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Abstract 
The SABR stochastic volatility model with β-volatility β є (0,1) and an absorbing barrier in zero 
imposed to the forward prices/rates stochastic process is studied. The presence of (possibly) non- 
zero correlation between the stochastic differentials that appear on the right hand side of the mo- 
del equations is considered. A series expansion of the transition probability density function of the 
model in powers of the correlation coefficient of these stochastic differentials is presented. Expli-
cit formulae for the first three terms of this expansion are derived. These formulae are integrals of 
known integrands. The zero-th order term of the expansion is a new integral formula containing 
only elementary functions of the transition probability density function of the SABR model when 
the correlation coefficient is zero. The expansion is deduced from the final value problem for the 
backward Kolmogorov equation satisfied by the transition probability density function. Each term 
of the expansion is defined as the solution of a final value problem for a partial differential equa-
tion. The integral formulae that give the solutions of these final value problems are based on the 
Hankel and on the Kontorovich-Lebedev transforms. From the series expansion of the probability 
density function we deduce the corresponding expansions of the European call and put option 
prices. Moreover we deduce closed form formulae for the moments of the forward prices/rates va- 
riable. The moment formulae obtained do not involve integrals or series expansions and are ex-
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pressed using only elementary functions. The option pricing formulae are used to study synthetic 
and real data. In particular we study a time series (of real data) of futures prices of the EUR/USD 
currency's exchange rate and of the corresponding option prices. The website:  
http://www.econ.univpm.it/recchioni/finance/w18 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. A more general ref-
erence to the work of the authors and of their coauthors in mathematical finance is the website: 
http://www.econ.univpm.it/recchioni/finance. 
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1. Introduction 
Let us consider the SABR stochastic volatility model. This model has been introduced in mathematical finance 
in 2002 by Hagan, Kumar, Lesniewski, Woodward [1] to describe the time dynamics of forward prices/rates and 
is widely used in the financial markets. 

Let  , +
  be respectively the sets of real and of positive real numbers and let t  be a real variable that de- 

notes time. The SABR model describes the dynamics of two variables: the forward prices/rates variable tx , 
> 0t , and the stochastic volatility variable tv , > 0t . The variables tx , tv , > 0t , are real stochastic pro- 

cesses that satisfy the following system of stochastic differential equations:  

d d , 0,t t t tx x v W tβ= >                                    (1) 

d d , 0,t t tv v Q tε= >                                     (2) 

where [ ]0,1β ∈  and > 0ε  are real parameters. The parameters β  and ε  of (1), (2) are called respectively 
β -volatility and volatility of volatility. The choices 0β =  and 1β =  define respectively the normal and the 
lognormal SABR models and are not considered here. The normal and lognormal SABR models have been 
widely studied in the scientific literature (see, for example, [1]-[9]). In this paper we restrict our attention to the 
study of the case ( )0,1β ∈ . The stochastic processes tW , tQ , > 0t , are standard Wiener processes such that 

0 0 0,W Q= =  d tW , d tQ , > 0t , are their stochastic differentials and we assume that:  

( )d d d , 0,t tE W Q t tρ= >                                 (3) 

where ( )E ⋅  denotes the expected value of ⋅  and ( )1,1ρ ∈ −  is a constant called correlation coefficient. The 
Equations (1), (2) are equipped with the initial conditions:  

0 0 ,x x=                                          (4) 

0 0 ,v v=                                          (5) 

where 0x  and 0v  are random variables that we assume to be concentrated in a point with probability one. For 
simplicity we identify these random variables with the points where they are concentrated. Moreover we assume 

0 0, > 0x v  . The assumption 0 > 0v  with probability one and Equation (2) imply that > 0tv  with probability 
one for > 0t . It is known that when ( )0,1β ∈  the stochastic volatility model (1), (2) with the conditions (3), 
(4), (5) is underspecified (see [9] [10] [11]). In fact when ( )0,1β ∈  the origin of the forward prices/rates 
variable tx , > 0t , is “accessible” from 0 > 0x , and in the origin of the forward prices/rates variable equation 
(1) has not a unique solution. In order to guarantee the uniqueness of the solution of (1), (2), (3), (4), (5) and the 
no arbitrage condition we impose an absorbing barrier in zero to the forward prices/rates stochastic process tx , 

