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Abstract

The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling
wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact
traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the
novel (G’/G)-expansion method. Consequently, various traveling wave solutions patterns includ-
ing solitary wave solutions, periodic solutions, and kinks are detected and exhibited.
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1. Introduction

NLEEs arise in a wide variety of disciplines physical problems such as in physics, biology, fluid mechanics,
solid-state physics, biophysics, solid mechanics, condensed matter physics, plasma physics, quantum mechanics,
optical fibers, elastic media, reaction-diffusion models, and quantum field theory. Recently, many kinds of po-
werful methods have been proposed to find exact traveling wave solutions of NLEEs e.g., the exp(—q)(n))—
expansion [1]-[3], the (G'/G)-expansion method [4]-[7], the wave translation method [8], the Ansatz method [9]
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[10], the Darboux transformation method [11], the Hopf-Coletrans formation [12], the Miura transformation
[13], the Jacobi elliptic function method [14], the A domian decomposition method [15] [16], the method of bi-
furcation of planar dynamical systems [17] [18], the inverse scattering transform method [19], the multiple-
expansion method [20], Homotopy analysis method [21] [22], three-wave method [23], extended homoclinic test
approach [24], the improved F-expansion method [25], the projective Riccati equation method [26], and the
Weirstrass elliptic function method [27] to name a few. The novel (G'/G)-expansion method is beginning to find
a pragmatic ever increasing use as can be seen in [28]-[33]. Worthy is it to note perhaps that rudiments of the
(G'/G)-expansion method was used by Eckstein and Belgacem, as early as the late 80’s, to describe the platelet
transport behavior in blood vessels, [34]-[36]. Recently, Alam and Belgacem in their study appearing in the
Waves, Wavelets and Fractals-Abstract Analysis Journal, applied the novel method to the long wave equation,
[37]. The aim of this paper is to find exact and solitary wave solutions of the (1 + 1)-dimensional combined
KdV-mKdV equation by the novel (G'/G)-expansion method.

2. Description of the Method
For a given nonlinear wave equation with one physical field u(x,t) in two variables x and t
w)=0 1)

where u(x,t) and P is a polynomial about u in and its derivatives.
Let us consider that the traveling wave variable is

P(u, U, Uy, Uy, Uy, U

u(x,t)=u(¢&), &=x=Vt. )
The traveling wave variable (2), transforms (1) into a nonlinear ODE for u=u(¢):
Q(U,U,,U”,UW;".)ZO' (3)

We seek for the solution of Equation (3) in the following generalized ansatze
N .
u(é)= 2 a(w(9) @)

where
(&)= [d +%]. ©

Herein «_, or ay might be zero, but both of them could not be zero simultaneously. g; (j =0,+1,+ 2,---,J_rN)
and d are constants to be determined laterand G =G (5) satisfies the second order nonlinear ODE:

GG" = AGG' + uG? +v(G')’ (6)

where prime denotes the derivative with respectto & and A, x, v are real parameters.

The Cole-Hopf transformation @ (&) =1In (G (cf))zf = 2((5)) reduces Equation (6) into Riccati equation:

V(&) =+ A0 (&) +(v-1) 02 (£). @

Equation (7) has individual twenty five solutions (see Zhu, [38] for details).

The value of the positive integer N can be determined by balancing the highest order linear terms with the
nonlinear terms of the highest order come out in Equation (3). If the degree of u(&) s D[u(é)] =n, then the
degree of the other expressions will be as follows:

Dl:dpu—(f)}:n+p, D[u”[%@}siznp+s(n+q).

Substituting Equation (4) including Equations (5) and (6) into Equation (3), we obtain polynomials in

()
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, i , -
(d +wJ and [d +%j , (J=0,1,2,---,N). Collecting all coefficients of identical power of the re-
G(¢) G(¢)

sulted polynomials to zero, yields an over-determined set of algebraic equations for «; (j =0,+1,+2,---, =N )
dand V.

