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Abstract 
In this paper, we define dual curvature motion on the dual hyperbolic unit sphere 2

0  in the dual 

Lorentzian space 3
1  with dual signature ( ), ,+ + − . We carry the obtained results to the Lorent-

zian line space 3
1  by means of Study mapping. Then we make an analysis of the orbits during the 

dual hyperbolic spherical curvature motion. Finally, we find some line congruences, the family of 
ruled surfaces and ruled surfaces in 3

1 . 
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1. Introduction 
Dual numbers had been introduced by W.K. Clifford (1845-1849) as a tool for his geometrical investigations. 
After him, E. Study (1860-1930) used dual numbers and dual vectors in his research on the geometry of lines 
and kinematics [1]. He devoted special attention to the representation of directed lines by dual unit vectors and 
defined the mapping that is known by his name. There exists one-to-one correspondence between the vectors of 
dual unit sphere 2S  and the directed lines of space of lines 3 . Hence, a differentiable curve on the sphere 

2S  corresponds to a ruled surface in the line space 3  [2]-[4]. Ruled surfaces have been widely applied in 
surface design, manufacturing technology and simulation of rigid bodies [5]. 

E. Study’s mapping plays a fundamental role in the real and dual Lorentzian spaces [6]. By this mapping, a 
curve on a dual hyperbolic unit sphere 2

0  corresponds to a timelike ruled surface in the Lorentzian line space 
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3
1 , in other words, there exists a one-to-one correspondence between the geometry of curves on 2

0  and the 
geometry of timelike ruled surfaces in 3

1 . Similarly, a timelike (spacelike) curve on a dual Lorentzian unit 
sphere 2

1S  corresponds to a spacelike (timelike) ruled surface in the Lorentzian line space 3
1 , this means that, 

there exists a one-to-one correspondence between the geometry of timelike (spacelike) curves on 2
1S  and the 

geometry of spacelike (timelike) ruled surfaces in 3
1  [7]. Since the dual Lorentzian metric is indefinite, the 

angle concept in this space is very interesting. For instance, the dual hyperbolic angle *φ ϕ εϕ= +  between two 
dual timelike unit vectors is a dual value formed with the (real) hyperbolic angle ϕ  between corresponding 
two directed timelike lines in the Lorentzian line space 3

1  and the shortest Lorentzian distance *ϕ  between 
these directed timelike lines. 

Real spherical curvature motion had been introduced by A. Karger and J. Novak [8]. Also, a dual spherical 
curvature motion has been defined by Z. Yapar [9]. In recent years, study about the real spherical motion has 
been generalized to the Lorentz spherical motion [6] [7] [10] [11]. In this work, we consider the curvature mo-
tion on the dual hyperbolic unit sphere 2

0  of the dual Lorentzian space 3
1  and the results are carried over to 

the Lorentzian line space by the E. Study’s mapping. 

2. Preliminaries and Definitions 
In this section, we give a brief summary of the theory of dual numbers, dual Lorentzian vectors and Study’s 
mapping.  

Let 3
1  be the 3-dimensional Minkowski space over the field of real numbers   with the Lorentzian inner 

product ,  given by 

1 1 2 2 3 3, a b a b a b= + −a b  

where ( )1 2 3, ,a a a=a  and ( ) 3
1 2 3 1, ,b b b= ∈b  . 

A vector ( )1 2 3, ,a a a=a  of 3
1  is said to be timelikeif , 0<a a , spacelike if , 0>a a  or 0=a , and 

lighlike (null) if , 0=a a  and 0≠a . 
The norm of a vector a  is defined by ,=a a a . Let ( )1 2 3, ,a a a=a  and ( )1 2 3, ,b b b=b  be two vec- 

tors in 3
1 , then the Lorentzian cross product of a  and b  is given by  

( )3 2 2 3 1 3 3 1 1 2 2 1, , .a b a b a b a b a b a b× = − − −a b  

If a  and *a  are real numbers and 2 0ε = , the combination *A a aε= +  is called a dual number, where 
ε  is a dual unit. 

