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Abstract 
In this paper, we provide a new approach to study the geometry of attractor. By applying category, 
we investigate the relationship between attractor and its attraction basin. In a complete metric 
space, we prove that the categories of attractor and its attraction basin are always equal. Then we 
apply this result to both autonomous and non-autonomous systems, and obtain a number of cor-
responding results. 
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1. Introduction 
Attractors of a given system are of crucial importance, this is because that much of longtime dynamics is 
represented by the dynamics on and near the attractors. It is well known that the global attractors of dynamical 
systems can be very complicated. The geometry can be very pathological, even in the finite dimensional situa-
tion. To have a better understanding on the dynamics of a system, it is quite necessary for us to study the topol-
ogy and geometry of the attractors. In the past few decades, there appeared many studies. In [1], Kapitanski and 
Rodnianski studied the shape of attractors of continuous semi-dynamical systems on general metric spaces. They 
proved that the global attractor has the same shape as the state space. Moreover, using the results on the shape of 
attractors, they developed an elementary Morse theory for an attractor. Lately, the author of [2] studied the 
Morse theory of attractors for semiflows on complete metric spaces by constructing continuous Lyapunov func-
tions, and he introduced the concept of critical groups for Morse sets and established Morse inequalities and 
Morse equations for attractors. To study the geometry of the attractors, some concepts such as Lyapunov expo-
nents, the Hausdorff dimension and the fractal dimension were also proposed, see [3] [4] etc. Recently, in [5] 
author studied the geometrical property of the global attractor for a class of symmetric p-Laplacian equations by 
means of 2Z  index, obtained some lower estimates for the fractal dimension of the global attractor.  

In this paper, by using Ljusternik-Schnirelmann category (category for short), we try to provide a new ap-
proach to studying the geometry of the global attractor. Category is a topological invariant, which often be used 
in the estimate of the lower bound of the number of critical points, see [6]. Here we investigate the relationship 
between attractor and attraction basin in the sense of category. In a complete metric space, for asymptotic com-
pact semiflow, we obtain that the categories of attractor and attraction basin are always equal. This result match 
with the result in [1]. Now we can directly describe this result by category. The result will be of most interest 
when we choose X  be some special metric space. Finally, we have to point out that it is generally not very 
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easy to compute the category of a given space. However, we can see there are more and more new results and 
methods about calculation of category, see [7] [8] etc. 

We will prove the main results in Section 3 and give some applications in Section 4. Before that we provide 
some preliminaries and results in Section 2. 

2. Preliminaries 
We recall some basic definitions and facts in the theory of dynamical systems for semiflows on complete metric 
spaces. Let X  be a complete metric space with metric ( , )d ⋅ ⋅ .  

Definition 2.1 A semiflow (semidynamical system) on X  is a continuous mapping :S X X+ × →  that 
satisfies 

(0, ) , ( , ) ( , ( , ))S x x S t s x S t S s x= + =  for all x X∈  and , 0t s ≥ . 

We usually write ( , )S t x  as ( )S t x . Therefore a semiflow S  can be viewed as a family of operators 
0{ ( )}tS t   satisfying: 

(0) , ( ) ( ) ( ) ( , 0).XS id S t s S t S s t s= + = ∀   

From now on, we will always assume that there has been given a semidynamical system ( )S t  on X ; 
Moreover, we assume ( )S t  is asymptotically compact, that is, ( )S t  satisfies the following assumption: 

( ) :A  For any bounded sequence nx X∈  and nt → +∞ , if the sequence ( )n nS t x  is bounded, then it has a 
convergent subsequence. 

The asymptotic compactness property (A) is fulfilled by a large number of infinite dimensional semiflows 
generated by PDEs in application [4]. 

Let A  be a subset of X . We say that A  attracts B X⊂ , if for any 0ε >  there exists a 0T >  such that 
( ) ( , ), .S t B B A t Tε⊂ ∀ >  

The attraction basin of A , denote by ( )AΩ , is defined as: 

( ) { | lim ( ( ) , ) 0}.
t

A x d S t x A
→∞

Ω = =  

The set A  is said to be positively invariant (resp. invariant), if 
( ) ( . ( ) ), 0.S t A A resp S t A A t⊂ = ∀   

Definition 2.2 A compact set X⊂  is said to be an attractor of ( )S t , if it is invariant and attracts a 
neighborhood of U  itself. An attractor   is said to be the global attractor of ( )S t , if it attracts each 
bounded subset of X . 

Let U  be an open subset of X , and K  be a closed subset of U  with K int U⊂ . 
Definition 2.3 A function ( ) ( )x C Xα ∈  is said to be coercive with K , if for any 0ε > , 

( ) 0, \ ( , ).x x U B Kα δ ε≥ > ∀ ∈  

In order to prove our result, we need following theorem (see Theorem 3.5 in [2]). Let there be given an at-
tractor   with attraction basin ( )Ω = Ω  . 

