a Holder type convergence estimate for the regularized method is derived under an a-priori bound
assumption for the exact solution. Numerical results are shown in Section 4. Some conclusions are given in
Section 5.

2. Filtering Function Method and Some Well-Posed Results
2.1. Filtering Function Method

We assume there exists a solution to problem (1.1), then it satisfies the following nonlinear integral equation

(see [9])
u(y.x)= i cosh(\/Zy)(pn +joy5inhwﬁ_(y_r)) f,(u)(r)dr |X,, (2.1)

n=1

here, X, are the orthonormal eigenfunctions for the operator L, , and
2, ={p. X)), fn(u)(y)=<f (v, xu(y,x)), Xn>, (2.2)
() is the inner product in H.
From (2.1), we can see that the functions cosh (\//I_ny) , sinh (\//I_n(y—r))/\//l—n tend to infinity (&S n — o),

so in order to guarantee the convergence of solution u(y,x), the high frequencies(n — « ) of two functions
need to be eliminated. Therefore, a natural way is to use a filter function q(a,\/;T) to filter out the high

n

frequencies of cosh(\/Zy), sinh(\/Z(y—r))/\//l_n and obtain a stable approximate solution, this is so-

called filtering function method.
Let ¢° be the noisy data, and satisfying

T B (2.3)
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where 5 is the error level, || is the H-norm. According to the above description, for r >0, we choose the
filter function q (a,\/Z) :]/(l+ acosh (\/Z(T + r))) and define the following regularization solution

=% cosh(y/4,y)

i 1+acosh(\/Z(T + r))

(2.9)
, sinh(JZ, (y=1)) £, (uZ)(7)
+ dz | X,,
0 \//I_n(1+acosh(\//1—n(T + r)))
where, go,f=<¢;5,xn>, fn(uj)(y):<f(y,x,uj(y,x)),xn>.
In fact, it can be verified that (2.4) satisfies the following mixed boundary value problem formally
- fy (u2)(y)
° X)=Lul (y,x)= X, Q0 T+r,
(ua)yy(y X)= Lz (v:x) nZ;l+acosh(\/Z(T+r)) *e DR
ug(y,x):(o)e, ; XedQ, 0<y<T+r, 25)
°(0,x)= n X Q,
te (0.%) n:11+acosh(\/Z(T+r)) xe
(uj)y(o,x):o, xeQ.

Our idea is to approximate the exact solution (2.1) by the regularization solution (2.4), i.e., using the solution
of (2.5) to approximate the one of (1.1).

2.2.Some Well-Posed Results

Let O0<a <1, x>0, forthefixed 0<7<y<T+r, we define the function

2!y

T+r)x ’

h(y,z,x)= (2.6)

2+ el

then h(y,z,x) attain unique maximum at the point x,, and from (y—7)<T+r, (T+r)—(y—-7)<T+r,
we have

1 Yy YT ¥
h(y.7.X)<h(y,7.%) == —(2(y =) (T +r)=(y-7)) Tra T
+r ) , 2.7)
Yz pyr = .
< T +r (T +r T+ =2 THr
. (T+r)T (T+r) ™ a a T,

note that, when 7 =0, it can be obtained that

Y
h(y,x)<2a ™. (2.8)

Now, we prove that the problem (2.4) is well-posed (existence, uniqueness and stability for the regularization
solution), the proof mentality of Theorem 2.1 mainly comes from the references [14], which describes the ex-
istence and uniqueness for the solution of (2.4).

Theorem 2.1. Let ¢° € H , f satisfies (1.2), then the problem (2.4) exists a unique solution
u eC([0,T+r];H).
Proof. For weC ([O,T +r]; H) , We consider the operator G(w)(y) defined by
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[ cosh(\Ay)e!
G(w)(y,")= nZ; 1+aCOSh(\/Z(T + r))

(2.9
o sinn (7, (v =), (0)(5) |
0 \/Z(lJracosh(\/Z(T +r))) "
then for w,v e C([O,T +r]; H) , P =1, we can prove the following estimate is valid
kC T
le® (w)(y.)-6° (v |H +1) |||w v| (2.10)
2 .
where C, =———, ||-|| denotes the supnormin C([0,T +r|;H).
7 I (o7 +rJw)
For p=>1, we firstly use the induction principle to prove
[P (W)(y.) -G (v)(y.)|=(kC,) T” ||| V|- (2.11)

