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Abstract 
In the current paper, the authors present a symbolic algorithm for solving doubly bordered k-tri- 
diagonal linear system having n equations and n unknowns. The proposed algorithm is derived by 
using partition together with UL factorization. The cost of the algorithm is O(n). The algorithm is 
implemented using the computer algebra system, MAPLE. Some illustrative examples are given. 
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1. Introduction 
The general tridiagonal matrixtakes the form: 
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Such matrices arise in many applications, such as boundary value problems, parallel computing, telecommu-
nication system analysis, interpolation with splines and solution of differential equations using finite differences. 
Research area on these types of matrices is very active and has recently attracted the attention of many research-
ers. The interested reader may refer to [1]-[4]. 

Recently, researchers have begun considering the k-tridiagonal matrix as a generalization of the special ma-
trixin (1). 

The general k-tridiagonal matrix takes the form: 
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For example,
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The importance of such matrices could be shown clearly in the last few years. For more details see, for in-
stance, [5]-[8]. 

In this paper, we are going to focus on the doubly bordered k-tridiagonal matrix, here after will be referred to 
as k-DBT, which has the form: 
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We can hold the view that the above matrix is a natural extension of the k-tridiagonal matrix in (2). 
In a partitioned form, the matrix ( )k

nA  in (4) can be written as: 
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where [ ] [ ]1 2 2 1 1 2 2 1, ,tt
n n n nh h h h v v v v− − − −= = h v ( )1 1, n− ×∈h v  and  
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Throughout this paper, the word “simplify” means to simplify the algebraic expression under consideration to 

its simplest rational form. Also, λ  is a formal parameter which can be treated as a symbolic name whose ac-
tual value is 0 as we will see later. 

The present paper is organized as follows. In the next section, numeric and symbolic algorithms for evaluat-
ing the k-DBT determinant are constructed. The UL factorization of doubly bordered k-tridiagonal matrix is also 
considered. Finally, the solution of the linear system whose coefficient matrix is of type k-DBT is proposed. In 
Section 4, some illustrative examples are given.  

2. Generalization of the DETGDBTRI Algorithm 
In order to factor the k-tridiagonal matrix in (6), it is advantageous to introduce the (n − 1) quantities associated 
with the matrix ( )
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Now, consider the following theorem whose proof will be omitted.  
Theorem (1): 
The Doolittle ( ) ( )k k

T TU L  of the matrix ( )
1
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At this point, it should be mentioned that the above factorization in (8) is always possible even if the matrix 
( )

1
k

nT −  is singular. 
Armed with the partitioned form of ( )kA  introduced in (4), we can construct the ( ) ( )k k

A AU L  factorization of 
this matrix as follows: 
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where [ ] [ ] ( )
1 2 2 1 1 2 2 1, ,t kt

n n n n Tq q q q p p p p L− − − −= = q p  and ( )k
TU  are given in (8). 

By using the above equation, we see that the following four systems of equations are necessarily satisfied 
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We may now formulate the following algorithm for evaluating ( )( )det kA  of the matrix ( )kA  in (4). 
 

 



N. Shehab et al. 
 

 
1203 

 
 
As can be easily seen, Algorithm (2.1) breaks down if any ei = 0 for some }{1,2,...,i n∈  The following 

symbolic algorithm is developed in order to remove the case where the numeric algorithm fails. 
 

 
 
The Algorithm 2.2 will be referred to as k-DETGDBTRI algorithm. It is a natural extension of the 

DETGDBTRI algorithm presented in [11]. 
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3. Solving Linear System of Equations with Coefficient Matrix of Typek-DBT  
In this section, we introduce a symbolic algorithm for solving k-DBT linear systems of the form: 

( )kA =x f                                         (17) 

where [ ] [ ]1 2 1 2,t t
n nx x x f f f= = x f  and ( )kA  introduced in (4). 

 

 
 
The Algorithm (3.2) will be referred to as k-DBTLSys algorithm. The total computational cost of the k- 

DBTLSys algorithm is 19 11 18n k− −  in terms of total number of flops, where each flop represents one of the 
four basic arithmetic floating point operations. 

A maple code based on algorithm 3.1 is available upon request from the authors. 
The following four remarks are given in order: 
Remark 1. If 1, 0, 2,3, , 1i ik p q i n= = = = − , then we have the DETGTRI algorithm in [9]. 
Remark 2. If 1, 0, 2,3, , 2i ik p q i n= = = = − , then we have the PERTRI algorithm in [10]. 
Remark 3. If 1 , 0, 2,3, , 1i ik n p q i n< < = = = − , then we have the k-DETGTRI algorithm in [8]. 
Remark 4. If 1, 0, 0i ik p q= ≠ ≠  for some 2,3, , 1i n= − , then we have the DBTLSys algorithm in [11]. 

4. Illustrative Examples 
Notice that in the following examples, blank elements in the matrices are zeros. 

Example 4.1. Consider the following k-DBT linear system: 
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Solution: In this example, we have n = 6 and k = 3. 
Applying the k-DBTLSys algorithm gives: 

• 1 2 3 4 5 6
9 1, 4, , 2, 1, 2
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The solution is [ ]5 2 13 1 4 3 t= −x . 
Example 4.2. Consider the following k-DBT linear system: 
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Solution: In this example, we have n = 10 and k = 5. 
Applying the k-DBTLSys algorithm yields: 

• [ ]4 5 3 5 5 2 3 1 5 1 2 2= − − −e  (step 1). 
• [ ]4 5 1 2 1 24 1 1 1 2t = − − − −q  (step 2). 
• [ ]1 3 9 5 0 5 3 3 5 1 5 22 4 t= − − − − −p  (step 3). 
• [ ]3 2 2 3 4 5 1 2 3 3 9 5 2 5 2 1 t= − − − − −w  (step 4). 

The solution is [ ]3 2 1 6 7 2 1 19 6 6 8 3 9 2 7 2 19 6 t= − − − − −x  (step 5). 
Example 4.3. Consider the following k-DBT linear system: 
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1 2 1 2 3 4 5 5 1 4 3 1 2 1 19
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3 1 2 0

1 2 3 2
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1 3 2 6
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Solution: In this example, we have n = 14 and k = 8. 
Applying the k-DBTLSys algorithm gives: 

• [ ]19 6 8 2 1 3 9 6 1 2 3 1 2 3 1 2= −e  (step 1). 
• [ ]6 5 2 4 3 11 5/2 5 5 1 4 3 1 2 1t = − − − − −q  (step 2). 

• [ ]1 4 2 13 1 3 2 3 5 1 1 3 0 3 2 1 3 2 1 2 t= − − − −p  (step 3). 

• [1 3 4 3 14 4 3 5 3 4 0 4 3 3 0 2 3 10 3]t= −w  (step 4). 

• The solution is [ ]1 1 1 1 1 1 1 1 1 1 1 1 1 1 t=x  (step 5). 
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