> 0t , (see [10] [11] for details). This means that the paths of the stochastic process tx , > 0t , that reach zero 
are no longer considered in the time evolution. The absorbing barrier in zero imposed to the forward prices/rates 
variable is only one of the conditions discussed in the scientific literature that can be used to guarantee 
uniqueness of the solution of the initial value problem (1), (2), (3), (4), (5). For example reflecting barriers and 
mixed barriers in zero have been suggested as conditions that guarantee uniqueness. We study the model with 
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the absorbing barrier just for simplicity. The results obtained here for this model can be extended to several mo- 
dels with other uniqueness conditions. The absorbing barrier in zero imposed to the forward prices/rates process 
implies that the time evolution defined by the model equations (1), (2) does not conserve probability. Despite 
this fact we continue to call probability density function the fundamental solution of the backward Kolmokorov 
equation associated to (1), (2) that satisfies the homogeneous Dirichlet boundary condition when the forward 
prices/rates variable is zero. This boundary condition imposed to the probability density function corresponds to 
the absorbing barrier in zero imposed to the forward prices/rates variable. The SABR model studied in this paper 
is defined by the equations (1), (2), (3), (4), (5), by the conditions 0x , 0 > 0v , ( )0,1β ∈ , ( )1,1ρ ∈ − , > 0ε , 
and by the absorbing barrier in zero imposed to the forward prices/rates variable. 

The practice of the financial markets has shown that in many circumstances this SABR model fits satisfac- 
torily the implied volatility curves associated to the observed option prices and is able to capture the dynamics 
of the implied volatility smile. Moreover it yields stable hedges of elementary portfolios built with the asset un- 
derlying the forward prices/rates variable and its derivative products (see, for example, [1] [12]). These facts jus- 
tify the use of the SABR model by the practitioners and the interest in the SABR model of the research com- 
munity. Some approximate expressions of the probability density function of the SABR model, of the corres- 
ponding European option prices and of the implied volatility associated to the option prices are available in the 
scientific literature. These formulae have been obtained using several mathematical methods, such as singular 
perturbation theory and heat kernel asymptotics (see [1] [13] [14]). For example an explicit formula (involving a 
one dimensional integral) for the transition probability density function of the SABR model when 0β =  or 

1β =  and ( )1,1ρ ∈ −  has been obtained in [4]. Similar results are contained in [15] when 1β = , 0ρ ≤  and 
in [7] for a modified SABR model. In [16] an option pricing problem is studied. Let 0t =  be the current time, 

1 > 0T  be the maturity time of the options considered and 2
1Tε  be the total volatility of volatility. The SABR 

model for [ ]10,t T∈  is studied and it is derived a series expansion in powers of the total volatility of volatility 
of the transition probability density function of the variables tx , tv , > 0t , of the SABR model (1), (2), (3), (4), 
(5), [ ]0,1β ∈ , ( )1,1ρ ∈ − , when no condition in zero is imposed to the forward prices/rates variable [16]. The 
terms of the expansion in powers of 2

1Tε  are obtained scaling the variables of the model and using a trans- 
formation of the bivariate normal function. Explicit formulae are given for the first three terms of the expansion 
in powers of 2

1Tε  of the probability density function and of the corresponding expansions of the European 
option prices. The idea of imposing an absorbing barrier in zero to the forward prices/rates variable of the SABR 
model is discussed in [3]. In particular in [3] in order to price long dated options in the SABR model it is sug- 
gested the idea of completing the probability density function determined imposing the absorbing barrier in zero 
to the forward prices/rates variable adding a term proportional to a Dirac’s delta supported on the absorbing bar- 
rier. The choice of the Dirac's delta term restores the probability conservation during the time evolution. 

In this paper for the previously specified SABR model we deduce a series expansion in powers of the cor- 
relation coefficient ρ  of the transition probability density function. Explicit expressions of the first three terms 
of this expansion are derived. These terms are integrals of known integrands. In particular the zero-th order term 
of the expansion is a one dimensional integral whose integrand is expressed using only elementary functions. 
This is a new formula of the probability density function of the SABR model when 0ρ = . Previously this pro- 
bability density function was known only through a formula consisting in a one dimensional integral of an ex- 
pression involving non elementary transcendental functions [9]. Related formulae have been derived by several 
authors. For example in [17] a formula for the marginal distribution of the forward prices/rates variable of the 
SABR model when 0ρ =  is presented. The terms of the expansion of the probability density function present- 
ed in this paper are integrals of the product of a function depending on the forward prices/rates variable and the 
integration variable times a function depending on the stochastic volatility variable and the integration variable 
(see, for example, formula (34)). The integration variable, in general, is a vector valued variable and the corres- 
ponding integral is a multidimensional integral. Furthermore we show that for 1n ≥  the n -th order term of the 
expansion in powers of ρ  of the probability density function of the SABR model can be written as the con- 
volution of the zero-th order term with a “forcing” function. 

