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Abstract

This paper presents sufficient conditions for the existence of positive solutions for the fourth-order
boundary value problem system with p-Laplacian operator. The existence of single or multiple
positive solutions for the system is showed through the fixed point index theory in cones under
some assumptions.
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of positive solutions for the system (BVP):
(0, (u"(t )) —a, (1) f,(u(t),v(t))=0, 0<t<l,

) —a(
(0, (v (1)) =2, (1) fo(u(t). (1) =0, O<t<L,
u(0)=u(1)=u"(0)=u"(1)=0,
v(0)=v(1)=v"(0)=v"(1)=0,
where (pp(s):|s|p’2, s,p>1, aft ) C((0,1),(0,+x)) and f;(u,v)eC([0,+%),[0,+x)), & t) is allow-
ed to have singularity at t=0,1, i =1

Several papers ([1]-[4]) have studied the solution of fourth-order boundary value problems. But results about
fourth-order differential eguations with p-Laplacian have rarely seen. Recently, several papers ([6]-[8]) have
been devoted to the study of the coupled boundary value problem.

Motivated by the results mentioned above, here we establish some sufficient conditions for the existence of to
(BVP) (1.1) under certain suitable weak conditions. The main results in this paper improve and generalize the
results by others.

The following fixed-point index theorem in cones is fundamental.
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Theorem A [9] Assume that X isaBanachspace, K< X isaconein X,and 0<r <+oo,
Q, ={xek:|x|<r},if T:Q > X isacompletely operatorand Tx =X, VxeoQ,.

1) Iffor vueoQ,, |X[<|Tx|,theni (T,Q,,K)=0;
2) Iffor vueoQ,, |x|>|Tx| theni (T,Q, K)=1.

2. Preliminaries and Lemmas
In this paper, let E=C[0,1] and E* ={ueE;u(t)>0isaconcave function} then E"xE" isa Banach spa-

ce with the norm ||(uv)||0 =|uf+[v]. ¥(uv)eE"xE", where |u]= r(‘)rl?gl({u } V| = I;)rl%{ (t )} , then

X =E"xE" isaconeof (ExE,[{,).Intnhispaper, (u,v)>(u,V,) ie u>u,, v, >V,
Suppose G(t,s) is the Green function of the following boundary problem: z=0, 0<t<1, z(0)=z(1)=0,

then
e[

t(
Obviously, t(1-t)s(1-s)<G(t,s)=G(s,t)<t(1-t), 0<
Define acone K < X as follows ={( V) X|(u v)=(
(t
(z

1
11

I/\ |/\
w —
IAN A

0<s
0<t
), s<1

0),u( )= ||(uv)|, t(2-t).t e[O,l]} and

t,
0,
(uv)(t ) Az(U V)( )), where
).v(r ))dr)ds i=12

define an integral operator A:K — K by A(u(t),v(t))=(A
A (U)(1)=[B(5)4 ([B(s)a () i (u

Let us list the following assumptions for convenience.
(H) a €C((0.1),[0,+%)), & (i=1,2) issingularat t=0 or1,and

O<IG rr ()dr<+oo O<jG Sr) ()dz’<+oo i=12

Lemma 2.1 (u,v) isasolution of BVP (1.1) ifand only if (u,v)eK, A(u,v)=(u,v) has fixed points.
It is easy to see that (u,v)e K, A(u,v)=(u,v) if (u,v) isasolution of BVP (1.1).

Lemma 2.2 Suppose that (H) hold, then AK c K.

Lemma 2.3 Suppose that H hold. Then A:K — K is completely continuous.

Proof Firstly, assume D < K isabounded set, we have

A (u,v)(t fG (t,5) ¢q(J'G (s,7)a(z ))ds¢q(supf (u,v):(u,v)e D)< +o0

Then A (D)(i=12) isbounded, therefore A(D) is bounded.
Secondly, suppose (U,,V,), (Uy,Vo)e D, (Uy,V,)—>(Uy,Vp)(n—>0) then (u,,v,) isbounded, we get

|A(un’vn)(t)_ A(UO!VO)(t)|
o ,6(5:7) (7) 1 (U, ) (77 )~y ([, 6 (57 (7) F (v, ) () e

44 ([16(5:7)2 (7)1 (U4, ) ()7 -4 (6 (5,724 (9) £ (0.0 () )
£ (U, (£),v, () = £ (up (£), %, (t))|¢q [;z(1-7)a (r)dr
1

4o<t<1fq_l( (t).v ()) fql( |¢j 1-7)a,(r)dr.