Note that, for 0<a <1, from (2.7), h(y,r, x) <2/a . Meanwhile, use the basic inequalities

cosh(\/Z(TJrr))Zeﬁ(T”)/Z, cosh(ﬁy)ﬁeﬁy, and sinh(\/Z(y—r))Seﬁ(y”). When p=1, from
(2.9), (1.2), we have

& (w)(y.) -6 ()(y. )

.y sinn(J4, (y-1)) F W) ()= f (V) () dzX
>, @(1+acosh(@(T+r)))<  (W)(e)= 1, (v)() X,
gi _[y sinh(\//'Tn(y—T))

i 0\/2(1+acosh(\/Z(T+r))

2

)(fn (w)(z)~f, (V)(T))dTJ

2
2
skz(T+r)(\/Za j0y||w—v||2dr
<k’Cly(T +r)|||w—v|||2.
When p=i, we suppose
YT +r)
AL MRV

6" (w)(y.-) -6 (v)(y.)| =(kc, (2.12)
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then for p=i+1, by (2.12), it similarly can be proven that
i+ i+ 2
6" (w)(y.)=G" (v)(y.")|

_ ijy sinh(\/ﬂ_n(y—f))
o \/,Tn(lJracosh(\//Tn(T + r))

& sinh(\/Z(y—r))
Z{I A (1+acosh(\/ﬂ_(T+r))

Sy(\/%a ji( (G (w))( )—fn(Gi(v))(z'))zdr

n=1

ﬁTﬁ"Gi<W)(T")—Gi(v)(f")||zdf
<k (T+r) ﬁj [/(ke, )" ¢ ) wevfar

2

)(fn (G'(w))(r)- f,(G' (v))(r))drxn

)(fn (G'(w)(z)-f,(G' (V))(r))er

<K (T+r

~—

<(kc, f'“ T” S .

By the induction principle, we can obtain that

T+r

||Gp(w)( )-GP(v || kC) |||w v, (2.13)

hence, it is clear that

kC (T
(rof) L)

Jle” (w)(y-)-c* (v |||W VI (2.14)

We consider G:C ([O,T +r];H ) —C ([O,T +r];H ) , and from real analysis, we know

i (kC, (T +r))p

Y

(2.15)

Po
There must exist a positive integer number p,, such that 0<( \/‘L? <1, therefore G™ is a contraction,
Po*

it shows that the equation G™ (w)=w has a unique solution u’ € C([0,T +r];H ). Noting that

a

G(Gp"(ug)):G(U{f). thus, G (G(u‘s))zG(uj). By the uniqueness of the fixed point of G™, we have
G(uJ)=ug, so the equation G(w)=w has a unique solution uZ eC([0,T +r];H). o

In the following, we give and prove the stability of the regularization solution.
Theorem 2.2 Suppose f satisfies (1.2), u2, and u’, be the solutions of problem (2.4) corresponding to the
measured datum ¢ and ¢, respectively, then for 0<y<T +r, we have
.
i (y) ~uZ (v )] <Ca ™

al a

A (2.16)
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2
8k2 Tar 8k (T+r)y
where Cl\/8{1+¥e A

Proof. From (2.4), we have

cosh(fy)

(2.17)

_n:1 1+acosh( T+r

)
) i cosh(\/_y)go 0 smh<\/_ )) f, (u2,)(7)
“ )

dr |X., (2.18)

= 1+acosh( n(T+r

[
N
—~
<
SN—
1]
N
ﬁ
—_—
[35Y
+
R
(@]
(@]
w
D‘
9
_|
+
-
SN—
SN—

where ¢ :<(pf, Xn>, i=12.
By (2.17), (2.18), (2.7), (2.8) and (1.2), we have

()]
e cosh(\/zy)(CDfn—(Din)JrJ_ySinh(\/Z(y—r))(fn(ugl)(z-)_fn(ugz)(r))dr )
1+“C°5h(\/Z(T”)) ° \/Z(1+OZCOSh(\/Z(T+I’))) "

2

n=1

cosh(\/,Ty) o
st

sinh(f(y—r)) ) .
AL O

S el o 5 y gl (v ’ 2
) P e S P e [T ERA TG

| 27 et A2 2 ael T

Sy 2(y-7) R .
<8a T”Z(@ln ¢2n) +8— ZI a T (f (Usl)(f)_fn (USZ)(r))ZdT
(e de

Ms

_2y
< 86! T+r

3 ¢2 || +8 /,{lya T+rJ‘ aT+r

Subsequently,
k*(T+r)

2 y 2 5 5 2
+8 J.Oa”’ Ual(T -u (z’,)" dr

2y
aT+r

w2, (y.)~us, (v, <8t — o3

using Gronwall’s inequality [15], we have

2y 2 SkZ(T+r)y
al Ui(y,')—U‘Z(yr)||238{“8k (Tﬂ:r)ye 11 J| '

(2.19)

s 2
a o gol,n - ¢2,n 1

then from the above inequality (2.19), the stability result (2.16) can be obtained. o

3. Convergence Estimate

In this section, under an a-priori bound assumption for the exact solution a convergence estimate of Holder type
for the regularization method is derived. The corresponding result is shown in Theorem 3.1.