The terms of the expansion in powers of ρ  of the probability density function of the SABR model are the 
solutions order by order in perturbation theory of the final value problem for the backward Kolmogorov equa- 
tion satisfied by the probability density function of the model. The partial differential operator that appears in 
the final value problems satisfied by the terms of the expansion can be “diagonalized” using a procedure based 
on a change of variables, and on the Hankel and the Kontorovich-Lebedev transforms [18] [19]. This “diago- 
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nalization” procedure makes possible to obtain integral formulae for the expansion terms. In particular the “di- 
agonalization” procedure shows that the zero-th order term of the expansion is a kind of convolution between 
two kernels, one depending from the transformed forward prices/rates variable and the other depending from the 
stochastic volatility variable. This last kernel has already been used in [4] to express the transition probability 
density function of the SABR model when 0β =  or 1β =  and ( )1,1ρ ∈ − , and in [9] [15] to study respec- 
tively a modified SABR model when [ ]0,1β ∈ , 0ρ =  and when 1β =  and ( )1,1ρ ∈ − . Previously the 
same kernel has been used in the study of the transition probability density function of the time integral of a 
geometric Brownian motion (see [15] [20]). 

Despite the fact that the SABR model with ( )0,1β ∈  and the absorbing barrier mentioned above does not 
conserve probability it is common practice to use the “risk neutral approach” to price options in the SABR mo- 
del framework as “expected values” of the discounted payoff functions. We follow this practice and we extend 
the method used to derive the expansion in powers of ρ  of the transition probability density function to de- 
duce the corresponding expansions of the European call and put option prices in the SABR model. The terms of 
these expansions are integrals of known integrands. The integrands are expressed as the product of a function 
depending from the forward prices/rates variable and the integration variable times a function depending from 
the stochastic volatility variable and the integration variable. Some of these integrals are done analytically, this 
guarantees that (order by order in perturbation theory) the option prices can be obtained evaluating numerically 
integrals of the same dimension than those that must be evaluated to obtain the transition probability density 
function. Moreover these integrals due to the special structure of their integrands can be computed using ad hoc 
quadrature rules. The development of these ad hoc quadrature rules is beyond our purposes in this paper. Finally 
we study the moments of the forward prices/rates variable. For these moments we obtain closed form formulae 
that do not contain integrals or series expansions. These formulae are polynomials in the correlation coefficient 
ρ . The coefficients of these polynomials are closed form expressions containing only elementary functions of 
the remaining quantities defining the model. In [5] and [6] similar moment formulae have been obtained for the 
normal (i.e. 0β = ) and for the lognormal (i.e. 1β = ) SABR models. 

Some numerical experiments on synthetic and on real data are discussed. In particular using the option pricing 
formulae mentioned above we study the daily values of the futures price of the EUR/USD currency’s exchange 
rate having maturity September 16th, 2011 and of the daily prices of the corresponding European call and put 
options with expiry date September 9th, 2011 and strike prices ( )1.375 0.005 1iK i= + − , 1, 2, ,18i =  . The 
prices iK , 1, 2, ,18i =  , are expressed in USD. More specifically we study the daily closing prices of these 
contracts observed at the New York Stock Exchange in the time period going from September 27th, 2010, to 
July 19th, 2011. 

The numerical experiments discussed show two facts. The first one is that when the SABR model with the 
absorbing barrier in zero is considered the numerical evaluation with the Monte Carlo method of option prices 
can be computationally expansive. In fact in the SABR model the loss of probability during the time evolution is 
a function of β  and ρ  and increases when β  increases and/or ρ  decreases. As a consequence when β  
increases and/or ρ  decreases the size of the Monte Carlo sample used to evaluate option prices with a given 
accuracy must increase to compensate the probability loss during the time evolution. For example in Section 5 it 
is shown that when 0.6β = , 0.25ρ = −  in a test case for an option with time to maturity 0.5 yearsT =  to 
get three correct significant digits in the numerical approximation of its price it is necessary to consider a Monte 
Carlo sample of 1600000 points. This sample is generated computing 1,600,000 trajectories of (1), (2). This must 
be compared with the fact that the accuracy of the option prices obtained using the series expansions in powers 
of ρ  derived in this paper depends from ρ  and from the quadrature rule used in the numerical evaluation of 
the integrals contained in the coefficients of the series expansions, but is substantially independent of β . A test 
case shows that the time required to evaluate one option price with three correct significant digits on a Centrino 
Intel Core Duo CPU T6400 processor is a few tens of seconds using the series expansions derived here. The 
evaluation with the Monte Carlo method of the same price with the same accuracy requires about 500 seconds 
and the use of a sample generated computing 400000 trajectories of (1), (2). The second fact is that the SABR 
model interprets satisfactorily the time series of real data studied, that is the time series of futures prices of the 
EUR/USD currency’s exchange rate and of the corresponding option prices. In fact in the time period considered 
that goes from September 27th, 2010, to July 19th, 2011 the calibration the SABR model using as data the clo- 
sing values of a day of a set of option prices on the futures prices of the EUR/USD currency’s exchange rate ob- 
served at the New York Stock Exchange shows that a unique set of parameter values explains the entire data set 
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considered. Moreover the parameter values resulting from the calibration and the option pricing formulae are 
used to forecast option prices. The comparison between forecast option prices and option prices actually obser- 
ved in the market confirms the validity of the model and of the calibration procedure used. 

