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Abstract

In the current paper, the authors present a symbolic algorithm for solving doubly bordered k-tri-
diagonal linear system having n equations and n unknowns. The proposed algorithm is derived by
using partition together with UL factorization. The cost of the algorithm is O(n). The algorithm is
implemented using the computer algebra system, MAPLE. Some illustrative examples are given.
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1. Introduction

The general tridiagonal matrixtakes the form:
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Such matrices arise in many applications, such as boundary value problems, parallel computing, telecommu-
nication system analysis, interpolation with splines and solution of differential equations using finite differences.
Research area on these types of matrices is very active and has recently attracted the attention of many research-

ers. The interested reader may refer to [1]-[4].

Recently, researchers have begun considering the k-tridiagonal matrix as a generalization of the special ma-

trixin (1).

The general k-tridiagonal matrix takes the form:

For example,
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The importance of such matrices could be shown clearly in the last few years. For more details see, for in-

stance, [5]-[8].

In this paper, we are going to focus on the doubly bordered k-tridiagonal matrix, here after will be referred to

as k-DBT, which has the form:
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We can hold the view that the above matrix is a natural extension of the k-tridiagonal matrix in (2).
In a partitioned form, the matrix Agk) in (4) can be written as:
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Throughout this paper, the word “simplify” means to simplify the algebraic expression under consideration to
its simplest rational form. Also, A is a formal parameter which can be treated as a symbolic name whose ac-
tual value is 0 as we will see later.

The present paper is organized as follows. In the next section, numeric and symbolic algorithms for evaluat-
ing the k-DBT determinant are constructed. The UL factorization of doubly bordered k-tridiagonal matrix is also
considered. Finally, the solution of the linear system whose coefficient matrix is of type k-DBT is proposed. In
Section 4, some illustrative examples are given.

2. Generalization of the DETGDBTRI Algorithm

In order to factor the k-tridiagonal matrix in (6), it is advantageous to introduce the (n — 1) quantities associated
with the matrix T*) as follows:

d, ifi=nn-1,-.,n-k+1
g = . 7
! di—aib';k ifi=n—k,n—k-1,---,2 )
ei+k
Now, consider the following theorem whose proof will be omitted.
Theorem (1):
The Doolittle UML) of the matrix T*) takes the form:
e, 0 - 0 a 0 - - o1l 1 1
0 0
T(kl) =U§k)L(Tk) _ a,_ b2 ®)
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At this point, it should be mentioned that the above factorization in (8) is always possible even if the matrix

T is singular.

Armed with the partitioned form of A®) introduced in (4), we can construct the U{L®) factorization of

this matrix as follows:
w_(dth | el [[110
AT =TT [T o TG0 || 5w ©)
V:Tn—l O:UT p:LT

where g'=[¢, O, - G, G P=[P P, - P, P] LY and UL aregivenin (8).
By using the above equation, we see that the following four systems of equations are necessarily satisfied

e+q'p=d, (10)
h' =g, (11)
v=U{p, (12)
and
T8 =y (13)

Solving (10)-(12) for e,q and p Yyields:

h, ifi=n-1,n-2,.--,n—Kk, 14
% Ih-z,..0.  ifi=n—k-Ln-k-2,-1. (14)
N if i=n-1n-2,...n—k,
P =18 (15)
(Vi =81 P ) /8 ifi=n—k-1Ln-k-2,--,1.
and
n-1
e =d - G p, (16)
i=1
b .
where z,=—,i=k+2,---,n.

e

We may now formulate the following algorithm for evaluating det(A(")) of the matrix A" in (4).

Algorithm 2.1. A numeric algorithm for computing det(A(k)) in (4).

To compute the determinant of the k~-DBT matrix AY in (4), we may proceed as follows:

INPUT: Order of the matrix, », the value of k and vectors a, d, b, h, v.
OUTPUT: the determinant of the matrix 4 in (4)
Step 1: For i=n,n—1,---,n—k+1
set: e, =d,
End do

Step 2: For i=k+2,k+3,---,n do
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bi
set: z, = —
ei
End do.
Step 3: For i=n—k,n—k—1,---,2 do
compute and simplify:
€ = di 4 Ziy

End do.
Step 4: Compute and simplify e; using (16)
Step 5: Det(A(") ) =[Te.-
r=1

As can be easily seen, Algorithm (2.1) breaks down if any e; = 0 for some ie {1, 2,...,n} The following
symbolic algorithm is developed in order to remove the case where the numeric algorithm fails.

Algorithm 2.2 A symbolic algorithm for computing det(A(k)) in (4).

To compute the determinant of the ~-DBT matrix A" in (4), we may proceed as follows:

INPUT: Order of the matrix, #, the value of k£ and vectors a,d,b,h,v .

OUTPUT: the determinant of the matrix 4*) in 4
Step 1: For i=n,n—1,---,n—k+1
set: ¢, =d, Ifany e, =0 then ¢, =1 end if
(A is just a symbolic name)
End do
Step 2: For i=k+2,k+3,---,n do

bi
set: z, =—
e

i

End do.
Step 3: For i=n—k,n—k—-1,---,2 do
compute and simplify:
e =d —a,z,,. Ife=0then e =4
End do.
Step 4: Compute and simplify e; using (16).
Step 5: Compute and simplify:

p(ﬂ)=lje,-

Step 6: Det(A(k)) =p(0).

