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Abstract 
A discrete event system is a dynamical system whose state evolves in time by the occurrence of 
events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical 
modeling tool applicable to discrete event systems in order to represent its states evolution where 
the timing at which the state changes is taken into consideration. One of the most important per-
formance issues to be considered in a discrete event system is its stability. Lyapunov theory pro-
vides the required tools needed to aboard the stability and stabilization problems for discrete 
event systems modeled with timed Petri nets whose mathematical model is given in terms of dif-
ference equations. By proving stability one guarantees a bound on the discrete event systems state 
dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is 
shown that it is possible to restrict the discrete event systems state space in such a way that 
boundedness is achieved. However, the restriction is not numerically precisely known. This in-
convenience is overcome by considering a specific recurrence equation, in the max-plus algebra, 
which is assigned to the timed Petri net graphical model. 
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1. Introduction 
A discrete event system, is a dynamical system whose state evolves in time by the occurrence of events at 
possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to 
discrete event systems in order to represent its states evolution where the timing at which the state changes is 
taken into consideration Timed Petri nets are known to be useful for analyzing the systems properties in addition 
of being a paradigm for describing and studying information processing systems, where the timing at which the 
state changes is taken into consideration. For a detailed discussion of Petri net theory see [1] and the references 
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quoted therein. One of the most important performance issues to be considered in a discrete event system is its 
stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems 
for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of 
difference equations [2]. By proving stability one guarantees a bound on the discrete event systems state 
dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it 
is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. 
However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a 
specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model. 
This paper proposes a methodology consisting in combining Lyapunov theory with max-plus algebra to give a 
precise solution to the stabilization problem for discrete event systems modeled with timed Petri nets. The 
presented methodology results to be innovative and it is not, in general, known. The main objective of the paper 
is to spread its results along large audiences. The paper is organized as follows. In Section 2, Lyapunov theory 
for discrete event systems modeled with Petri nets is given. Section 3 presents max-plus algebra and max-plus 
recurrence equations for timed event Petri nets. Section 4 considers the solution to the stabilization problem for 
discrete event systems modeled with timed Petri nets. Finally, the paper ends with some conclusions. 

2. Lyapunov Stability and Stabilization of Discrete Event Systems  
Modeled with Petri Nets [2]-[4] 

NOTATION: { }= 0,1, 2,...N , = [0, )R+ ∞ , { }
0 0 0 0 0= , 1,..., ,... , 0nN n n n k n+ + + ≥ . Given , nx y R∈ , x y≤  

is equivalent to ,i ix y i≤ ∀ . A function ( , )f n x , 
0

: n n
nf N R R+ × →  is called nondecreasing in x  if given 

, nx y R∈  such that x y≥  and 
0nn N +∈  then, ( , ) ( , )f n x f n y≥ . Consider systems of first ordinary 

difference equations given by  

00( 1) = [ , ( )], ( ) = ,o nx n f n x n x n x n N ++ ∈                            (1) 

where 
0nn N +∈ , ( ) nx n R∈  and 

0
: n n

nf N R R+ × →  is continuous in ( )x n . 
Definition 1 The n  vector valued function 0 0( , , )n n xΦ  is said to be a solution of (1) if  

0 0 0 0( , , ) =n n x xΦ  and 0 0 0 0( 1, , ) = ( , ( , , ))n n x f n n n xΦ + Φ  for all 
0nn N +∈ .  

Definition 2 The system (1) is said to be practically stable, if given ( , )Aλ  with 0 < < Aλ , then  

00 0 0 0< ( , , ) < , , 0nx x n n x A n N nλ +⇒ ∀ ∈ ≥   

Definition 3 A continuous function : [0, ) [0, )α ∞ → ∞  is said to belong to class   if (0) = 0α  and it is 
strictly increasing.  