Theorem 3.1. Suppose that f satisfies the uniform Lipschitz condition (1.2), and u given by (2.1) is the exact
solution of problem (1.1), u? defined by (2.4) is the regularization solution, the measured data ¢° satisfies
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(2.3). If the exact solution u satisfies

D fu ). X,)

n=1

2

<E? (3.1)

and the regularization parameter o is chosen as
a =90, (3.2)

then for fixed 0<y<T, we have the following convergence estimate

ul (y,r)-u(y.)|< Célfﬁ, (3.3)

a

8k2Ty
8kT

here C=C,+C,, C,= [8E?|1+ yye 4 |, C, isgivenin Theorem 2.2.
Al 1

Proof. Denote u, be the solution of problem (2.4) with exact data ¢ . We know that
||uj—u||s||uj —ua||+||ua —u]. (3.4)

From Theorem 2.2, for 0<y<T, we have

(1)1, ()] <Cr T

9 —gl- (3.5)
By (2.1), (2.4), (2.7), (2.8), we have

Ju. (v.)=u(y. )

e arcosh(y/2, (T +1)) ,sinh ([, (y=7)) f, (u)(z)

=2 nz:: +acosh(\/7(T+r )[COSh(\/iy)(pﬁI Vi dT]XH

,sin(Va, (y=2))(fa (u,)(2) = f, (u)(z ))dTX
\/71+acosh \/Z(T+r "

acosh T +r

2
© A (Y-
h
; 1+acosh (T+r )} {COS \/7y ¢n+'[ \/Z

+2.|'

smh r)

<2

HZ( l+acosh (T+r
[ acosh T+r Jz{cosh ¢n+.[ smh(\/Z(y—T)) fn(u)(f)dr]z

+acosh T +r
smh(\/_
I dTI ( (1+acosh(\/7(T +r))

)] (fn (ua)(r)— fn (u)(z—))z dr

2
d 20{6‘/7y 27 (T+1-y) 2 y 26“/7 2
G u(y,), X, )| +2 d L (u) ()=, (u)(o)[ d
ZEMJMJ (uCy) o) +2 - 2f8e ]| =y | [fa () ()= fu(w) (<) e
2y 20y-7) »

<8a "o E? +8 yja ;(fn(ua)(r)—fn(u)(r))zdr

: u, (z.)-u(z.) dr.

2y y 2
<8a T+ ?E? +8Zk20ﬂ”_|.005T+r
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For 0<y<T, we get
2

u, (y,-)-u(y, )||2 <8a’E’? +8%J'0yoﬂ:f

aT”

u, (z.)-u(z.)[ dz. (36)

use Gronwall’s inequality [15], it can be obtained that

aT+r

y 2 gkTy U
ua(y,-)—u(y,~)|| <8a’E?|1+ P e r |

thus
Y
||ua(y,-)—u(y,-)||sC2a T (3.7
From (3.2), (3.4), (3.5), (3.7) and (2.3), we can obtain the convergence result (3.3). o

4. Numerical Experiments

In this section, we verify the accuracy and efficiency of our given regularization method by the following
numerical example

uyy XX

u(0,x)=p(x), 0<x<m, .1
u,(0,x)=0, 0<x<m,

u(y,0)=u(y,n)=0, 0<y<l,

2
here we take Q=(0,z), H=L%(0,x), Lx:—%,then A,=n° and Xn(x):\/zsin(nx).
X n
Itis clear that u(y,x)=x(x— n)(z + y2) is an exact solution of problem (4.1), thus
g(y,x)=2x(x—n)+2(2+yz)—cos(x(x—n)(2+y2)), @(x)=u(0,x)=2x(x—m) . We choose the measured
dataas ¢°(x)=g(x)(1+&(x/2-1)), where & isan error level, and