The Algorithm 2.2 will be referred to as k-DETGDBTRI algorithm. It is a natural extension of the

DETGDBTRI algorithm presented in [11].
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3. Solving Linear System of Equations with Coefficient Matrix of Typek-DBT
In this section, we introduce a symbolic algorithm for solving k-DBT linear systems of the form:

A¥x = f (17)
where x=[x % - %], f=[f, f, — f] and AY introduced in (4).

Algorithm 3.1 (Asymbolic algorithm for solving linear systems of k~-DBT matrix type)

To solve a general k&-DBT linear system of the form (17), we may proceed as follows:
INPUT: The components, a;,b,,d,,h;,v, and f;

OUTPUT: The solution vector x =[x, x, -+ x,] of the linear system in (17).

Step 1: Use the /-DETGDBTRI algorithm to compute and simplify e, for i =1,2,---,n
Step 2: Compute and simplify ¢,, i =1,---,n—1 using (14).

Step 3: Compute and simplify p,, i=1,---,n—1 using (15).

Step 4: Compute w;, w,, -+, w, using:

1 /e, if iz n—k+1
w, =4 (fi—aw)/e if i=n—k,,2

n-1
[-f]_zqrwrﬂj/el 1fl:1
r=1

Step 5: The solution vector x of the system (17) is given by
w, ifi=1
X, =4 W= P X ifi=2,--,k+1

wW,—p X —z%x, ifi=k+2,---,n

evaluatedat 1 =0.

The Algorithm (3.2) will be referred to as k-DBTLSys algorithm. The total computational cost of the k-
DBTLSys algorithm is 19n—-11k —18 in terms of total number of flops, where each flop represents one of the
four basic arithmetic floating point operations.

A maple code based on algorithm 3.1 is available upon request from the authors.

The following four remarks are given in order:

Remark 1. If k=1, p,=0,=0,i=2,3,-,n-1, then we have the DETGTRI algorithm in [9].

Remark 2. If k=1, p,=¢q,=0,i=2,3,---,n—2, then we have the PERTRI algorithm in [10].

Remark 3. If 1<k<n, p,=¢,=0,i=2,3,---,n—-1, then we have the k-DETGTRI algorithm in [8].

Remark 4. If k=1, p,#0,q, =0 forsome i=2,3,.-,n-1, then we have the DBTLSys algorithm in [11].

4. Illustrative Examples

Notice that in the following examples, blank elements in the matrices are zeros.
Example 4.1. Consider the following k-DBT linear system:

1 21 45 3][x] [15]

3200 3 O0fx]| |7

20100 2[x|_|29 8)
300 20 0fx| |-13

5 200 1 0fx| |25

|1 0100 2% |[24]
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Solution: In this example, we have n =6 and k = 3.
Applying the k-DBTLSys algorithm gives:
91+1
e =
2/1
qt = -2 4 5 3] (step 2).
]/l ~3/2 5 1/2] (step 3).
321 +5 5 -13

&, =—4,6=1,6,=2,6=1,¢e =2.Hence Det(A)=-8.Thus, Aisnonsingular (step 1).

w, = W, =17 ,w,=—,w,=—— , W, =25, w, =12 (step 4).
] ) 3= M 5 5 3 (step 4)

321 +5 574+2 13 -(211-2)

=9 X% = =z, X = =15, Xy =—""—=

91+1 |, 91+1 |, 91+1|,, 2(94+1) |,

—(491+4
S_Q =— ,x6=92/1+3 =3 (step 5).

9+1 |, 9A+1 |,

The solutionis x=[5 2 13 1 -4 3].
Example 4.2. Consider the following k-DBT linear system:

(4 1 -3 -1 0 21 1 -1 2][x] [4]
11 2 X, 4
-1 3 -2 X 0
2 -1 2 X 3
0 2 -2 % [ |0
2 1 X | |3 (19)
31 5 X 9
4 -1 -1 Xg 2
2 1 2 X 5
LS -1 —2] [ %0 | 12}
Solution: In this example, we have n = 10 and k = 5.
Applying the k-DBTLSys algorithm yields:
e e=[4/5 35 5 -2 315 -1 2 -2] (stepl).
e q'=[45 -4 -2 -1 2 11 -1 2] (step2).
e p=[-1/3 -9/5 0 -53 2 3/5 -4 1 -5/2] (step3).
o w=[-32 2/3 —4/5 1 -2/3 3 9/5 -2 52 -1] (step4).
The solutionis x=[-3/2 1/6 -7/2 1 -19/6 6 8/3 -9/2 7/2 -19/6] (step5).
Example 4.3. Consider the following k-DBT linear system:
(1 2 -1 -2 34 55143 1 2 1]x] [19]
2 2 5 X, 9
1 3 2 X 6
4 1 -1 X, 4
1 2 -1 Xg 2
3 3 =2 || X 4
-5 1 X -4
-2 2 X | |0 (20)
1 3 Xg 4
0 2 1 X0 3
-3 1 2 Xy 0
1 -2 3 X1 2
2 7 1 Xi3 10
|1 3 2 || x,| | 6]
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Solution: In this example, we have n = 14 and k = 8.
Applying the k-DBTLSys algorithm gives:

e=[19/6 8 2 13 9 6 1 2 312 3 1 2] (stepl).

q'=[-6 572 -4/3 -11 52 5 5 1 4 3 1 2 1] (step2).
p=[-Y4 2 13 13 2/3 5 -1 13 0 -32 3 2 1/2] (step?3).
w=[1 3/4 3 14 4/3 5/3 -4 0 4/3 3 0 2/3 10 3] (step4).

Thesolutionis x=[1 1 11111111111 1]t (step 5).
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