The website: http://www.econ.univpm.it/recchioni/finance/w18 contains some auxiliary material including 
animations, an interactive application and an app that helps the understanding of this paper. A more general 
reference to the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  

The remainder of the paper is organized as follows. In Section 2 we derive the expansion in powers of ρ  of 
the transition probability density function associated to the SABR model (1), (2), (3), (4), (5) with the previously 
specified absorbing barrier. In Section 3, using “the risk neutral approach”, we derive the corresponding ex- 
pansions in powers of ρ  of the European call and put option prices. In Section 4 we derive closed form for- 
mulae for the moments of the forward prices/rates variable tx , 0>t . Finally in Section 5 we use the series ex- 
pansions of the option prices derived in Section 3 to study numerically time series of synthetic and real data. 

2. The Series Expansion of the Probability Density Function 
Let us study the transition probability density function of the stochastic processes tx , tv , > 0t , implicitly de- 
fined by (1), (2), (3), (4), (5) and by the absorbing barrier in zero imposed to tx , > 0t . 

2.1. The Initial Value Problems Satisfied by the Expansion Terms 
Let us define the stochastic process:  

[ )
1

, 0, 0,1 .
1

t
t

x
t

β

ξ β
β

−

= > ∈
−

                                 (6) 

From Equations (1), (2) and Ito's lemma it follows that tξ , tv , > 0t , satisfy the following system of sto- 
chastic differential equations:  

( )
21d d d , 0,

2 1t t t t
t

v t v W tβξ
β ξ

= − + >
−

                            (7) 

d d , 0.t t tv v Q tε= >                                      (8) 

The initial conditions (4), (5) become:  
1
0

0 0 ,
1
x β

ξ ξ
β

−

= =
−


                                       (9) 

0 0 .v v=                                           (10) 

An absorbing barrier in zero is imposed to the stochastic process tξ , > 0t . The barrier imposed to tξ , 
> 0t , follows from the analogous barrier imposed to tx , > 0t . 
Let ( ), , , , ,Sp t x v t x v′ ′ ′ , x , x′ , v , v′ , t , > 0t′ , > 0t t′ − , be the transition probability density function 

of model (1), (2), (3), (4), (5) with the previously specified absorbing barrier imposed to tx , > 0t , that is let 
( ), , , , ,Sp t x v t x v′ ′ ′ , x , x′ , v , v′ , t , > 0t′ , > 0t t′ − , be the probability density function of having tx x′ ′= , 

tv v′ ′=  given the fact that we have tx x= , tv v=  when > 0t t′ − . Let ( ), , , , ,p t v t vξ ξ′ ′ ′ , ξ , ξ ′ , v , v′ , 
t , > 0t′ , > 0t t′ − , be the transition probability density function of model (7), (8), (3), (9), (10) with the 
absorbing barrier previously specified imposed to tξ , > 0t , that is let ( ), , , , ,p t v t vξ ξ′ ′ ′ , ξ , ξ ′ , v , v′ , t , 

> 0t′ , > 0t t′ − , be the probability density function of having tξ ξ′ ′= , tv v′ ′=  given the fact that we have 
tξ ξ= , tv v=  when > 0t t′ − . We have:  

( ) ( )
1 1

, , , , , d d , , , , , d d , , ,
1 1

, , , , , 0, 0.

S
x xp t x v t x v x v p t v t v v

x x v v t t t t

β β

ξ ξ ξ ξ ξ
β β

− −′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =

− −
′ ′ ′ ′> − >

             (11) 

Formula (11) shows that the series expansion in powers of ρ  of Sp  can be easily deduced from the series 
expansion in powers of ρ  of p . 
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Let us deduce the series expansion in powers of ρ  of p . The function p  is the solution of the backward 
Kolmogorov equation associated to (7), (8), that is: 

( )
2 2 2 2 2 2 2

2
2 2 ,

2 2 2 1
, 0, 0,

p v p v p p v pv
t vv

v t t

ε βρε
ξ β ξ ξξ

ξ

∂ ∂ ∂ ∂ ∂
− = + + −
∂ ∂ ∂ − ∂∂ ∂

′> > >

                  (12) 

with final condition:  

