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Abstract 
The Galilei invariant model of the nucleon as a system of three point particles, whose dynamics is 
governed by Schrödinger equation, after six Hamiltonian parameters fitting, predicts magnetic 
momenta, masses and charge radii of the proton and neutron with experimental precision. Now 
this model is applied in order to investigate nucleon charge, mass and magnetism distributions. 
The obtained electric and magnetic form factors at low values of momentum transfer are in satis-
factory agreement with experimental information. The model predicts that neutron is a more 
compact system than proton. 
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1. Introduction 
Different and significant changes of quantum systems, composing more complex structures (for example, atoms 
forming molecules or solid state) are obvious. The well-known experiments of atomic nuclei structure also indi-
cate that a nucleon embedded in a nucleus is slightly modified in comparison with a free one [1]-[3]. Therefore, 
for the investigation of this effect, the simple model is necessary, which is compatible with the technique of 
atomic nuclei description and is able to predict the changes of nucleon structure once it appears in vicinity of 
other nucleons. 

The Schrödinger’s model of nucleon [4] is introduced namely for the solution of this problem. The model 
considers proton and neutron as different systems of three point particles (PP) in correspondence with the Stan-
dard Model recommendations: proton as the system of two up (uPP) and one down (dPP) particle, while neutron 
—as a system of one uPP and two dPP particles. These particles should not be identified with the quarks of the 
Standard Model because only their spins ( )2 , charges (+2e/3 and −e/3) and baryon numbers (1/3) match the 
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respective quarks quantum numbers. Both PP of our model are different; thus isospin quantum number is not 
necessary. Therefore, the color quantum number, which is used in the Standard Model to antisymmetrize the 
wave function, is also unnecessary. In our model antisymmetry is ensured with a smaller number of wave-func- 
tion’s degrees of freedom. Baryon number is necessary to prevent the possibility of system excitation when one 
or two PP escapes to continuous spectrum. The PPs, composing the nucleon, allow defining the magnetic mo-
menta of structureless particles in Dirac’s way. The interactions of different pairs of PP (uu, ud and dd) contain 
the Coulomb and three-dimensional harmonic oscillator (spring) potentials, having four free parameters. To-
gether with PP masses the model Hamiltonian has six free parameters. The conditions for this model are as fol-
lows. Firstly, it has to be Galilei invariant. Secondly, finite ranges of potential wells are applied in order to avoid 
the appearance of nonexistent bound excited states of the nucleon. Finally, the number of parameters of nucleon 
Hamiltonian has to be equal with the number of nucleon characteristics, applied for fitting. These are the best 
known characteristics of the proton and neutron—masses, magnetic momenta and charge distribution radii. The 
values of experimental results, given in Particle Data Group 2014 report [5] and corresponding model results are 
presented in Table 1. It is shown that six parameters of model Hamiltonian can be chosen so that the mentioned 
characteristics of nucleon could be predicted with experimental precision. 

Thus, the eigenfunctions of introduced Hamiltonian application for nucleon structure investigation are the 
next interesting problem. This paper is devoted for electric and magnetic elastic form-factors and corresponding 
radii description. 

2. The Galilei Invariant Form Factor Operator 
The elastic form factor of nucleon is defined as density operator’s Fourier image: 

( ) ( ) ( ), ; exp d .AA iσσ = ⋅∫F q qρ η η η                            (1) 

Here pσ =  denotes the proton, nσ =  stands for the neutron, while 

( ) ( )
3

1
A Ak k

k
σ σ δ

=

= −∑dρ η η η                                 (2) 

is density operator in the nucleon’s center-of-mass reference frame ( 0 ,k k= −rη ξ  where 0ξ  is center-of-mass 
radius vector). Akσd  are k-th particle ( )1,2,3k =  characteristics, given in Table 2. 