The set of all dual numbers forms a commutative ring over the real numbers field and is denoted by 𝔻𝔻. Then 
the set 

( ){ }3
1 2 3, , ,1 3ia a a a i= = ∈ ≤ ≤a   

is a module over the ring 𝔻𝔻 which is called a 𝔻𝔻-module or dual space. The elements of 3  are called dual vec-
tors. Thus a dual vector a  can be written as 

*ε= +a a a  
where a  and *a  are real vectors at 3 .  

If *A a aε= +  and *B b bε= + ∈  with 0B ≠  then the division is given by 
* * *

* 2 .A a a a a ab
B b bb b b

ε ε
ε

 +
= = + − +  

 

Let f  be a differentiable function with dual variable *X x xε= + . Then the Maclaurin series generated by 
f  is  

( ) ( ) ( ) ( )* *f X f x x f x x f xε ε ′= + = +  

where ( )f x′  is the derivative of ( )f x . Then it is easy to see that 

( )* * ,sh x x shx x chxε ε+ = +  
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( )* * ,ch x x chx x shxε ε+ = +  

( )
*

* , 0 .
2
xx x x x

x
ε ε+ = + >  

The norm X  of a dual number *X x xε= +  is defined by  
* 2 2 *2 .X x x X x xxε ε= + = = +  

Then we can write 

( )* , 0 .xX x x x
x

ε= + ≠  

The Lorentzian inner product of two dual vectors *ε= +a a a , * 3ε= + ∈b b b   is defined by  

( )* *, , , , ,ε= + +a b a b a b a b

  

where ,a b  is the Lorentzian inner product of the vectors a  and b  in the Minkowski 3-space 3
1 . 

A dual vector a  is said to be timelike if , 0<a a  , spacelike if , 0>a a   and lightlike (or null) if  

, 0=a a  ,  

where ,  is a Lorentzian inner product with signature ( ), ,+ + − . 
The set of all dual Lorentzian vectors is called dual Lorentzian space and it is denoted by 

{ }3 * * 3
1 1: , .ε= = + ∈a a a a a   

The Lorentzian cross product of dual vectors a  and 3
1∈b   is defined by  

( )* * ,ε× = × + × + ×a b a b a b a b

 , 0× =a b a   

where ×a b  is the Lorentzian cross product in 3
1 .  

Lemma 2.1. Let 3
1, , , ∈a b c d 

   . Then [12] 
1) ,× = − ×a b b a 

   
2) , 0× =a b a  ; and , 0× =a b b  , 

3) ( ), det , ,× = −a b c a b c 

    , 

4) , , , , ,× × = − +a b c d a c b d a d b c     

      . 

Let * 3
1ε= + ∈a a a  . Then a  is said to be dual timelike unit vector (resp., dual spacelike unit vector) if the 

vectors a  and *a  satisfy the following properties: 

, 1= −a a , (resp., , 1=a a ), *, 0.=a a  

The set of all dual timelike unit vectors (resp., all dual spacelike unit vectors) is called the dual hyperbolic 
unit sphere (resp., dual Lorentzian unit sphere) and is denoted by 2

0  (resp., 2
1S ) [6]. (See [13]-[16] for Lo-

rentzian basic concepts.) 
Theorem 2.2. (E. Study Map) [6] There exists one-to-one correspondence between directed timelike (resp., 

spacelike) lines of 3
1  and an ordered pair of vectors ( )*,a a  such that , 1= −a a  (resp., , 1=a a ) and  

*, 0=a a . 

Definition 2.1. A directed timelike line in 3
1  may be given by two points on it, p  and q . If λ  is any 

non-zero constant, the parametric equation of the line is λ= +q p y . In this case, the vector given by 
* = × = ×y p y q y  

is called the moment of the vector y  with respect to the origin 0. 
This means that the direction vector y  of the timelike line and its moment vector *y  are independent of 

the choice of the points , , ,p q r   on the line. However the vector y  and *y  are not independent of one 
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another. Also, they satisfy the following properties: 
*, 1, , 0.= =y y y y  

Let 2
0 , 0 and ( ){ }1 2 30, , , timelikee e e    denote the dual hyperbolic unit sphere, the center of 2

0  and the 
dual orthonormal system at 0, respectively where we have  

* , 1 3i i i iε= + ≤ ≤e e e  

1 2 3 2 3 1 3 1 2, , ,× = × = − × = −e e e e e e e e e          

and 

1 2 3 2 3 1 3 1 2, ,= × = − ×× = −e e e e e e e e e  

[7]. In this case the orthonormal system { }1 2 30, , ,e e e    is the system of the space of lines 3
1 .  