( ) ( ) ( ), , , , , , , , , 0,p t v t v v v v vξ ξ δ ξ ξ δ ξ ξ′ ′ ′ ′ ′ ′ ′ ′= − − >                     (13) 

and boundary condition:  

( ),0, , , , 0, , , 0, 0,p t v t v v v t tξ ξ′ ′ ′ ′ ′ ′= > > >                        (14) 

where δ  is the Dirac's delta. The Dirichlet boundary condition (14) imposes to the function p  the condition 
that corresponds to the absorbing barrier in zero imposed to the stochastic process tξ , > 0t . Note that p  
does not depend from t  and t′  separately, it depends only from 0s t t′= − > . Let us introduce the function 

( ) ( )* , , , , , , , , ,p s v v p t v t vξ ξ ξ ξ′ ′ ′ ′ ′= , where s t t′= − , ,ξ ξ ′ , , , , > 0v v t t′ ′ . From (12), (13), (14) it follows that 
*p  is the solution of the partial differential equation:  

( )
* 2 2 * 2 2 2 * 2 * 2 *

2
2 2 , , , 0,

2 2 2 1
p v p v p p v pv v s
s vv

ε βρε ξ
ξ β ξ ξξ

∂ ∂ ∂ ∂ ∂
= + + − >

∂ ∂ ∂ − ∂∂ ∂
           (15) 

with initial condition:  

( ) ( ) ( )* 0, , , , , , , , 0,p v v v v v vξ ξ δ ξ ξ δ ξ ξ′ ′ ′ ′ ′ ′= − − >                      (16) 

and boundary condition:  

( )* ,0, , , 0, , , , 0.p s v v v v sξ ξ′ ′ ′ ′= >                            (17) 

Let us assume that:  

( ) ( )* *

0
, , , , , , , , , , , , , 0,n

n
n

p s v v p s v v v v sξ ξ ξ ξ ρ ξ ξ
+∞

=

′ ′ ′ ′ ′ ′= >∑                   (18) 

where the functions *
np , 0,1,n =  , do not depend from ρ . Substituting the series (18) in (15), (16), (17), dif- 

ferentiating (18) term by term and equating the coefficients of the terms of the same degree in ρ  we obtain the 
following problems:  

( )
* 2 * 2 * *2 2 2 2
0 0 0 0

2 2 , , , 0,
2 2 2 1

p p p pv v v v s
s v

ε β ξ
β ξ ξξ

∂ ∂ ∂ ∂
= + − >

∂ − ∂∂ ∂
                   (19) 

( ) ( ) ( )*
0 0, , , , , , , , 0,p v v v v v vξ ξ δ ξ ξ δ ξ ξ′ ′ ′ ′ ′ ′= − − >                      (20) 

( )*
0 ,0, , , 0, , , , 0,p s v v v v sξ ξ′ ′ ′ ′= >                              (21) 

and 

( )
* 2 * 2 * * 2 *2 2 2 2

2 1
2 2 , , , 0, 1, 2, ,

2 2 2 1
n n n n np p p p pv v v v v s n
s vv

ε β ε ξ
β ξ ξ ξξ

−∂ ∂ ∂ ∂ ∂
= + − + > =

∂ − ∂ ∂ ∂∂ ∂
      (22) 

( )* 0, , , , 0, , , , 0, 1, 2, ,np v v v v nξ ξ ξ ξ′ ′ ′ ′= > =                        (23) 

( )* ,0, , , 0, , , , 0, 1, 2, .np s v v v v s nξ ξ′ ′ ′ ′= > =                        (24) 

Moreover from (19), (20), (21) and (22), (23), (24) we have:  

( ) ( ) ( )
2 *

* * 2 1
00 0 0

, , , , d d d , , , , , , , , ,

, , , , 0, 1, 2, .

s n
n

p
p s v v v p s v v v v v

v
v v s n

ξ ξ ε τ ξ τ ξ ξ τ ξ ξ
ξ

ξ ξ

+∞ +∞ −∂′ ′ ′ ′= − ⋅
∂ ∂

′ ′ > =

∫ ∫ ∫  

   







      (25) 
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Formula (25) is one of the formulae announced in the Introduction. In fact for 1n ≥  formula (25) gives *
np  

as the convolution of the zero-th order term of the expansion *
0p  with the “forcing” function 2 *

1np vξ−∂ ∂ ∂  . 