Consider a vector Lyapunov function ( , ( ))v n x n , 
0

: n p
nv N R R+

+× →  and define the variation of v  relative 
to (1) by  

= ( 1, ( 1)) ( , ( ))v v n x n v n x n∆ + + −                                (2) 

Theorem 4 Let 
0

: n p
nv N R R+

+× →  be a continuous function in x , define the function  

0 =1( , ( )) = ( , ( ))p
iiv n x n v n x n∑  such that satisfies the estimates  

( )( )0( ) , ( ); , , ( , ( )) ( , ( , ( )))b x v n x n a x a b v n x n w n v n x n≤ ≤ ∈ ∆ ≤                  (3) 

for 
0nn N +∈ , ( ) nx n R∈ , where 

0
: p p

nw N R R+
+× →  is a continuous function in the second argument. Assume  

that: ( , ) ( , )g n e e w n e+  is nondecreasing in e , 0 < < Aλ  are given and finally that ( ) < ( )a b Aλ  is 
satisfied. Then, the practical stability properties of  

0 0( 1) = ( , ( )), ( ) = 0.e n g n e n e n e+ ≥                                (4) 

imply the practical stability properties of system (1).  
Corollary 5 In Theorem (4): If ( , ) 0w n e ≡  we get uniform practical stability of (1) which implies structural 

stability.  
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Definition 6 A Petri net is a 5-tuple, 0= { , , , , }PN P T F W M  where: 1 2= { , ,..., }mP p p p  is a finite set of 
places, 1 2= { , ,..., }nT t t t  is a finite set of transitions, ( ) ( )F P T T P⊂ × ∪ ×  is a set of arcs, 1:W F N +→  is a 
weight function, 0M : P N→  is the initial marking, =P T∩ ∅  and P T∪ ≠ ∅ .  

Definition 7 The clock structure associated with a place ip P∈  is a set = { : }i iV p P∈V  of clock 
sequences ,1 ,2= { , ,...},i i iV v v  , ,i kv R+∈  = 1,2,...k   

The positive number ,i kv , associated to ip P∈ , called holding time, represents the time that a token must 
spend in this place until its outputs enabled transitions ,1 ,2, ,...,i it t  fire. We partition P  into subsets 0P  and 

hP , where 0P  is the set of places with zero holding time, and hP  is the set of places that have some holding 
time. 

Definition 8 A timed Petri net is a 6-tuple 0= { , , , , , }TPN P T F W M V  where 0{ , , , , }P T F W M  are as 
before, and = { : }i iV p P∈V  is a clock structure. A timed Petri net is a timed event petri net when every 

ip P∈  has one input and one output transition, in which case the associated clock structure set of a place 
ip P∈  reduces to one element = { }i iV v .  
Notice that if ( , ) =W p t α  (or ( , ) =W t p β ) then, this is often represented graphically by α , ( β ) arcs from 

p  to t  ( t  to p ) each with no numeric label. 
Let ( )k iM p  denote the marking (i.e., the number of tokens) at place ip P∈  at time k  and let  

1= [ ( ),..., ( )]T
k k k mM M p M p  denote the marking (state) of PN  at time k . A transition jt T∈  is said to be 

enabled at time k  if ( ) ( , )k i i jM p W p t≥  for all ip P∈  such that ,( )i jp t F∈ . It is assumed that at each time 
k  there exists at least one transition to fire. If a transition is enabled then, it can fire. If an enabled transition 

jt T∈  fires at time k  then, the next marking for ip P∈  is given by 

1( ) = ( ) ( , ) ( , ).k i k i j i i jM p M p W t p W p t+ + −                            (5) 

Let = [ ]ijA a  denote an n m×  matrix of integers (the incidence matrix) where =ij ij ija a a+ −−  with 

= ( , )ij i ja W t p+  and = ( , )ij j ia W p t− . Let {0,1}n
ku ∈  denote a firing vector where if jt T∈  is fired then, its  

corresponding firing vector is = [0,...,0,1,0,...,0]T
ku  with the one in the thj  position in the vector and zeros 

everywhere else. The nonlinear difference matrix equation describing the dynamical behavior represented by a 
PN  is: 

1 = T
k k kM M A u+ +                                        (6) 

where if at step k , < ( )ij k ja M p−  for all ip P∈  then, it T∈  is enabled and if this it T∈  fires then, its 
corresponding firing vector ku  is utilized in the difference equation to generate the next step. Notice that if 
M  can be reached from some other marking M  and, if we fire some sequence of d  transitions with 
corresponding firing vectors 0 1 1, ,..., du u u −  we obtain that 

1

=0
= , = .

d
T

k
k

M M A u u u
−

′ + ∑                                     (7) 