Due to the continuity of f,, f,, by H and above fomula together with Lebesgue Dominated Convergence
Theorem, then |A v, ) (t) = A(ug, v, |—>0 when n— o . Therefore A is continuous.

Lastly, since G(t, s) is continuous in [0,1]x[0,1], so it is uniformly continous. For all &>0, 35>0 for

all se[0,1], when [t —t,| <&, we get

ds

gf:G(s,s)

ds

+j;G(s,s)

1
< —Mmax
4 ost<1
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1G(t,5)-G (t,5)[< < {¢q(je r,7)a, (7)d7 ), (sup , (uv): (u,v)eD)}_l, i=12

Thenforall (u,v)e D, we have
[AuY) (1) - AuY)(L) < 6 (4:5) -G ()| 4, [8 (7. 7)a ()7 -4, (sup f, (uv): (uv) « D)ds
+[16(65)-6(t5)- ([ (7.7) 2, ()7 -4, (sup F, (u.v): (u,v) € D)ds

& &
<—+—=g¢g,
2 2

So A isequicontinuous, by Arzela-Ascoli theorem we know AD is relatively compact.
Therefore, A:K:r — K iscompletely continuous.
For convenience we denote

f. f
fio (u,v):= lim L\/)l f. (U,v):= lim '(U’VL, i=12;
u+va0(u -|-V)p u+va0(u +V P
£°(u,v):= lim fi(u,v)4 f,” (u,v):= lim 1 i=12
u+v—0 (U +V)p u+va0(u +V)p
=g, (IlG T,T a‘ r)dz'), i=12;
v; = min IZG (t.s)4, (IG (r)dr)ds, i=12.

<t<
4

3. Main Results
Theorem 3.1 Suppose that H holds. If the following conditions are satisfied:
(H,) f°(uv)=0, i=12; (H,) f,(uv)=0w or f, (uv)=
Then the system (1.1) has at least one positive solution (u(t),v(t)), te(0,1)
Proof By Lemma 2.3, we know A is completely continuous. By (Hl) , there exists r, >0, when
O<u(t)+v(t)<r, te[0,1], wehave f (u,v)<(a(u +v))p71, where «; >0(i=12) satisfies
ax{ay, o1, <3. Let Q ={(u,v)e K:[(u,v), < rl} ,when (u,v)eaQ, NK , we get

A(u(0).v(1) = Zu+vlg, ([ (r.)a, (r)de ) < ()], < [(w.v)l,

2
Hence, ||A1 u v ||<M Similarly, we have AZ( ( ).V(t))g ||(u2v)||0 then ||A2(U,v)||s ||(u2v)||0
ereforeA (u,v) || —{||A1 (u,v)]+] A (uv) ||}<|| ()], V(u.v)eoQ, NK . By Theorem A, i
(AQ, NK.K

n

On the other hand, from (H,), if f, (u,

, th-

V)=, there exists R, >r, >0, for 8 >0 satisfing Sy, =8,

we get f,(u,v)> (B (u+v)) "* when u(t)+v(t)>R,.Set R >R, suchthat R, <|ul+[v|<R, let

11
QRl={(u,v)eK;||(u,v)||o<Rl},when (uv)eoq, NK, teh,a]weget

1
u+vt(l-t)|(uv)f, 2 g||(“")||o » 50

A(u(t)v(0) > 2w, j%e (t:9)4,([[6 (5.2, (¢)de s = L), v > v
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Hence, ||Ai(u v)" || (u,v) || then ||A (u,v) || _||A1 (u, v)" ||A2 (u,v) || ||(u v) || (u,v) e Qg K

If f,,(u,v)=o0, with the similar proofs of the condition f,, (u,v)=o00, we get ||A2 (uv)[= ||(u V)|, - Then
|A(u,v || =||A (uv)|+ ||A2 uv)| 2 [(uv)],, V(uv)eaQq NK . Ineither case, we always may set

l|A u,v) ” >|(uv)],. ¥(uv)eoQ, NK By Theorem A, |(A Q; NK,K)=0 Through the additivity of the
ixed point index we know that
i(A(Qq NK)©\(Q, NKK))=i(AQ, NKK)-iI(AQ, NK,K)=0-1=-1

