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Abstract 
This article concerns the quantum superintegrable system obtained by Tremblay and Winternitz, 
which allows the separation of variables in polar coordinates and possesses three conserved 
quantities with the potential described by the sixth Painlevé equation. The degeneration proce-
dure from the sixth Painlvé equation to the fifth one yields another new superintegrable system; 
however, the Hermitian nature is broken. 
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1. Introduction 
1.1. Superintegrable Systems Separating in Polar Coordinates 
Consider the quantum superintegrable system which allows the separation of variables in polar coordinates and 
possesses three conserved quantities as follows: 
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H p p V r θ= + + , 

( )2
3 2X L S θ= + , 

{ } ( ){ } ( ){ }3 1 2 1 1 2 2
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+ + =

= + +∑ x x , 

where ( ) ( )1 2, cos , sinx x r rθ θ= =x , k kp i x= − ∂ ∂ ( )1,2j = , 3 1 2 2 1L x p x p i θ= − = − ∂ ∂ ,  
( ) ( ) ( ) 2,V r R r S rθ θ= + , { },A B AB BA= + . Here ( )R r , ( )S θ , ( )1g x , ( )2g x  are arbitrary functions, 

and klmA ’s are real constants. Note that the Hermitian nature of the operators causes the anti-commutator { } ,   
and the parity. In the followings, we use such the notation as θ θ∂ = ∂ ∂  for brevity. 

Tremblay and Winternitz [1] classified the cases where the above system is superintegrable, i.e. it allows the 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2014.211113
http://dx.doi.org/10.4236/jamp.2014.211113
http://www.scirp.org
mailto:sasakiyo@hiroshima-u.ac.jp


Y. Sasaki 
 

 
997 

third conserved quantity Y , and obtained ( )S θ  which is written by the solution of the sixth Painlevé equation. 
If ( ) 2V S rθ= , ( )T T θ= , ( )T S θ′ = , 

{ } ( )
2

2 1 2 2 2

2 r rH r r S rθ θ− −= − ∂ + ∂ + ∂ + , 

( )2 2 2X Sθ θ= − ∂ + , 

{ } { } { }

{ } { } { }( )
2
3 1 1 2 1 1 2 2

2 2
1 2

, cos sin , sin cos ,

1 1 1  , cos sin , , ,r r

Y L p G G r p G G r p

G G r
r r rθ θ θ

θ θ θ θ

θ θ

= + − + +

= − ∂ ∂ − ∂ + ∂ + ∂

 

( ) ( )1 1 ,G G r θ β θ= = , 

( ) ( ) ( )2 2
1, 2 cosG G r ' S'
r

θ β θ θ θ= = − , 

( ) ( ) ( )0 sin 2 cosT T'β θ β θ θ θ= + − + , 

( )0 1 2cos sinβ θ β θ β θ= + ; 1 2,  :  constβ β . 

The commutation [ ], 0H Y =  is reduced to 

( ) ( ){ }
( ){ }

2
0

0

sin 4 cos 6 sin 4 cos 4 3 sin cos

  8 2 cos sin 0.

T'''' T T T' T T' T '

T' T' T
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′′′ ′′ ′′− − + + + + −

+ − + =



 

By change of variables ( )( ) ( )( ), ,T t w tθ θ   s.t. 

( ) ( ) ( )( ){ } ( )2 2
2 1

1tan 2 1 1 2 ,   4 1 2 18t t t T w t t tθ β β= − − = + + + − −  , 

the above equation is reduced to F-VII ( )2
1

1 2 ,0
4

β− −  . Here, F-VII ( )0 2,A A  is a 4th order ODE defined by 

( ) ( )( ) ( ) ( ) ( ){ } ( )22 2
0

2

2 1 6 2 1 1 24 1 8 2 1 2 2 12 1 4 2 1

  8 0,

t t w'''' t t t w t t w'w t ww A t t w t w'

ww' A

′′′ ′′ ′′ ′′− − − − − − − + − + − − − − −

+ + =
 

with an independent variable t , a dependent variable ( )w w t= , constant parameters 0A  and 2A  (See [1] 
[2]). This equation can be integrated twice, and reduced to SD-I.a [1] [3] [4] with constants of integration 3B  
and 4A : 

( ) ( ) ( ) ( )2 22 2 2 2
0 2 3 41 4 4 0t t w w' tw' w w' tw' w A w' A tw' w B w A′′ ′′− − − − + − + + − + + = . 

Then, by the Bäcklund correspondence 
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SD-I.a is reduced to the sixth Painlevé equation [3]: 

( ) ( ){ } ( ) ( ){ }
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where the correspondence of the parameters is given by 1θ∞ ∞Θ = + , 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ){ }
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F-VII ( )2
1

1 2 ,0
4

β− −   is reduced to the sixth Painlevé equation with 2 2
1 0θ θ=  because of the symmetry of  

F-VII ( )0 2,A A . 