A ruled surface is a surface generated by the motion of a straight line in 3 . This line the generator of the 
surface. This follows the following definition. 

Definition 2.2. A ruled surface is said to be timelike if the normal of surface at every point is spacelike, and 
spacelike if the normal of surface at every point is timelike [7]. 

Let x  and y  denote two different points at 2
0  and φ  denote the dual hyperbolic angle ( ),x y  . The 

hyperbolic angle φ  has a value *φ ϕ εϕ= +  which is a dual number, where ϕ  and *ϕ  are the hyperbolic 
angle and the minimal Lorentzian distance between directed lines x  and y , respectively. 

3. Dual Curvature Motion on the Dual Hyperbolic Unit Sphere 2
0  

Let us consider a fixed dual orthonormal frame ( ){ }1 2 3, , timelikeR = u u u    and represent this frame by the dual 
hyperbolic unit sphere H ′ . Consider the dual hyperbolic spherical motion of a hyperbolic spherical segment  
AB  of constant such that its endpoints move along circles, one of them being a great circle 1

2  which lying 

on the plane ( )1 3,u u   on H ′ . Let a circle 1
1  with radius 2

2
 which is perpendicular to the great circle  

1
2  be given in a plane which is parallel to the plane ( )2 3,u u  . Its center is on the vector 1u  and with distance  
2

2
 from the plane ( )2 3,u u  . The segment AB  moves so that 1 1

1 2,A B∈ ∈  . The position vectors of the  

endpoints of segment AB  are chosen as the vectors 3v  (timelike) and 2v  (spacelike) of the moving frame 
R . The vector 1v  is then defined by the relation ( )1 2 3= − ×v v v   . As the parameter of motion we choose the 
dual hyperbolic angle φ  of the timelike vectors 3u  and 3v . Let us denote the dual hyperbolic angle of the 
vectors 2v  and 2u  by α . Then 

2 1 2 3
2 2 2 ,

2 2 2
ch shα α= + +v u u u     

where the vector 2 =v OA  is spacelike. Further, we have  

3 1 3sh chφ φ= +v u u    ( 3u  timelike). 

where 3v  is timelike. It must be  

2 3, 0=v v  , i.e., 2 2 0,
2 2

sh sh chφ α φ− =  

i.e. sh sh chφ α φ=  or tanhshα φ= , where *φ ϕ εϕ= + . Then ( )1 221 tanhchα φ= + . Thus we obtain  

( ) ( ) ( )

( )

1 2 1 22 2
1 2 3 1 2 3

1 22
2 1 2 3

3 1 3

2 2 2 21 tanh tanh 1 tanh
2 2 2 2

2 2 21 tanh tanh
2 2 2

.

 
= − × = − + + − − +  

 

= + + +

= +

ch ch sh sh

sh ch

φ φ φ φ φ φ φ

φ φ

φ φ

v v v u u u

v u u u

v u u

     

   

  

   (1) 
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Thus, we have the orthonormal dual frame { }1 2 30, , ,v v v   . Let this system be represented by moving hyper-
bolic sphere H . Then, a dual hyperbolic curvature motion H H ′  takes place. This motion will be called a 
dual hyperbolic curvature motion. Let X  be a fixed point on the arc 2 3v v . During the dual hyperbolic curva-
ture motion, the point X  draws an orbit on the fixed hyperbolic sphere H ′ .  