2.2. The Zero-th Order Term of the Expansion 
Let   be the set of complex numbers, i  be the imaginary unit and let ( )( )1 2 1ν β= − , [ )0,1β ∈ . Note 
that when [ )0,1β ∈  we have [ )1 2,ν ∈ +∞ . The formulae that follow, unless diversely specified, hold for 

1 2ν ≥ , > 0ε . 
Let us study problem (19), (20), (21). The function *

0p  solution of (19), (20), (21) can be written as follows:  

( ) ( ) ( )* *
0 0

, , , , d , , , , , , , , , 0,p s v v J C s v v v v sν
νξ ξ ξ λ λξ λ ξ ξ ξ

+∞
′ ′ ′ ′ ′ ′= >∫                (26) 

where Jν  is the first kind Bessel function of index ν  (see [21] pag. 358) and *C  is a function to be de- 
termined. It is easy to see that when the integral contained in (26) and its integrand are “well behaved” the 
function *

0p  given by (26) satisfies the boundary condition (21). In fact when 0ξ =  we have ( ) 0Jν
νξ λξ = , 

> 0λ . In order to determine the function *C  of (26) let us impose equation (19) under the integral sign in (26). 
We have:  

( ) ( ) ( )( ) ( )
* 2 2 2 2 2 2 *

* *
2 2

2 1( ) ,
2 2 2

, , 0, 0.

C v v v CJ J C J C J
s v

v s

ν ν ν ν
ν ν ν ν

ν εξ λξ ξ λξ ξ λξ ξ λξ
ξ ξξ

ξ λ

∂ ∂ − ∂ ∂
= + − +

∂ ∂∂ ∂
> >

   (27) 

Using [21] page 362 formula 9.1.52 Equation (27) becomes:  

( ) ( ) ( )
* 2 2 2 2 *

2 *
2 , , , 0, 0,

2 2
C v v CJ J C J v s
s v

ν ν ν
ν ν ν

εξ λξ λ ξ λξ ξ λξ ξ λ∂ ∂
= − + > >

∂ ∂
            (28) 

and from (26) we have:  
* 2 2 2 2 *

2 *
2 , , 0, 0.

2 2
C v v CC v s
s v

ελ λ∂ ∂
= − + > >

∂ ∂
                      (29) 

From [21] page 374 formula 9.6.1 and (29) it follows that *C  can be written as a Laplace transform, that is 
we have:  

( ) ( )2 2 2* 8 2 *
0

, , , , e d e , , , ,

, , , 0, 0,

s s
iC s v v v K v D v

v v s

ε ω ε
ω

λλ ξ ω ω λ ω ξ
ε

ξ λ

+∞− −  ′ ′ ′ ′= ⋅  
 

′ ′ > >

∫             (30) 

where i  is the imaginary unit, iK ω  is the second kind modified Bessel function of index iω , also known as 
Macdonald function (see [21] pag. 374), and *D  is a function to be determined. From (26) and (30) we have:  

( ) ( ) ( )2 2 2* 8 2 *
0 0 0

, , , , e d d e , , , , , , , 0.ε ν ω ε
ν ω

λξ ξ ξ λ λξ ω ω λ ω ξ ξ ξ
ε

+∞ +∞− −  ′ ′ ′ ′ ′ ′= ⋅ > 
 ∫ ∫s s

ip s v v v J K v D v v v s  (31) 

To determine the function ( )* , , ,D vλ ω ξ ′ ′ , , > 0vξ ′ ′ , , > 0λ ω , we impose to *
0p  the initial condition (20). 

To do this we recall the following formulae (see [22] Section 11.2): 

( ) ( ) ( )
0

d , , 0,J Jν ν

δ ξ ξ
λλ λξ λξ ξ ξ

ξ
+∞′−

′ ′= >∫                           (32) 

and (see [4] [23])  

( ) ( ) ( ) ( ) ( )2 0

2 1 d sinh π , , 0, , Re 0,
π ω ωδ ωω ω β β β β

+∞
′ ′ ′− = > ∈ >∫ i iv v K v K v v v

v
         (33) 

where ( )Re ⋅  is the real part of the complex number ⋅  and sinh  denotes the hyperbolic sine function. From 
(16), (31), (32), (33) we have:  

( ) ( ) ( )*
0 0, 0,0

, , , , d , , , , , , , , , , 0,p s v v L V s v v v v sν εξ ξ λ λ ξ ξ λ ξ ξ
+∞

′ ′ ′ ′ ′ ′= >∫               (34) 
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where 0,L ν  and 0,V ε  are given by:  

( ) ( ) ( )0, 1, , , , 0, 0,L J J
ν

ν ν νν

ξλ ξ ξ λ λξ λξ ξ ξ λ
ξ −

′ ′ ′= > >
′

                     (35) 

( ) ( ) ( )