Suppose the value of the constants can be obtained by solving the algebraic equations obtained in Step 4.
Substituting the values of the constants together with the solutions of Equation (6), we will obtain some new and
comprehensive exact traveling wave solutions to the nonlinear evolution Equation (1).

3. The (1 + 1)-Dimensional Combined KdV-mKdV Equation

In this section, we will employ the novel (G'/G)-expansion method to get several novel and further wide-ranging
exact traveling wave solutions to the famous (1 + 1)-dimensional combined KdV-mKdV equation.
Let us consider the (1 + 1)-dimensional combined KdV-mKdV equation

u, +auu, + puu +u, =0. (8)
Using the traveling wave transformation & =x-Vt, Equation (8) is converted into the following ODE:
VU’ +auu’ + pu’u’+u” =0. 9)

Integrating Equation (9), we obtain
C-Vu +%au2+%ﬂu3+u"=0 (10)

where C is a constant of integration. Inserting Equation (4) into Equation (10) and balancing the highest order de-
rivative u” with the nonlinear term of the highest order u®, we obtain M =1.
Therefore, the solution of Equation (10) takes the form,

u(é)= a_l((//(f))fl +ay +a1(1//(§)) ) (11)
Substituting Equation (11) into Equation (10), the left hand side is transformed into polynomials of

] -
G’ G’
(d +¥J and [d +GL§)] . (i=0,1,2,---,M). Equating the coefficients of like power of these poly-

(€) (€)

nomials to zero, we obtain an over-determine set of algebraic equations (for simplicity we leave out to display the
equations) for «,, ¢, a,, d, C and V. Solving the over-determined set of algebraic equations by using the
symbolic computation software, such as Maple 13, we obtain

c-_%_ T (24@4(1 v)+a’ +662%), V =2u(v-1)-(a’ +284%)/(48)

whered, A, x and v are arbitrary constants.

For Set, substituting Equation (12) and the values of /(&) into Equation (11) and simplifying, we obtain the
following:

When Q=4°-4uv+4u>0 and A(v-1)=0 (or u(v-1)#0),

oot

gt e (64(0-1)-32)

28 1/6

where §=x—{Zy(u—l)—(az+2ﬁ/12)/(4ﬁ)}t,and d, A, x and v arearbitrary constants.

)

12)

(13)
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u2<x,t>=H‘§ “‘”Hd e [+ (%@n}

us(x,t)z{i\/?(u—l) x{d - 2(01_1){/1+x/5(tanh(x/5§)iisech(x/5§))}}
d

<
—~
x
—
~
Il
—

ig(v_l)}{d - 2(01_1){;L+\/5(coth(\/5§)icsch(x/§§))}:|

—%i\/_le_ﬂ(ESd( ~1)-32)
-6 1 1 1
us(x,t):{i\/%(u—l) X d—4(0_1){2/1+x/§[tanh(zx/5§j+coth(Zx/ﬁénﬂ
a 1
T _Bﬂ(Bd( -1)-34)
R 1 + QA+ B%) - AVQcosh (VO )
UG(X;t)_{—\/%(U—l) {d+2(ul){/1+ Asinh(\/af)+B
a 1
—ﬁi _Gﬂ(Gd( -1)-34)
[, [ 1 £ JO(A+B%) + AVQcosh (VO £)
u7(x,t)—{_\/%(u—l) x[d+2(ul){/1+ Asinh(\/6§)+8
—%iﬁ(m( ~1)-32)

where A and B are real constants.