Therefore it follows from the fixed-point theorem that A has a fixed point (u,v)e (QR1 N K)\(Qr1 N K) ,
and thus (u(t),v(t)), te(0,1) isa positive solution of BVP (1.1).
Theorem 3.2 Suppose that H holds. If the following conditions are satisfied:
(H;) £7(u,v)=0, i=12; (H,) fu(uv)=c0 or fu(uv)=o0

Then the system (1.1) has at least one positive solution (u (t),v(t)) , te(0,1)
Proof By lemma 2.3, we know A is completely continuous. From (H, ), if f,,(u,v)=00,for & >0 sat-
isfying &y, =8, there exists r;>0, when 0<u(t)+v((t)<r’, te[0,1], we have f (u,v 2(51 (u+v) )

Let Q. = {(u,v) E K;||(uiv)||0 < rl’} ,when (u,v)edQ, NK, te Eﬂ , We get
u+v2t(1-t)(uv)|, 2§||(u,v)||0 , then

§1|

A (u(t)v(t))= 3 (u.v), I}%G (t.s), (J;G (s.7)a (r)dr)ds > %”(uv)"0 v 2(uv)],

Hence, ||A&(u,v)||2||(u,v)||0.then ||A(u,v)||0=||A1(u,v)||+||A2(u,v)"z"(u,v)"o, V(u,v)eaerﬂK

If fy(uv)=o, take & >0 satisfying &v, =8, such taht f,(u, ) (52(u+v))p_1 Similarly, we get
|25 (uv)] = [[(uv)], - then |A(u V)|, =] A (uv)]|+ A (uv)|=[(uv)],, ¥(uv)ea,NK In either case, we
always may set [|A(u,v)], =|(u,v)],. ¥(u,v)eaQ, NK . By Theorem A, |(A,Qr1,ﬂK,K)=O.

On the other hand, from (H,), there exists R;>r’ such that f, (u,v)<(6(u +v))p_1, when u+v>R;,
where 6, >0(i=12) satisfies max{6,s,0,,} <3. There are two cases to consider.
Case (i). Suppose that max fi(u,v)(i=12) isbounded, then there exists M; > 0 satisfying f, (u,v)<MP™*,

i=12. Taking R/>max Ré,%;{l,%yz}, let Q ={(u,v)e K |(u.v)], < Rl’}, when (u,v)eaQy NK,

we get

A () V(1) <24, (JSG(r-fM(f)df)S—"(u'zv s

(U’V)"o
2

Hence, |A (u,v ||<M Similarly, we have A, (u(t ()V(t))S"

then [|A(u, V)], =[A (uv)|+]A (uv)] <[[(uv)],, ¥(uv)ea, NK.
Case (ii). Suppose that n!ale(u v)(i= 12) |s unbounded since f;(i=12) is continuous in

o,

, hence A, (u,v)|< -

[0,400)x[0,+%), so there exists constant R/>R; and two points (u;,V;)e[0,+%)x[0,4%) such that

Ry<u;+v, <R/, and f (u,v)<f(u,v). Then we get f (u,v)<f (u,v)<(6(y +vi))rkl <(GR)", i =
1
2. Let Qp :{(u,v)e K:[[(u,v), < Rl’} ,when (u,v)eaQg NK, we get

A(6(0.0(0) < 2 [l (e ) < B

2 2




[(u.v)]

5 %, then ||A2 u,v||£

Hence, |A (u,v) ||§M Similarly, we have Az(u(t),v(t))s%zl:
so | A(uv)|, =[A(u, v)|| A, (uv)|<|(uv)],, ¥(u,v)edQe NK . Ineither case, we always may set
|A(u,v) || <[(uv)],, ¥(uv)eay NK. By Theorem A, |(A,QRl NK, K) 1. Through the additivity of the
fixed point index we know that

o),

|(A,(QR1, mK)\(Q&,mK,K))zi(A,QRi AK,K)-i(AQ, AK,K)=0-1=-1

Therefore it follows from the fixed-point theorem that A has a fixed point (u,v)e (QRl, N K)\(er, N K),
and thus (u (t),v(t)) , te (0,1) is a positive solution of BVP (1.1). This completes the proof.
Remark 3.1 Note that if f is superlinear or sublinear, our conclusions hold. Limit conditions of f in this
paper are more weak and general.
Remak 3.2 When u=v, f,=f, and w, =w,, our results generalize and improve the results of [1]-[4].
Theorem 3.3 Suppose that H holds. If the following conditions are satisfied:
Hy) f°(u,v)=p €[0,40), i=12 where p (i=12) satisfies max{pl“’lyl,pg’lyi} <3;
He) fo.(uv)=2 €(0,40) or f,, (uv)=4,e(0,+0), where A satisfies 47", 28 (i=Lori=2)
then the system (1.1) has at least one positive solution (u (t),v(t)) , te(0,1)