For charge density ( )A E≡  they equal the PP charge kezσ , for magnetization density ( )A M≡ —the PP 
magnetic momentum operator kσµ , defined in [4], while for mass distribution density ( )A P≡ —the mass of 
the PP’s kmσ . For PP density distribution ( )A R=  they equal 1/3, i.e. the baryon number of PP. The values of 

2Aσd  and 3Aσd  coincide due to indistinguishability of these PP that is why we will use only one of them in the 
following expressions. Applying this density definition, the form factor operator equals the sum 

( ) ( ) ( ) ( )1 1 2 2 3, ; exp exp exp .A AA i i iσ σσ  = ⋅ + ⋅ + ⋅ F q d q d q qη η η                  (3) 

 
Table 1. Nucleon characteristics, applied for Hamiltonian parameters fitting (experiment; 
data are from Ref. [5]), and results of present model (theory). 

 Experiment Theory 

Proton magnetic momentum ( )Nµ  2.792847356 (23) 2.792847356 

Proton charge radius (fm) 0.8775 (51) 0.87750000 

Proton mass Mp (GeV) 0.938272046 (21) 0.938272046 

Neutron magnetic momentum ( )Nµ  −1.91304272 (45) −1.91304272 

Neutron mean-square charge radius (fm2) −0.1161 (22) −0.11610000 

Neutron mass (GeV) 0.939565379 (21) 0.939565379 

uPP mass mu (GeV) - 0.3213453699 

dPP mass md (GeV) - 0.3381741985 
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Table 2. Parameters and operators, present in density definition, Equation (2). 

A 1 2pA nA=d d  2 1pA nA=d d  

E, Charge density 1
3

e−  2
3

e  

M, Magnetism density ( )1 12
3

p

d

M
m

− +λ s  ( )2 23

2
2

3
p

u

M
m

+λ s  

P, Mass density dm  um  

R, Point particles density 1
3

 1
3

 

 
It is well-known that the form factors, defined experimentally, are independent of angles of the momentum 

transfer q , therefore this expression, before estimating the mean value, needs to be averaged by spherical an-
gles qΩ . All exponents have a common dependence on q , so taking into account the integral of spherical 
harmonics scalar product, equal 

( ) ( )( )dl q l qY Y ξΩ ⋅ Ω Ω =∫                                 (4) 

( ) ( )( ) ( )00 ,0d 4π ,
l

lm q q q lm l
m l

Y Y Y ξ δ∗

=−

Ω Ω Ω Ω =∑ ∫                         (5) 

one obtains that 

( )( ) ( ) ( ) ( )( ) ( ) ( ),0 0
=0 0

1 exp d d .
4π

l l
q l l q l q l l

l l
i i j q Y Y i j q j qξξ ξ δ ξ

∞ ∞

=

⋅ Ω = Ω ⋅ Ω Ω = =∑ ∑∫ ∫q ξ         (6) 

Here ( )lj x  is the spherical Bessel function. After this operation the form factor operator equals: 

( ) ( ) ( ) ( )( )2
1 0 1 2 0 2 0 3, ; ,A AA q j q j q j qσ σσ η η η= + +F d d                      (7) 

Written in Jacobi coordinates 

1 2 3

0 0 0
0 1

1 2

2 3

1 11
2 2

0 1 1

m m mσ σ σ

σ σ σ
σ

ν ν ν
 
 
   
    = − −   

    
   − 

 
 

r
r
r

ξ
ξ
ξ

                              (8) 

it takes the form 

( )2 2 1 1
1 0 1 2 0 1 2 0 1 2

0 0 0

2 1 1, ; .
2 2A A

m m m
A q j q j q j qσ σ σ

σ σ
σ σ σ

σ ξ
ν ν ν

     
= + − + +                

F d d ξ ξ ξ ξ        (9) 

Here 0 1 2 3m m mσ σ σ σν = + +  is sum of PP masses. The mean value of this form factor operator at low q val-
ues provides important information about the system. When 2 0q =  

( ) 1 2, ;0 2 ,A AA σ σσ = +F d d                               (10) 

it equals the nucleon charge, magnetic momentum, mass 0σν  and unity correspondingly. The form factor pres-
entation in a dimensionless and normalized form is 