- Zycosh(lx/affj
ug(x,t){+\/§(U1)}><{d+\/asmh[;\/5§]zgcosh(;x/aéj]

2L (6d(v-1)-32)

2~ 68

: 2,usinh[l\/5§]
U (%, 1) {+\/§(u—1)}x{d + mcosh(;\/agjz,lsmh@@gj}

(6d(v-1)-32)

(14)

(15)

(16)

17

(18)

(19)

(20)

(21)
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— Ccos \/>
um(x,t):{i f(u_l)}x{d+J53inh(¢522)_2£o:2§g)m5} 22)
_%iﬁ(ed(u—l)—:u)
- sinh (v/Q
Uy (x,t) = {i\/%(u—l)}x{d + Jacosh(\/zﬁﬂg)_h,fsi?hiz/ag)im} (23)
s L (6d(v-1)-34).
B \-88
When Q=4>-4uvo+4u<0 and A(v-1)#0 (or u(v-1)=0),
balit)= H% (U_l)}x{d ' 2(01—1) (_A e G@CED} (24)
_%iﬁ(m(u—l)—%).
u”(x’t)z{ig (U_l)}x{d i z(vl—l) (“mmtemgn} (25)
_%iﬁ(m( ~1)-34)
UM(Xlt):{_ %E(U_l)}x{d +2(u1—1){_Mm(tan(mé)isec(mg))}} (26)
_%i\/_%ﬂ(ed( ~1)-32)
u (X,t):{i\/% (“‘1)}{0' ) 2(01—1){”@(wt(m(’g)icsc(mg))}} @7)
_%iﬁ(ﬁd( ~1)-34)
outi)=fo R0 gt L one (L e me ) | "
Zii _16ﬂ(6d(u—1)—3z)
Uy, (X,t) = {Jr\/%(l)—l)}{d + 2(01—1) {—/H +\/Q(TA;:()«/%\/§)_§1C§S(\/_Q§)} (29)
%i\/_%ﬁ(sd( ~1)-32)
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B

Uyg (X,t) = { _6(0_1)}{(“ (1 {_/1++1/Q(AZB2)+A\/_QCOS(\/_Q§)

Asin(@§)+ B

2(v-1)
- —(6d (v-1)-32)

2/5 J-68

where A and B are arbitrary constants such that A*—B?>0.

- Zycos[ «/55]
U (X,1) {ﬂ/%(u—l)}x{d - @sin(;mfj““os(;méj

|
|

_%i\/_lﬁiﬁ(Gd(u—l)—fM).
INE Zysin(lméj
Uzo(th){\/%(U_l)}X{dJr _Qcos(;m;j—lsin(;mfj
_%i\/_le_ﬂ(Bd(u—l)—Sl)
— cos \/—_
u21(x,t):{i\/§(u—l)}><{d— _Qsin<\/%y§)+(gco?(f/)—_ﬂcf)i -Q
_%i\/_le_ﬂ(Bd(u—l)—S/l)

2ysin(;x/5§)

|

Uy, (X,1) {\/%(U—l)}x{d + — COS(;mgj_gsin(;«/ﬁé)im

_54- =y,

When £=0 and A(v-1)=0,

(6d (v-1)-34)

N 2k
uzs(x,t)={—\/;( 1)} {d (v-1){k +cosh(A&)-sinh(1&)}

(6d(v-1)-32)

|

IR O T S P A{cosh(A&)+sinh (&)}
2 ( ,t)—{— ( 1)} {d (v-1){k+cosh(A&)+sinh (&)}

where k is an arbitrary constant.
When (v-1)#0 and A= =0, the solution of Equation (8) is,

|

|

H

(30)

31

(32)

(33)

(34)

(35)

(36)
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uzs(x,t)={i %f(u—l)}x{d —m}—%i \/_16_13(6d (v-1)-32). (37)

where ¢, is an arbitrary constant.

4. Conclusion

In this letter, the novel (G'/G)-expansion method has been successfully applied to find the exact solution for the
(1 + 1)-dimensional combined KdV-mKdV equation. The novel (G'/G)-expansion method is used to find a new
exact traveling wave solution. The results show that the novel (G'/G)-expansion method is reliable and effective
tool to solve the (1 + 1)-dimensional combined KdV-mKdV equation. Thus the novel (G'/G)-expansion method
could be a powerful mathematical tool for solving NLEEs.
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