Let 
0

( , )m
nN d  be a metric space where 

0 0
: m m

n nd N N R+× →  is defined by  

1 2 1 2
=1

( , ) = | ( ) ( ) |; > 0
m

i i i i
i

d M M M p M pζ ζ−∑  and consider the matrix difference equation which describes the 

dynamical behavior of the discrete event system modeled by a PN , see (7). 
Proposition 9 Let PN  be a Petri net. PN  is uniform practical stable if there exists a Φ  strictly positive 

m  vector such that  

= 0Tv u A∆ Φ ≤                                          (8) 
Moreover, PN  is uniform practical asymptotic stable if the following equation holds 

= ( ),Tv u A c e c∆ Φ ≤ − ∈                                   (9) 

Lemma 10 Let suppose that Proposition (9) holds then,  

= 0 0Tv u A A∆ Φ ≤ ⇔ Φ ≤                                  (10) 
Remark 11 Notice that since the state space of a TPN is contained in the state space of the same now not 
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timed PN, stability of PN implies stability of the TPN.  

Lyapunov Stabilization 
Definition 12 Let PN  be a Petri net. PN  is said to be stabilizable if there exists a firing transition 

sequence with transition count vector u  such that system (7) remains bounded.  
Proposition 13 Let PN  be a Petri net. PN  is stabilizable if there exists a firing transition sequence with 

transition count vector u  such that the following equation holds  

= 0Tv A u∆ ≤                                     (11) 
Remark 14 By fixing a particular u , which satisfies (11), the state space is restricted to those markings that 

are finite.  

3. Max-Plus Algebra [5] [6] 
3.1. Basic Definitions 
NOTATION: = −∞ , = 0e , = { },max ∪    = 1,2,...,n n . Let , maxa b∈  and define the operations ⊕  
and ⊗  by: = max( , )a b a b⊕  and =a b a b⊗ + . 

Definition 15 The set max  with the two operations ⊕  and ⊗  is called a max-plus algebra and is 
denoted by max = ( , , , , ).max eℜ ⊕ ⊗    

Definition 16 A semiring is a nonempty set R  endowed with two operations ,R⊕  ,R⊗  and two elements 
R  and Re  such that: R⊕  is associative and commutative with zero element ,R  R⊗  is associative, 

distributes over R⊕ , and has unit element ,Re  R∈  is absorbing for R⊗  i.e., = =R Ra a a⊗ ⊗  , .a R∀ ∈  
In addition if R⊗  is commutative then R  is called a commutative semiring, and if R⊕  is such that 

=Ra a a⊕ , a R∀ ∈  then it is called idempotent.  
Theorem 17 The max-plus algebra max = ( , , , , )max eℜ ⊕ ⊗   has the algebraic structure of a commutative 

and idempotent semiring.  

3.2. Matrices and Graphs 
Let n n

max
×  be the set of n n×  matrices with coefficients in max  with the following operations: The sum of 

matrices , n n
maxA B ×∈ , denoted A B⊕  is defined by: ( ) = = ( , )ij ij ij ij ijA B a b max a b⊕ ⊕  for i  and .j n∈   

The product of matrices ,n l l n
max maxA B× ×∈ ∈  , denoted A B⊗  is defined by: 

=1
( ) = ( )

l

ik ij jk
j

A B a b⊗ ⊗⊗  for i   

and k n∈ . Let n n
max
×∈  denote the matrix with all its elements equal to   and denote by n n

maxE ×∈  the 
matrix which has its diagonal elements equal to e  and all the other elements equal to .  Then, the following 
result can be stated. 

Theorem 18 The 5-tuple max = ( , , , , )n n n n
max E× ×ℜ ⊕ ⊗   has the algebraic structure of a noncommutative 

idempotent semiring.  
Definition 19 Let n n

maxA ×∈  and k ∈  then the k-th power of A  denoted by kA⊗  is defined by:  
= ,kA A A A⊗ ⊗ ⊗⋅⋅⋅⊗  (k times), where 0A⊗  is set equal to E .  

Definition 20 A matrix n n
maxA ×∈  is said to be regular if A  contains at least one element distinct from   

in each row.  
Definition 21 Let   be a finite and non-empty set and consider ⊆ ×   . The pair = ( , )G    is 

called a directed graph, where   is the set of elements called nodes and   is the set of ordered pairs of 
nodes called arcs. A directed graph = ( , )G    is called a weighted graph if a weight ( , )w i j ∈  is 
associated with any arc ( , )i j ∈ .  