( ) ( )
( )

2
2

, ;
, ; ,

, ;0

A q
G A q

A

σ
σ

σ
=

F

F
                              (11) 
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so that its value in zero equals one. The only exception is the electric form factor of the neutron ( ), ;0n EF , 
which equals zero. In order for ( )2, ;G n E q  to be dimensionless it is modified dividing by the elementary 
charge e. The next member of form factor expression in vicinity of 2 0q =  equals: 

2 2 2
2 2 1

1 1 2 1 2
0 0

21 12 .
3! 2A A

m m
q σ σ

σ σ
σ σ

ξ ξ ξ
ν ν

         − + +             
d d                    (12) 

Thus, 

( )
( ) 2

2 22 2
2 1

1 1 2 1 22
0 0

0

d , ; 2 16 2
2d A A

q

A q m m
q

σ σ
σ σ

σ σ

σ
ξ ξ ξ

ν ν
=

       − = + +     
      

F
d d               (13) 

is proportional to the square of corresponding radius operator, i.e.: 

( )
( ) 2

2

2

0

d , ;
6 .

d
q

G A q

q

σ

=

−                                  (14) 

Inserting the charges of PP’s one obtains the expressions presented in [4] for the squared charge radius oper-
ators of the proton and neutron. 

3. Expectation Values of Form Factor Operator 
Elastic form-factors of nucleon as functions of momentum transfer 2q  are defined as ratio of mean values of 
form-factor operator, Equation (9) applying wave functions’ superposition defined in [4]: 

( ) ( )( )( ) ( ) ( )( )( )1 1,1 2 1 2, 1, 1 2,1 2 1 1 1 2, 1,1 2 3 2, 1, 1 2,1 2 1 2 1 2, .
2

m m +            (15) 

Here both basic functions are bound angular and spin momenta functions 

( ) ( )( )( )1 1 1 2 23 23, , , 1 2,1 2 1 2, ,s j s j j mλ λ =                          (16) 

where the parentheses indicate the operation of momenta binding, 1λ  is angular momentum of the first Jacobi 
coordinate 1ξ , 1 1 2s =  is spin momentum of the first particle, 2λ  indicates the angular momentum of the 
second Jacobi coordinate 2ξ , for which according to [6] the spin momenta of the second and third particles 
need to be set. The 1 23,j j  are total momenta of respective Jacobian subsystems. Their sum 1 2j =  equals the 
nucleon momentum, i.e. its spin. The radial wave functions, dependent on different Jacobi variables, present in 
front of superposition (15) ( ) ( )01u xσα  are given in Equation (19) of [4]: 

( ) ( )
( )

( ) ( )

21 2 2

1

1 3 3e , ; , if 0 2 ,
2 2 2

, if 2 ,

x
n

n

x x x
u x N

Lh i x x

σαλ
λ σασα

λ

λ σα

λ ε λ τ

κ τ

+ −   Φ + − + ≤ <   
 =  

 ≥

          (17) 

where σατ  is the depth of dimensionless Hamiltonian well, which width equals 2 σατ . ( )
n
σα
λε  is eigenvalue 

(here λ  is angular momentum quantum number, while 0,1, 2,n =   equals the number of eigenfunction  

nodes). ( )( )2 0n
σα

σα λκ τ ε= − > , while ( )2, ;a c xΦ  denotes a degenerate hypergeometric function [7] [8]. In  

the area where a potential equals zero, radial function equals spherical Hankel function of imaginary argument 
( ) ( )1h i xλ κ  [8]. The conditions of equality of both parts of the function and their logarithmic derivatives at point  

2x σατ=  defines the constant L and eigenvalue ( ) ,n
σα
λε  while the constant N is defined by the normalization  

condition 
( ) ( )

2

0
d 1.nu x xσα

λ
∞

=∫                                (18) 

Integration of the first member of right side of Equation (9) is straightforward. For calculation of the second 
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and third integrals one needs spherical Bessel function expansion [8]: 