Denote the dual hyperbolic angles of  

2 3,v X Xv  by *
1 1 1θ εθ= +Θ  and *

2 2 2θ εθ= +Θ  respectively. Then it 
can be written 

( )
2 1 3 2 2 1 3 2

1 2

,
sh sh sh sh
sh sh
Θ Θ Θ Θ
Θ Θ
+ +

= =
+ ∆

v v v v
X

   

                         (2) 

where *
1 2 σ εσ∆ = Θ +Θ = +  [5]. From Equation (2), making the necessary calculations for X , we have  

11 2 1 222 2 2, ,
2 2 2

ch shsh sh sh sh sh sh ch
sh sh sh ch sh ch sh

ϕ θθ θ ϕ θ ϕ θ ϕ
σ σ σ ϕ σ ϕ σ

 
= + +  
 

x             (3) 

( ) ( )

( )

( )

* * * * *
1 1 1 2 2 22 2

* * * *12
1 1 12 2

* * *1
1 1 12 2

* 2

2 1
2

2 22 2, ,
2 22

2 2
2 2

shsh ch sh ch ch sh sh ch
sh sh

ch sh sh chsh ch sh ch sh ch
sh sh ch ch sh ch

sh sh sh ch sh ch
sh ch sh ch

sh sh c
sh

ϕθ σ θ σ θ σ θ θ σ σ θ σ
σ σ

ϕ θ ϕ ϕθ ϕ
ϕ ϕ θ σ θ σ θ σ

σ σ ϕ ϕ σ ϕ

θ ϕϕ θ σ θ σ θ σ
σ ϕ σ ϕ

θ ϕ
ϕ

σ


= − + −


+ + −

+ −

+ +

x

( )* *
2 2 22 ,h ch sh sh ch

sh
ϕ θ θ σ σ θ σ
σ

− 


         (4) 

where x  and *x  are the real and dual parts of X , also. Since, Ө1 and Ө2 are constant (i.e. *
1 1,θ θ , *

2 2,θ θ  
are all constants), *A σ εσ= +  is constant. Equations (3) and (4) depend only two parameters ϕ  and *ϕ . 
Thus, Equations (3) and (4) represent a timelike congruence in 3

1  (for more details on congruences, see [10] 
[12]). 

Let p  denote the position vector of an arbitrary point ( )1 2 3, ,P y y y  of a directed timelike line of this time-
like line congruence in 3

1 . Then we have  

( ) ( ) ( )* * * *, , , .uϕ ϕ ϕ ϕ ϕ ϕ= × +p x x x                           (5) 

Since ( )1 2 3, ,y y y  are the coordinates of P , making the necessary calculations, we obtain 

  
( ) ( )

( )

*
3 * *1 2

1 1 2 1 1 1 12 3

* *1
2 2 2 1 23

2 222 2
22 2

22 2
2 2

ch sh ch sh
y sh sh sh sh ch sh ch

sh ch ch sh

ch sh
ch sh sh ch sh sh sh

shsh

ϕ ϕ θ ϕ θ
θ θ ϕ θ σ θ σ θ σ

σ ϕ ϕ σ

ϕ θ λθ θ σ σ θ ϕ θ θ ϕ
σσ

−
= + + −

 
− − + +  

 

       (6) 

( )

( )

2 2 2
* 1 1 2 1 2 2

2 2 2 2 2 2 2

2 2
* *1 2 2 1
2 2 22 2 3

2
* *2 2
1 1 1 13

1 2 2
2 2 2

2 2
2 2

2
2

sh sh sh sh sh sh sh sh shy
sh ch sh sh ch sh

sh sh sh sh ch sh ch ch sh sh ch
sh sh sh

sh sh sh sh chsh ch sh ch
sh ch sh

θ θ θ ϕ θ θ ϕ θ ϕ
ϕ

σ ϕ σ σ ϕ σ

θ θ ϕ θ ϕ θ ϕ
θ θ σ σ θ σ

σ σ σ

θ ϕ θ ϕ ϕ
θ σ θ σ θ σ

σ ϕ


= + + +




− − + −


+ − + ( )

( ) ( )

( )

* *
2 2 23

2
* * * *1 2
2 2 2 1 1 13 3

* * 12
2 2 23

2 2
2 2

22
2

ch sh sh ch

sh sh sh chch sh sh ch sh ch sh ch
sh ch sh

ch shsh sh ch ch sh sh ch
ch shsh

θ θ σ σ θ σ
σ

θ ϕ θ ϕ
θ θ σ σ θ σ θ σ θ σ θ σ

σ ϕ σ

ϕ θθ ϕ ϕ
θ θ σ σ θ σ λ

ϕ σσ

−

− − − −

− − +

       (7) 
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and 

( )

( )