Let n n
maxA ×∈  be any matrix, a graph ( )A , called the communication graph of A , can be associated as 

follows. Define ( ) =N A n  and a pair ( , )i j n n∈ ×  will be a member of ( ) jiA a⇔ ≠  , where ( )A  
denotes the set of arcs of ( )A .  

Definition 22 A path from node i  to node j  is a sequence of arcs = {( , ) ( )}k k k mp i j A ∈∈  such that 
1 1= , =k ki i j i + , for <k m  and =mj j . The path p  consists of the nodes 1 2= , ,..., , =m mi i i i j j  with length 

m  denoted by 1| | =p m . In the case when =i j  the path is said to be a circuit. A circuit is said to be 
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elementary if nodes ki  and li  are different for k l≠ . A circuit consisting of one arc is called a self-loop.  
Let us denote by ( , ; )P i j m  the set of all paths from node i  to node j  of length 1m ≥  and for any arc 

( , ) ( )i j A∈  let its weight be given by ija  then the weight of a path ( , ; )p P i j m∈  denoted by | |wp  is 
defined to be the sum of the weights of all the arcs that belong to the path. The average weight of a path p  is 
given by 1| | / | |wp p . Given two paths, as for example, 1 2 2 3= (( , ), ( , ))p i i i i  and 3 4 4 5= (( , ), (( , )q i i i i  in ( )A  
the concatenation of paths : ( ) ( ) ( )A A A× →     is defined as 1 2 2 3 3 4 4 5= (( , ), ( , ), ( , ), ( , ))p q i i i i i i i i . The 
communication graph ( )A  and powers of matrix A  are closely related as it is shown in the next theorem.  

Theorem 23 Let n n
maxA ×∈ , then 1k∀ ≥ : [ ] = {| | : ( , ; )}k

ji wA max p p P i j k⊗ ∈ , where [ ] =k
jiA⊗   in the 

case when ( , ; )P i j k  is empty i.e., no path of length k  from node i  to node j  exists in ( )A .  

Definition 24 Let n n
maxA ×∈  then define the matrix n n

maxA+ ×∈  as: 
=1

= k

k
A A

∞
+ ⊗⊕ . Where the element [ ] jiA+  

gives the maximal weight of any path from j  to i . If in addition one wants to add the possibility of staying at 

a node then one must include matrix E  in the definition of matrix A+  giving rise to its Kleene star 

representation defined by: 
=0

= .k

k
A A

∞
∗ ⊗⊕   

Lemma 25 Let n n
maxA ×∈  be such that any circuit in ( )A  has average circuit weight less than or equal to 

 . Then it holds that: 
1

=0
= .

n
k

k
A A

−
∗ ⊗⊕   

Definition 26 Let = ( , )G    be a graph and ,i j∈ , node j  is reachable from node i , denoted as 
i j , if there exists a path from i  to j . A graph G  is said to be strongly connected if , ,i j j i∀ ∈  . A 
matrix n n

maxA ×∈  is called irreducible if its communication graph is strongly connected, when this is not the 
case matrix A  is called reducible.  

Remark 27 In this paper irreducible matrices are just considered. It is possible to treat the reducible case by 
transforming it into its normal form and computing its generalized eigenmode see [5].  

Spectral Theory and Linear Equations 
Definition 28 Let n n

maxA ×∈  be a matrix. If maxRµ ∈  is a scalar and n
maxv R∈  is a vector that contains at 

least one finite element such that: =A v vµ⊗ ⊗  then, µ  is called an eigenvalue and v  an eigenvector.  

Let ( )A  denote the set of all elementary circuits in ( )A  and write: 
( )

1

= max w

p A

p
p

λ
∈

 for the maximal  

average circuit weight. Notice that since ( )A  is a finite set, the maximum is attained (which is always the 
case when matrix A  is irreducible). In case ( ) =A ∅  define =λ  .  