Theorem 2.4 ([2]) The attractor   has radially unbounded Lyapunov function ( )V x  on Ω  such that 
( ) 0 ( ), ( ) ( , , )V x on D V X v x x+≡ − ∀ ∈Ω  

where ( )v C∈ Ω  is a nonnegative function satisfying 
( ) 0, ( ), ( ) 0 ( \ .)v x x v x x> ∈Ω = ∉Ω   

Remark 2.5 We emphasize that the ( )V x  is coercive with   on Ω .This point is not contained in the 
statement of Theorem 2.4, but we can obtain this result from the proof of the Theorem 3.5 in [2] easily.  

In the following, we recall some basic results on the Ljusternik-Schnirelmann category (category for short). 
Definition 2.6 Let M  be a topological space, A M⊂  be a closed subset. Set 

1 2 1

( ) inf{ { } | :
, , , }.

M
n

m i i

cat A m m contractible closed subsets of M
F F F such that A F=

= ∈ +∞ ∃
… ⊂
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A set F  is called contractible (in M ), if : [0,1] M Mη∃ × →  such that (0, ) Midη ⋅ =  and (1, )Fη =  one 
point set. 

The category defined above has properties as follows. 
Lemma 2.7 Properties for the category:  
1) ( ) 0Mcat A A= ⇔ = ∅ ; 
2) (Monotonicity) ( ) ( )M MA B cat A cat B⊂ ⇒ ≤ ; 
3) (Subadditivity) ( ) ( ) ( )M M Mcat A B cat A cat B≤ + ; 
4) (Deformation nondecreasing) If : [0,1] M Mη × →  is continuous such that (0, ) Midη ⋅ = , then  

( ) ( (1, ))M Mcat A cat Aη≤ ; 

5) (Continuity) If A  is compact, then there is a closed neighborhood N  of A  such that 
A int N⊂  and ( ) ( )M Mcat A cat N= ; 

6) (Normality) ({ }) 1,Mcat p p M= ∀ ∈ . 
For the proof of this lemma, we refer readers to [6]. 
Remark 2.8 By (2) and (5), we can easily obtain that if A  is compact, then there exists a ε -neighborhood 
( , )B A ε  of A , such that ( ) ( ( , ))M Mcat A cat B A ε= . 
Just by the definition of category, we can prove the following lemma: 
Lemma 2.9 Let ,X Σ  are topology spaces, and X= ×Σ . F is a subset of X . If 1Xcat F = , then 

( ) .cat F catΣ×Σ = Σ  

3. Category of Attractor 
The main results can be stated as follows: 

Theorem 3.1 Let X  be a complete metric space and ( )S t  is a semiflow on X , which is asymptotically 
compact. Let   be an attractor of ( )S t  on X  with attraction basin ( )Ω = Ω  . Then ( ) ( )cat catΩ ΩΩ =  . 

Proof. Since ⊂ Ω , by monotonicity, 
( ) ( )cat catΩ Ω≤ Ω .                                  (3.1) 

Since   is compact, by continuity (Remark 2.8}), fixed 0ε >  small enough, we have 

( ( , )) ( ).cat B catεΩ Ω=                                  (3.2) 

If we find a set ( , )K B ε⊂   such that 
( ),cat cat KΩ ΩΩ ≤                                    (3.3) 

by using monotonicity again and (3.2}), we have 
( ) ( ).cat catΩ ΩΩ ≤                                    (3.4) 

Then combine (3.1}) and (3.4), we will obtain the result ( ) ( ).cat catΩ ΩΩ =   
Now the rest of the work in this proof is in finding the appropriate set K , which is subset of ( , )B ε and sa-

tisfies (3.3). In order to obtain the proper set K , the key tool here is the level set of Lyapunov function on at-
tractor  . Thanks to Theorem 2.4, we can construct a Lapunov function ( )V x . For a R∈ , we devote by aV  
the level set of V  in Ω ,  

{ | ( ) }.aV x V x a= ∈Ω ≤  

aV  is clearly positively invariant and satisfies aV⊂ ⊂ Ω  as 0a > . 
By the Remark 2.5, ( )V x  is coercive with  , that is for the fixed ε  above, there exists 0δ >  such that 

( ) 0, \ ( , ).V x x Bδ ε≥ > ∀ ∈Ω   

Hence, let 0 a δ< < , we have ( , )aV B ε⊂  .  
We use the method in [2], Define a function ( )t x  on Ω  as 
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sup{ 0 | ([0, )) }, ;
( )

0
 

, .
 a a

a

t S t x V x V
t x

x V
≥ ⊂ Ω ∈Ω

=  ∈

 
 