2*
1 1 2

3 22 2 2

* *2
1 1 13

* *1 1
2 2 2 23

2
2 2

2 2 2

22
2

22 2
2 2

 
= + − 

 

+ −

 
− − + +  

 

ch sh sh sh sh shy sh
sh ch ch ch ch

ch sh sh
sh ch sh ch

sh ch

ch sh sh sh shch sh sh ch sh ch
sh chsh ch

ϕ θ θ ϕ θ ϕϕ θ
σ ϕ ϕ ϕ ϕ

ϕ θ ϕ
θ σ θ σ θ σ

σ ϕ

ϕ θ ϕ θ ϕλθ θ σ σ θ σ θ ϕ
σ ϕσ ϕ

            (8) 

If *
1 1 1 0Θ = + =θ εθ , (i.e. *

1 1 0θ θ= = ) then 2θ∆ = , i.e. * *
2 2,σ θ σ θ= = . In this case, from Equation (2) we 

have 3=x v . Thus, from Equations (6)-(8) we obtain 

1
*

2

3

y sh

y
y ch

λ ϕ

ϕ
λ ϕ

=

= −
=

                                          (9) 

From Equation (9) we have 
2 2 2
1 3

*
2

y y

y

λ

ϕ

+ =

= −
                                        (10) 

which represents a line congruence. Thus, we have the following theorem. 
Theorem 3.1. During the dual hyperbolic spherical curvature motion H H ′  in the case of 1 0Θ =  (hence 

3=x v ) in Equation (2), the Study map of the orbit which is drawn on the H ′  by 3=x v  is the congruence in 
3
1  

2 2 2
1 3

*
2 .

y y

y

λ

ϕ

+ =

= −
                                       (11) 

If we take *
2yλ ϕ= = −  in the Equation (9), then we have 

2 2 2
1 3 2 .y y y+ =                                        (12) 

Thus, we have the following theorem. 
Theorem 3.2. During the dual hyperbolic spherical curvature motion H H ′  in the case of *

2yλ ϕ= = − , 
the Study map in 3

1  of the orbit drawn on the H ′  by 3=x v  is the cone which is given by  
2 2 2
1 3 2 .y y y+ =  

In addition, if we take * cϕ ϕ− =  (c = constant) then we have  

1 1
2

3

tanh ,
yy c
y

−=  

which represents a right helicoid. 
If *

2 2 2 0θ εθΘ = + = , i.e. *
2 2 0θ θ= = , then 1∆ = Θ , i.e. * *

1 1, .σ θ σ θ= =  In this case , from Equation (2) 
we have 2=x v . Thus, from Equations (6)-(8) we obtain 

*
1

*

2 2

*
3 2

2
2 2 ,

2

2
2 2 ,

2
2 2 .

2

ch
y

ch ch

ch
y

chch

ch sh shy
ch chch

ϕ
ϕ λ

ϕ ϕ

ϕϕ λ
ϕϕ

ϕ ϕ ϕϕ λ
ϕ ϕϕ

= − +

= +

= +

                            (13) 

If we put * 0, 0, 0ϕ ϕ λ= ≠ ≠ , from Equation (13) we have 
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1

2

3

2 2 ,

2
2 2 ,

2 2 .

y

ch
y

ch
shy
ch

λ

ϕ
λ

ϕ
ϕλ
ϕ

=

=

=

                                    (14) 

From Equation (14) we have  
2 2 2
1 3 2 ,y y y+ =                                         (15) 

which represents a cone whose axis is the vector 2y . Thus, we have the following theorem. 
Theorem 3.3. During the dual hyperbolic spherical curvature motion, the orbit drawn on H ′  by 2v  (if 

* 0, 0, 0ϕ ϕ λ= ≠ ≠ ) represents a cone in the 3
1 , whose axis is the vector 2y . 

If we put * 0, 0, 0ϕ ϕ λ≠ ≠ = , from Equation (13) we have  

*
1

*

2 2

*
3 2

2
2 ,

2

2 ,

2
2 .