N NG
silo-ol, (£ S (x) -0 | - @2

Let O=y,<y, <<y, <<y, =1 for 4=012--M, the regularization solution u’(y,,x) with

Y. :ﬁ can be computed by the following iteration scheme
ug (v, X)=v, (x) =w,, sin(x)+w,,, sin(2x)+---+w, ,sin(mx), 4.3)
a.
here w; , = Le , and

“ Lracosh(j(1+r))
a;,, =cosh(1y, )] +%Ifj£ sinh (j(y, =7))(cos(v,.4 (X)) + (7. x))sin( jx)dxd=
+§jfyif';J;‘sinh(i<vy—r))<cos<vu-z(x>)+g(r,x))sinuxwxdr
e 2 s (5(y, 7)) os(w (3)) + 0 x)sin( )i

+n£jjoyljonsinh<j(yﬂ - r))(cos(v0 (x))+a(z, x))sin( jx)dxdz,

(4.4)
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v (x)=¢° () =p(X)(1+&(x/2-1)), ¢’ :%J'0"¢5(x)sin(jx)dx. (45)

For a fixed 0<y<1, in order to make the sensitivity analysis for numerical results, we define the relative
root mean square error between the exact and approximate solutions as

()= \/i‘i(u(yvxii)_uj(y!xii))z

=0 . (4.6)

\/;i(u(y,xﬁ))z

ii=0

u

We adopt the above given algorithms to compute the regularization solution at vy, :V with M =50,

for 4=12,---,M,j=1---m=4. Taking r=0.5 for ¢=0.0010.0050.01,0.05 the numerical results
for u(y,) and u’(y,) at y=0.6,1, (x=30,50) are shown in Figure 1 and Figure 2, respectively. For
£=0.00001,0.0001,0.001,0.01,0.05, the relative root mean square errors for the various error levels ¢ and
regularization parameters « at y=0.6,1 are shown in Table 1. In the computational procedure, the regulari-
zation parameter « is chosen by (3.2),and « =6 is computed by (4.2).

From Figure 1 and Figure 2 and Table 1, it can be observed that our regularization method is effective and
stable. Meanwhile we note that the smaller ¢ is, the better the calculation effect is. Table 1 shows that the
numerical results become worse when y approaches to 1, which is a common phenomenon in the computation of
ill-posed Cauchy problems for the elliptic equation.

0

T T
Exact solution
Regularized solution

Exact solution
Regularized solution

| | |
w N -
T T
|

Exact solution and Regularized solutioy
1
ES
T

Exact solution and Regularized solutio

|
v
T

-6

0.5 1 15 2.5 35

Exact solution and Regularized solutio

-6

I
0
T

T T
Exact solution
Regularized solution

Exact solution and Regularized solution

|
T

{
5]
T

|
w
T

|
FS
T

I
Y
T

T T
Exact solution
Regularized solution

0.5

©

25 3

35 0

0.5

(d)

Figure 1. Exact and regularized solutionsat y=0.6.(a) £=0.001; (b) £=0.005;(c) £=0.01;(d) £=0.05.
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T T
Exact solution
Regularized solution | |

T T
Exact solution
Regularized solution | |

|
(S}

T

L

|
w

T

1

4t

|

S A
T T
L L

|
=

T

1

Exact solution and Regularized solution
Exact solution and Regularized solution

7 | 7t
-3 . . . . . L -8 . . . . . .
0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 25 3 35
X X
@ (b)
0 T — 0 T —7
Exact solution Exact solution
~1 Regularized solution | | AN © Regularized solution | |
g2 1 &t
2 E
z E
s =
E E
£ i
E EE
El S
Z 6t 2 6l
@ 5
7L ] s
-8 . . . . . . -8 L L . . . .
0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 2.5 3 35
X X
(©) (d)

Figure 2. Exact and regularized solutionsat y=1.(a) ¢£=0.001;(b) &£=0.005;(c) ¢=0.01;(d) £=0.05.

Table 1. The relative root mean square errors for various ¢ and the regularization parameters « at y=0.6,1.

£ 0.00001 0.0001 0.001 0.01 0.05

a 1 8303e—06 1 8303e—05 1 8303e—04 0 0018 0 0092
&, (U) 0 0087 0 0088 0 0094 0 0284 0 1036
& (u) 0 0094 0 0095 0 0105 0 0290 0 1111

5. Conclusion

We use a filtering function method to solve a Cauchy problem for semi-linear elliptic equation. The results of
the well-posedness for the approximation problem are given. Under the a-priori bound assumption, the conver-
gence estimate of Holder type has been derived. Finally, we compute the regularization solution by constructing
an iterative scheme. Some numerical results show that this method is stable and feasible.
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