Here ( )t x < +∞  and ( )t x  is continuous on Ω . (See Theorem 5.1 and Lemma 5.2 in [2], in which Ω  re-
placed by bV .) Define 

( , ) ( ( )) , , [0,1]x S t x x xη σ σ σ= ∈Ω ∈  

Then : [0,1]η ×Ω→Ω  satisfies: 

(0, ) , (1, ) ,aid Vη ηΩ⋅ = Ω ⊂  

Since ( )t x  is continuous on Ω , we see that η  is a continuous mapping, by deformation nondecreasing 
and monotonicity, we have 

( ) ( (1, )) ( ).acat cat cat VηΩ ΩΩ ≤ Ω ≤  

Now we just let aK V= , which completes the proof. 
Now to extend our result to non-autonomous case, we consider a skew-product system, which consists of a 

base semiflow, and a semiflow on the phase space that is in some sense driven by the base semiflow. More pre-
cisely, the base semiflow consists of the base space Σ , which we take to be a metric space with metric ρ , and 
a group of continuous transformations { }t t Rθ ∈  from Σ  into itself such that 0 idθ Σ= ; t s t sθ θ θ +=  for all 
, 0t s ≥ . 

The dynamics on the phase space ( , )X d  is given by a family of continuous mappings 

( , ) ( , ) ( )R t t Xσ ϕ σ+ ×Σ → ∈   

satisfy the cocycle property 
1) (0, ) Xidϕ σ =  for all σ ∈Σ ; 
2) ( , ) ( , ) ( , )st s t sϕ σ ϕ θ σ ϕ σ+ =  for all , 0t s ≥  and σ ∈Σ ; 

3) ( , ) ( , )R t t x Xσ ϕ σ+ ×Σ → ∈  is continuous. 
Then we can define an autonomous semigroup ( )T ⋅  on X= ×Σ  by setting 

( )( , ) ( ( , ) , ), 0.tT t x t x tσ ϕ σ θ σ= ≥  

If we assume that the autonomous semigroup ( )T ⋅  is asymptotically compact on  , and has an global at-
tractor  , then we can generalize Theorem 3.1 to the non-autonomous case as follows: 

Corollary 3.2 Let ( )T t  is a asymptotically compact semiflow on  . If   is a global attractor of ( )T t  
on  . Then cat cat=   . 

4. Applications 
In this section, we further apply our results to some special metric space X , we will see some interesting re-
sults. 

Example 1. Assume ( )n nX S or T= . Let ( )S t  is a asymptotically compact semiflow on X . If   is a 
global attractor of ( )S t  on X . Then X= . 

Proof. Suppose the contrary. Then there exist at least one point s X∈  such that s∉ . Then we deduce 
that \{ }X s X⊂ ⊂ . By the monotonicity, we have ( \{ }) .X X Xcat cat X s cat X≤ ≤  

Note that \{ } \{ }nX s S s=  is a punctured n -dimensional sphere, 

( \{ }) 1, 2,n
n

X X S
cat X s cat X cat S= = =  

Thus, we have .X Xcat cat X<  
On the other hand, by virtue of Theorem, we have ,X Xcat cat X=  which leads to a contradiction! Hence, 

the global attractor   must be phase space X  itself.  
Using similar arguments, one can prove the case of nX T= . 
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Example 2. In skew-product flow case, we assume m nX S T= ×Σ = × . Let ( )T t  is a asymptotically 
compact semiflow on  . If   is a global attractor of ( )T t  on  . Then =  .  

Proof. Suppose the contrary. Then there exist at least one point s X∈  such that s∉ . Then we deduce 
that ( { })X s⊂ ×Σ ⊂  . By the monotonicity, we have 

(( \{ }) ) .cat cat X s cat≤ ×Σ ≤     

Note that \{ } \{ }mX s S s=  is a punctured m - dimensional ball, ( \{ }) 1,Xcat X s =  

By Lemma 2.9, ( \{ }) 1,n
n n

T
cat X s T cat T n× = = +  while by Theorem 15 in [7], we have 

2m ncat cat S T n= × = +   

Thus, we have .cat cat<    
On the other hand, by Virtue of Theorem 3.1, we have ,cat cat=    which leads to a contradiction! 

Hence, we obtain =  . 
Remark 3.3 If mX T= , since  

( { }),m m
m m

T T
cat T cat T s>   and ( ) 1,n m

n m
T T

cat T T n m
×

× = + +
 

we can obtain the same result. 
Remark 3.4 By Theorem 15.7 in [9], if   is a global attractor of ( )S t  on  . Then ( )A ⋅  with ( )A σσ π=   

is the pullback attractor of the skew-product flow ( , )φ θ , where σπ   is the section of   over σ ∈Σ . Since 
corollary 3.2, we can show that the pull back attractor of the skew-product flow ( , )φ θ  must be ( )A X⋅ = . 
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