( ) ( ) ( ) ( ) ( )( )0
0

4π .k k k a k b
k

j q j qa j qb Y Y
∞

=

− = Ω ⋅ Ω∑a b                    (19) 

The sum of two functions of this kind present in (9) equals 

( ) ( )( )1
1 2 1 2

0,2,4, 0

14π .
2k k k k

k

m
j q j q Y Yσ

ξ ξ
σ

ξ ξ
ν

∞

=

    Ω ⋅ Ω   
  

∑


                  (20) 

Having in mind the structure of nucleon wave function, only two first terms of expansion, corresponding 
0,2k =  give nonzero contribution to the form factor integral. 

Finally, after some angular momentum algebra, the form factor can be presented as 

( ) ( ) ( ) ( )2
1 1 2 2 2 3

7 3 2, ; 2 ,
5 5A A AA q I q I q I qσ σ σ σ σ σσ

 
= + + +  

 
F d d d              (21) 

where 

( ) ( ) ( )
21 2

1 01 1 0 1 10
0

2
d ,

m
I q u j qσ σ
σ

σ

ξ ξ ξ
ν

∞  
=  

 
∫                                       (22) 

( ) ( ) ( ) ( ) ( )
2 21 21

2 01 1 0 1 1 01 2 0 2 20 0
0

1d d ,
2

m
I q u j q u j qσ σσ
σ

σ

ξ ξ ξ ξ ξ ξ
ν

∞ ∞   =    
  

∫ ∫                 (23) 

( ) ( ) ( ) ( ) ( )
2 21 21

3 01 1 2 1 1 01 2 2 2 20 0
0

1d d .
2

m
I q u j q u j qσ σσ
σ

σ

ξ ξ ξ ξ ξ ξ
ν

∞ ∞   =    
  

∫ ∫                 (24) 

Here, the radial wave functions as functions of αξ , having the length dimension, are proportional to the 
present above functions ( ) ( )nu xσα

λ  in a following way: 
( ) ( ) ( ) ( ) ,n nu u x b bσα σα
λ α λ α σα σαξ ξ= =                           (25) 

where bσα  are potential wells parameters, given in [4]. These wave functions normalization condition looks as 

( ) ( )
2

0
d 1.nu σα

λ α αξ ξ
∞

=∫                                 (26) 

Obviously, the momentum transfer q in all given expressions has dimension fm−1. The widely accepted di-
mension of this momentum Q is GeV/c. Therefore, the slight modification is necessary due to these momenta 
dependence: 

[ ] [ ]1fm GeV GeV fm .q Qc c−  = ⋅                              (27) 

Here, in square brackets the dimensions of corresponding quantities are written. The value of conversion 
factor ( )0.1973269718 44 GeV fmc = ⋅  is defined in Ref. [5]. 

Operators, present in right hand side of Equation (13), having in mind the definitions (14), (11) and (10) are 
necessary for radii calculation. Together with precise calculation, the values of radii can be determined from the 
slopes of corresponding form factors in the limit of zero momentum transfer 2q . 

4. Results 
The obtained charge, magnetic, mass and point particles radii are present in the “theory” column of Table 3. 

The known experimental values of corresponding radii are given in the “experiment” column. The charge ra-
dii of nucleon are applied for fitting, hence their values are equal to the ones, recommended by the Particle Data 
Group 2014 report [5]. The straightforward evaluation of magnetic radii of nucleon is problematic, hence only 
few estimates of proton and only one—for neutron magnetic radius are known. The evaluations for mass and 
point particles radii are absent in literature. 
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Table 3. Values of different radii of the proton and neutron. 