Proof. Choosing & >0(i=12) such that max{(pl+gl)q_l;ﬁ,(p2+gz)q_1,u2}s3 and (4, -¢)"v, 28,
i=1 or i=2 From (Hg), thereexists r” >0 suchthat f,(u,v)<(p +)(u,v)"" (i=12) when
O<u+v<r. Let Q. ={5(u,v)e K;||(u,v)”; < rl*} when (u,v)edQ . NK, we get

(ara)” o) o)
A (u(t),v(1)) s%uu Vg, ([8(r.7)a ()dr) < %"(u,v)uo L

Hence, ||A1(uv)||ﬁu Similarly, we haveAz(u(t),v(t))sM, so ||A, (u,v ||<|| ), , then

AUV, = A )] +]A )] < (uv)], ¥(uv) 0. K . By Theorem A, |(AQ NK, K) 1.

On the other hand, From (Hg), if floo(u,v)—ﬂ1 there eX|sts Ry > 1, such that f,(u,v)> (4 —&)(u,v)""
when u(t)+v(t)>R;.Set R’ >R; suchthat Ry <|u[+[v|<R;, let

Q, :{(u,v)e K| (u.v), < Rl*} .when (u,v)edQ NK, teEﬂ , We get

1
u+v> t(l—t)"(u,v)”0 > g||(uv)||0 , then

A(u(t),v(t))z@”(u,v)no j%e (t,5)4, ( j:G(s,r)al(r)dr)ds

— a-t
Gty vz,
Hence, |[A (u,v)[=]|(u,v)], - then [A(uv)]|, =[/A (uv)]+[A (uv)|=](uv)],. v(uv)ee,. NK.
If f,,(uv)=4,, by (4,—¢)"v,>8, with the similar proofs of the condition f,_ (u, ) A, We get
|A, (u, v)|| I(u.v)], - Then |[A(u,v)|, —||A1 (u )|+ A ()= (uv)],, ¥(uv)eoq,. . MK In either case,
we always may set |A(u,v) || >|(uv)[, . v (u v)e@Q NK . By Theorem A, |(A Q. ﬂK K) 0. Through

the additivity of the fixed point index we know that
i(A,(QR* mK)\(Qr* mK,K)): i(A,QR* mK,K)—i(A,Qr* mK,K):O—lz—l

Therefore it follows from the fixed-point theorem that A has a fixed point (u v) (pQ N K)\(Qr* N K),
and thus (u(t),v(t)) , te (0,1) is a positive solution of BVP (1.1). This completes the roof '
Theorem 3.4 Suppose that H holds. If the following conditions are satisfied:
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(H;) fo(uv)=p €(0,4), i=lori=2 where p’(i=12) satisfies p''v, 28, (i=Llori=2);
(Hg) f7(u,v)=4"€[0,+x) where A satisfies max{ﬂf'l,ui,if'luz} <3, (i=12), then the system
(1.1) has at least one positive solution (u(t),v(t)), te(0,1)
The proofs are similar to that of Theorem 3.2 and are omitted.
Theorem 3.5 Assume that H, H, holds. If the following conditions are satisfied:

(Hg) fio(u,v)=0, i=12; (Hy) f°(uv)=o0 or f(uv)=cx,

Then the system (1.1) has at least two positive solutions (u, (t),v, (t)) and (u,(t),v,(t)) satisfying

0< ()], <1 <[(up%)), -
Theorem 3.6 Assume that H, H,, Hy, H,, hold. then the system (1.1) has at least two positive solutions

(uy(t), v, (t)) and (u,(t),v, (1)) satisfying 0<|(u,v,)| < <|(u,.v,)],-
Remark 3.3 Under suitable weak conditions, the multipficity results for fourth-order singular boundary value
problem with p-Laplacian are established. Our results extend and improve the results of [5]-[8].
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