21
22cosh 2

0, 0,0 0
, , , d , d e e e ,

, , 0, 0,

vvy v v
yy u v vvV s v v u s u y

v v
v v s

λ

ε
ε ελ

λ

 ′′   −− +   +∞ +∞ − ′   ′ = Θ ⋅
′ ′

′ > >

∫ ∫               (36) 

where cosh  denotes the hyperbolic cosine function and 0,εΘ  is given by:  

( )
( ) ( ) ( )

2 2
2 22

π 2
28

0, 22

1 e π, e e sinh sin , , 0.
π π 2

s
u ss us u u u s

ss

ε
εε

ε εε

−−  
Θ = > 

 
               (37) 

From [24] page 146 formula 25 we have:  

( ) ( )
( )

( )

2 2
1

0, 0,0 2 2

2 cosh
2, , , d , ,

2 cosh

, , 0, 0.

K v v vv u
v vV s v v u s u

v v v vv u

v v s

ε ε

λ
λ ελ
ε

λ

+∞

 ′ ′+ + 
 ′ = Θ ⋅

′ ′ ′+ +

′ > >

∫            (38) 

Computing explicitly the integrals in the λ  and y  variables contained respectively in formulae (34) and 
(36) we have: 

( )

( ) ( )
( ) ( )( )
( ) ( )( )

*
0

32 2 2 2
0,0

, , , ,

, , , , , , , ,
2 d , , , , , ,

, , , , , , , ,

, , , , 0,

p s v v

q u v v m u v vv v u s u m u v v
v q u v v m u v v

v v s

ν ν ν
ε ν

ξ ξ

ξ ξ ν ξ ξ
ε ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

+∞ −+ +

′ ′

′ ′ ′ ′+ 
′ ′ ′= Θ ⋅  ′ ′ ′ ′ ′+ 

′ ′ >

∫     (39) 

where  

( ) ( ) ( )2 2 2 2 2, , , , 2 cosh , , , , , 0,q u v v v v vv u v v uξ ξ ε ξ ξ ξ ξ′ ′ ′ ′ ′ ′ ′= + + + + >              (40) 

and 

( ) ( )2 2 2 4, , , , , , , , 4 , , , , , 0.m u v v q u v v v v uξ ξ ξ ξ ξ ξ ε ξ ξ′ ′ ′ ′ ′ ′ ′= − >                (41) 

It is easy to see that the function ( )2 2 2 4, , , , 4q u v vξ ξ ξ ξ ε′ ′ ′−  is positive for 0u ≥ , ξ , ξ ′ , v , > 0v′ .  
Moreover the function *

0p  defined in (??) satisfies the boundary condition (21). In fact when 0ξ =  the term 
2νξ  is zero and the functions q  and m  are bounded in v , v′  for , > 0v v′ , ξ ′ , 0u ≥  (i.e. the functions 

q  and m  are “well behaved”). 
Formula (39) of *

0p  expresses the probability density function of the SABR model when 0ρ =  using only 
elementary functions. This last fact makes the numerical evaluation of (39) easy and efficient. Previously only a 
formula of *

0p  as a one dimensional integral of an integrand involving non elementary transcendental functions 
was known [9]. Note that using (11) from formula (39) that gives *

0p  expressed in the variables tξ , tv , 0t ≥ , 
it is easy to deduce the corresponding formula of the probability density function of the SABR model when 

0ρ =  expressed in the variables tx , tv , 0t ≥ . That is formula (39) and the analogous formula in the 
variables tx , tv , > 0t , are the formulae that have been announced in the Introduction for the probability 
density function when 0ρ = . 

For later convenience the function 0,V ε  defined in (38) is rewritten as follows:  

( ) ( ) ( )0, 0, 0,0
, , , d , , , , , , , 0, 0,V s v v u s u M u v v v v sε ε ελ λ λ

+∞
′ ′ ′= Θ > >∫                (42) 

where 0,εΘ  is given by (37) and  
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( )
( )

( )

2 2
1

0, 2 2

2 cosh
, , , 2 ,

2 cosh

, 0, , 0.

K v v vv u
v vM u v v

v v v vv u

v v u

ε

λ
λ ελ
ε

λ

 ′ ′+ +    ′ = ⋅  ′  ′ ′+ +

′ > >

               (43) 

Moreover let us define 0,
0,

V
D

v
ε

ε

∂
=

∂
, , , > 0v v s′ , > 0λ . Using the identities satisfied by the Mcdonald  

functions (see [21] pag. 376, formula 9.6.28) we have:  

( ) ( ) ( ) ( )

( ) ( ) ( )

0, 0, 0, 0,0

0, 0, 1,0

, , , , , , d , , , ,

3d , , , , , , , , , , 0, 0,
2

D s v v V s v v u s u M u v v
v v

u s u M u v v M u v v v v s
v

ε ε ε ε

ε ε ε

λ λ λ

λ λ λ

+∞

+∞

∂ ∂′ ′ ′= = Θ
∂ ∂
 ′ ′ ′= Θ + > >  

∫

∫
           (44) 

where  

( ) ( )( )
( )

( )

2 2
2 2

1, 2 2

2 cosh
, , , 2 cosh ,

2 cosh
, 0, , 0.