 Experiment Theory 

Proton charge radius (fm) 0.8775 (51) [5] 0.877500 

 0.8768 (69) [9]  

 0.879 (6) [10]  

 0.84184 (56) [11]  

Proton magnetic radius (fm) 0.777 (16) [5] 0.832087 

 0.876 (19) [12]  

 0.848 (6) [13]  

Proton mass radius (fm) - 0.809988 

Proton PP radius (fm) - 0.811174 

Neutron mean-square charge radius (fm2) −0.1161 (22) [5] −0.116100 

 −0.1149 (35) [14]  

 −0.134 (3) [15]  

Neutron magnetic radius (fm) 0.862 (9) [5] 0.759587 

Neutron mass radius (fm) - 0.767979 

Neutron PP radius (fm) - 0.766703 

 
In Figure 1 and Figure 2, the electric and magnetic form factors for the proton ( )2, ;G p E Q  and ( )2, ;G p M Q  

together with best fits of corresponding experimental results, given in [16] as ratio of two polynomials 
( )andA E M=  

( )
3 5

2

0 0
, ; k k

Ak Ak
k k

G p A Q a Q b Q
= =

= ∑ ∑                           (28) 

with parameters Aka  and Akb , are present. 
The neutron electric form factor ( )2, ;G n E Q  and double-polarization data, taken from [17], are present in 

Figure 3. 
The comparison of calculated and given by standard dipole approximation 

( ) ( )( ) 222
01DG q Qc Q c

−
= +                             (29) 

with 0 0.71 GeVQ c =  the neutron magnetic form factor ( )2, ;G n M Q  is present in Figure 4. 
The all four obtained form factors demonstrate good enough comparison with known experimental data at low 

values of momentum transfer, that characterises the nucleons, present in an atomic nucleus. Moreover, ratio of 
electric and magnetic form factors of neutron at ( )22 1.58 GeV cQ =  obtained in [18] is 0.250 (58). Corres-
ponding ratio of our form factors equals 0.257. 

The mass and point particles form factors for proton ( )2, ;G p P Q , ( )2, ;G p R Q  and neutron ( )2, ;G n P Q , 
( )2, ;G n R Q  are not present, due to the absence of experimental information and due to the trivial dependence 

on momentum transfer 2Q , looking correspondingly like the proton and neutron magnetic form factors with 
slightly different slopes at origin. 

5. Conclusions 
The most interesting result of radii calculation is that the neutron appears as a more compact system than the 
proton, although the results of the magnetism distribution radii, presented in [5], show different relations. The 
obtained compactness of the neutron nicely fits with the well-known fact that the surface of the heavy nuclei is  
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Figure 1. The electric form factor of the proton (solid line). The fit p

EG  
from Ref. [16] is shown for comparison (dashed line). 

 

 
Figure 2. The magnetic form factor of the proton (solid line). The fit p

MG µ  
from Ref. [16] is shown for comparison (dashed line). 
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Figure 3. The electric form factor of the neutron (solid line). The 
double-polarization data from Ref. [17]. 

 

 
Figure 4. The magnetic form factor of the neutron (solid line). The 
standard dipole form factor, Equation (29) (dashed line). 

 
more well-defined than the one of the proton [19]. As follows from our investigation, the proton’s density de-
creases smoothly and is much more spread out through the sphere than the one of the neutron. There is a surplus 
of the neutrons in heavy nuclei which usually distribute on the surface of the nucleus and can determine the 
mentioned effect. Moreover, compact distribution of neutron constituents gives larger probability of weak process, 
producing its decay. 
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Therefore, the obtained precision of nucleon description allows concluding that the calculations of other cha-
racteristics of the proton and neutron with obtained wave function may give some interesting and rather reliable 
results. It is well known that realistic potentials of nucleon-nucleon interaction, carefully fitted with the two- 
nucleon data, give smaller than experimental nuclear binding energies. It looks like that the introduced model is 
able to give a chance for this problem solution. As it is known from the solid state theory, when the distance 
between two potential wells decreases, the isolated levels of each well convert to the system of two levels, one 
of them is more bound than the other one. If Pauli principle allows the constituents of nucleon to occupy the best 
bound level, this may help us to improve the description of atomic nuclei, taking into account the changes of 
nucleon structure when merging into groups. 
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