Definition 29 A circuit ( )p G A∈  is said to be critical if its average weight is maximal. The critical graph of 
A , denoted by ( ) = ( ( ), ( ))c c cG A A A  , is the graph consisting of those nodes and arcs that belong to critical 

circuits in ( )G A .  
Theorem 30 If n n

maxA ×∈  is irreducible, then there exists one and only one finite eigenvalue (with possible 
several eigenvectors). This eigenvalue is equal to the maximal average weight of circuits in ( )G A  

( )
1

( ) = max w

p A

p
A

p
λ

∈
.  

Theorem 31 Let n n
maxA ×∈  and n

maxb∈ . If the communication graph ( )G A  has maximal average circuit  
weight less than or equal to e , then *=x A b⊗  solves the equation = ( )x A x b⊗ ⊕ . Moreover, if the circuit 
weights in ( )G a  are negative then, the solution is unique.  

3.3. Max-Plus Recurrence Equations for Timed Event Petri Nets 

Definition 32 Let n n
m maxA ×∈  for 0 m M≤ ≤  and ( ) n

maxx m ∈  for 1M m− ≤ ≤ − ; 0M ≥ . Then, the 

recurrence equation: 
=0

( ) = ( ); 0
M

m
m

x k A x k m k⊗ − ≥⊕  is called an Mth order recurrence equation.  
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Theorem 33 The Mth order recurrence equation, given by equation 
=0

( ) = ( ); 0
M

m
m

x k A x k m k⊗ − ≥⊕ , can be 

transformed into a first order recurrence equation ( 1) = ( )x k A x k+ ⊗ ; 0k ≥  provided that 0A  has circuit 
weights less than or equal to zero.  

With any timed event Petri net, matrices 0 1, ,..., n n
MA A A ∈ ×   can be defined by setting [ ] =m jl jlA a , 

where jla  is the largest of the holding times with respect to all places between transitions lt  and jt  with m  
tokens, for = 0,1,...,m M , with M  equal to the maximum number of tokens with respect to all places. Let 

( )ix k  denote the kth time that transition it  fires, then the vector 1 2( ) = ( ( ), ( ),... ( ))T
mx k x k x k x k , called the  

state of the system, satisfies the Mth order recurrence equation: 
=0

( ) = ( ); 0
M

m
m

x k A x k m k⊗ − ≥⊕ . Now, assuming 

that all the hypothesis of theorem (33) are satisfied, and setting ˆ( ) = ( ( ), ( 1),..., ( 1))T T T Tx k x k x k x k M− − + , 

equation 
=0

( ) = ( ); 0
M

m
m

x k A x k m k⊗ − ≥⊕  can be expressed as: ˆˆ ˆ( 1) = ( ); 0x k A x k k+ ⊗ ≥ , which is known as 

the standard autonomous equation.  

4. The Solution to the Stability Problem for Discrete Event Dynamical  
Systems Modeled with Timed Petri Nets 
Definition 34 A TPN is said to be stable if all the transitions fire with the same proportion i.e., if there exists 

q∈  such that  

( )
lim = , = 1,...,i

k

x k
q i n

k→∞
∀                                    (12) 

This means that in order to obtain a stable TPN  all the transitions have to be fired q  times. It will be 
desirable to be more precise and know exactly how many times. The answer to this question is given next.  

Lemma 35 Consider the recurrence relation ( 1) = ( ), 0x k A x k k+ ⊗ ≥ , 0(0) = nx x ∈  arbitrary. A  an 
irreducible matrix and λ ∈  its eigenvalue then,  

( )
lim = , = 1,...,i

k

x k
i n

k
λ

→∞
∀                                      (13) 

Proof. Let v  be an eigenvector of A  such that 0 =x v  then, 

( )( )( ) = ( ) = = lim =k i

k

x kx k vx k v x k k v
k k k

λ λ λ λ⊗

→∞
⊗ ⇒ + ⇒ + ⇒  

Now starting with an unstable TPN , collecting the results given by: proposition (13), what has just been 
discussed about recurrence equations for TPN  at the end of subsection (3.3) and the previous lemma (35) plus 
theorem (30), the solution to the problem is obtained. 

5. Conclusion 
The main objective of the proposal is to make it knowledgeable to large audiences. This paper gives a complete 
and precise solution to the stabilization problem for discrete event systems modeled with timed Petri nets 
combining Lyapunov theory with max-plus algebra. The presented methodology results to be innovative. 
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