1.2. Degeneration Scheme of the Painlevé Equations 
Six Painlevé equations are the nonlinear ODEs which define the special functions containing Gauss’ hypergeo-
metric function, Bessel functions, Airy functions, etc., and yields elliptic functions and trigonometric functions 
as the autonomous limits [5] [6]. Solutions to the Painlevé equations are called the Painlevé transcendents. So, 
the Painlevé transcendents are the ancestors of all classical special functions satisfying ODEs. And, all of the 
Painlevé equations are derived from the sixth Painlevé equation by some limitation which is called the degene-
ration scheme [5] [7]. For example, the fifth Painlevé equation: 

( ){ } ( ){ } ( ) ( )
( ) ( ) ( ) ( )

22 2 2 2
0

2

1 2 1 1 1 2 2

1 2 1 1

u u u u' u' t u t u u

u t u u u

θ θ

η κ η

∞
 ′′ = + − − + − + − 

+ + + − + −
 

is derived from the sixth Painlevé equation as follows: replace ( )0 1, ; , , , tu t θ θ θ θ∞  by  
( )0,1 ; , , ,u tε θ θ η ε κ η ε∞+ + − , and then take limitation 0ε → . 

In this article, we lift-up the degeneration scheme of the Painlevé equation to the superintegrable system, and 
get the system with potential described by the fifth Painlevé transcendents. The degenerated system should 
break one or more rules for classification set up by Tremblay and Winternitz [1]. 

2. Results 

Theorem 1. By change of variables ( )1t s s= − , ( ) ( )0
1 14w v A s s= + − , the superintegrable system obtained  

by Tremblay and Winternitz [1] is reduced into the system 

( )( ) ( )
2 22 1 2 21

2 r r sH r r s s S s r− − = − ∂ + ∂ + − − ∂ +  
 , 

( )( ) ( )
22 1 2sX s s S s= − − − ∂ + , 

( ) ( )( ){ } { } { }1 1 2

22
1 21 , , ,s x x xY i s s g g− = − − − ∂ ∂ + ∂ + ∂  , 

where ( )1 sS s s T= − − ∂ , ( )1 ss sθ∂ = − − ∂ , 1
1 2
1 r sx

s s
s r

+∂ = ∂ − ∂
−

 ( )
2

12
1 r sx

s ss
s r

− +−∂ = ∂ − ∂
−

. 

Moreover, F-VII ( )0 ,0A  is reduced to F-VII ( )2
0 0, 4A A− , i.e. if ( )w w t=  solves F-VII ( )0 ,0A , then 

( )v v s=  solves F-VII ( )2
0 0, 4A A− . 

Theorem 2. By the degeneration scheme from the six Painlevé equation to the fifth Painlevé equation, the 
system is reduced into the one 

( ) ( )
2 22 1 2 2

2 r r sH r r is S s r− − = − ∂ + ∂ + ∂ + 
 , 

( ) ( )22 2sX is S s= − ∂ + , 
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( ) ( ){ } { } { }1 1 2

22
1 2, , ,s x x xY i is g g− = − ∂ ∂ + ∂ + ∂  , 

where sS is T= ∂ , sisθ∂ = ∂ , 1
2 2

r sx s r
∂ = − ∂ − ∂  2

2 2
r sx

i i
s r

∂ = − ∂ − ∂ . 

Theorem 3. By change of the independent variable ( )exps iσ=  and ( ) ( ), cos , sinx y r rσ σ= , the system is 
reduced into the one 

( )
2

2 1 2 2 2

2 r rH r r S rσ σ− − = − ∂ + ∂ + ∂ + 
 , 

( )2 2 2X Sσ σ= − ∂ + , 

( ) { } { } { }1 1 2
2 2

1 2, , ,x x xY i g gσ− = − ∂ ∂ + ∂ + ∂  , 

where S Tσ= ∂ , sisσ∂ = ∂ , 1 2 2x yx i∂ = − ∂ + ∂ , 2 2 2y xx i∂ = − ∂ − ∂ . 
Each theorem is obtained by a straight-forward computation. 

3. Discussion 
The degeneration scheme broke the reality of the coordinates, which is not a surprising conclusion. The fact says 
that, if the assumption of the Tremblay and Winternitz [1] is made looser, then another superintegrable system 
may appear. So, the author thinks that the assumption of the Hermitian nature is too strong to get the sixth Pain-
levé equation with full-parameter or other Painlevé equations. 

Marquette and Winternitz [8] also obtained other superintegrable systems with potentials described by the 
first, second and fourth Painlevé equations. But it is uncertain if the system above degenerates into the system 
obtained in [8]. 
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