2

ch
y

ch ch

y
ch

ch shy
ch ch

ϕ
ϕ

ϕ ϕ
ϕ
ϕ

ϕ ϕϕ
ϕ ϕ

= −

=

=

                                   (16) 

From Equation (16) we have  
2 2 2
1 3 2 ,y y y+ =                                         (17) 

which represents a cone whose axis is the vector 2y . Thus, we have the following theorem. 
Theorem 3.4. During the dual hyperbolic spherical curvature motion, the orbit drawn on H ′  by 3v  (if 

* 0, 0, 0ϕ ϕ λ≠ ≠ = ) represents a cone in the 3
1 , whose axis is the vector 2y . 

4. Analysis of the Orbit of 1v  during the Dual Hyperbolic Spherical  
Curvature Motion 

Seperating real and dual parts of 1v , from Equation (1) we have 

1
2 2 1 22 , , 2 ,

2 2 2
shv ch ch

ch ch
ϕϕ ϕ

ϕ ϕ
 

= − −  
 

                      (18) 

2
* * * *
1 2 2

2 22 1 2 21 , , 2
2 2 2 2 2

ch sh ch shshv ch
ch ch ch ch ch
ϕ ϕ ϕ ϕϕϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

   
= − + − − +          

       (19) 

Equations (18) and (19) have only two parameters ϕ  and *ϕ . Hence Equations (18) and (19) represent a 
line congruence in 3

1 . Let n  denote the position vector of an arbitrary point ( )1 2 3, ,N y y y  of an oriented 
line of this congruence in 3

1 , then considering Equation (5) we have  

( ) ( ) ( )* * * *
1 1 1, , , .v v uvϕ ϕ ϕ ϕ ϕ ϕ= × +n                                               (20) 

Since ( )1 2 3, ,y y y  are the coordinates of N , making the necessary calculations, we obtain  

( )

2 2
*

1

*
2 2

* 2 2
3 2

2 32 2 2 ,
2

22 2 ,

2 2
2 3 2 .

2

ch sh chy u ch
ch ch

ch uy
chch

ch sh ch sh
y ch sh u

chch ch

ϕ ϕ ϕϕ ϕ
ϕ ϕ
ϕϕ

ϕϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

ϕϕ ϕ

 +
= − 

 

= +

= + −

                      (21) 
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In the case of * 0, 0, 0uϕ ϕ= ≠ ≠  from Equation (21) we have 

1

2

3

2 2 2 ,

2 2 ,

2
2 2 .

y u ch
uy

ch

ch sh
y u

ch

ϕ

ϕ

ϕ ϕ
ϕ

= −

=

= −

                                (22) 

From Equation (22) we obtain 
2 2 2
1 3 2 2y y y ch ϕ= +                                     (23) 

which represents an one-parameter family of cone in 3
1 .  

If we put ( )ln 1 2ϕ = +  in the Equation (23), then we have 

2 2 2
1 3 23y y y= +                                      (24) 

which represents an elliptic cone, whose axis is the vector 1y . Thus, we have the following theorem. 
Theorem 4.1. During the dual hyperbolic spherical curvature motion, the orbit drawn on H ′  by 1v  (if 

( )* 0, ln 1 2 , 0uϕ ϕ= = + ≠ ) represents an elliptic cone, whose axis is the vector 1y  in the 3
1 . 

In addition, putting various values of parameters in the Equations (21) or (22) we have different line congru-
ences or ruled surfaces in 3

1 . 

5. Conclusion 
This paper presents the curvature motion on the dual hyperbolic unit sphere 2

0 . We define the curvature mo-
tion on the dual hyperbolic unit sphere 2

0  of the dual Lorentzian space 3
1  and the results are carried over to 

the Lorentzian line space by the E. Study mapping. The orbits drawn on the fixed dual hyperbolic unit sphere by 
unit dual vectors of an orthonormal base { }1 2 3, ,v v v    are obtained. During this carrying, we do an analysis of 
orbits they drawn by the vectors 1 2 3, ,v v v    of dual hyperbolic unit sphere and then we get some line congru-
ences, the families of ruled surfaces and ruled surfaces in according to variables of parameters. Moreover we 
find equations of these line congruences, the families of ruled surfaces and ruled surfaces. This motion and its 
results may give a way to define new motions and contribute to the study of surface design, manufacturing 
technology, robotic research and special and general theory of relativity, and many other areas in 3-dimensional 
Lorentzian space. 
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