K v v vv u
v vM u v v v v u

v v vv uv
v v u

ε

λ
λ ελ
ε

λ

 ′ ′+ +    ′ ′= + ⋅  ′ ′+ +′ 
′ > >

      (45) 

Formulae (44), (45) will be used later. 

2.3. The First and Second Order Terms of the Expansion 
Let us consider the functions *

1p , *
2p  defined in (18). Proceeding as in Section 2.2 it can be shown that chang- 

ing the integration order in (25) when 1n =  we have:  

( ) ( ) ( )*
1 0 1 1, 0 1 1, 0 10 0

, , , , d d , , , , , , , ,

, , , , 0,

p s v v L V s v v

v v s
ν εξ ξ ε λ λ λ λ ξ ξ λ λ

ξ ξ

+∞ +∞
′ ′ ′ ′=

′ ′ >
∫ ∫             (46) 

where the functions 1,L ν  and 1,V ε  are given by:  

( ) ( ) ( )1, 0 1 0, 1 0, 0 0 10
, , , d , , , , , , 0, , 0,L L Lν ν νλ λ ξ ξ ξ λ ξ ξ λ ξ ξ ξ ξ λ λ

ξ
+∞ ∂′ ′ ′= > >

∂∫   



           (47) 

and  

( ) ( ) ( )2
1, 0 1 0, 1 0, 00 0

0 1

, , , , d d , , , , , , ,

, , 0, , 0.

s
V s v v vv V s v v V v v

v
v v s

ε ε ελ λ τ τ λ τ λ

λ λ

+∞ ∂′ ′= −
∂

′ > >

∫ ∫    

              (48) 

Similarly changing the integration order in (25) when 2n =  we have:  

( ) ( ) ( )* 2
2 0 1 2 2, 0 1 2 2, 0 1 20 0 0

, , , , d d d , , , , , , , , , ,

, , , , 0,

p s v v L V s v v

v v s
ν εξ ξ ε λ λ λ λ λ λ ξ ξ λ λ λ

ξ ξ

+∞ +∞ +∞
′ ′ ′ ′=

′ ′ >
∫ ∫ ∫      (49) 

where the functions 2,L ν  and 2,V ε  are given by:  

( ) ( ) ( )* * *
2, 0 1 2 0, 2 1, 0 2*0

0 1 2

, , , , d , , , , , ,

, 0, , , 0,

L L Lν ν νλ λ λ ξ ξ ξ λ ξ ξ λ λ ξ ξ
ξ

ξ ξ λ λ λ

+∞ ∂′ ′=
∂

′ > >

∫              (50) 

and  

( ) ( ) ( ) ( )2* * * *
2, 0 1 2 0, 2 1, 0 1*0 0

0 1 2

, , , , , d d , , , , , , , ,

, , 0, , , 0.

s
V s v v v v V s v v V v v

v
v v s

ε ε ελ λ λ τ τ λ τ λ λ

λ λ λ

+∞ ∂′ ′= ⋅ −
∂

′ > >

∫ ∫       (51) 
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Using (35) and the properties of the functions Jν  (see [21] p. 361 formula 9.1.27) we have:  

( ) ( ) ( ) ( )1, 0 1 1 1 0 0 1 0 11, , , , , , > 0, , > 0,
ν

ν ν ν νν

ξλ λ ξ ξ λ λ ξ λ ξ λ λ ξ ξ λ λ
ξ −

′ ′ ′=
′

L J J Q            (52) 

and  

( ) ( ) ( ) ( ) ( )2, 0 1 2 2 2 0 0 1 1 21

0 1 2

, , , , , , ,

, 0, , , 0,

L J J Q Q
ν

ν ν ν ν νν

ξλ λ λ ξ ξ λ λ ξ λ ξ λ λ λ λ
ξ

ξ ξ λ λ λ

−
′ ′=

′
′ > >

           (53) 

where  

( ) ( ) ( )2
10

, d , , 0.Q J Jν ν νλ η λ ξξ ηξ λξ λ η
+∞

−= >∫                          (54) 

Using (43), (44) we can rewrite the functions 1,V ε , 2,V ε , defined in (48), (51), as follows:  

( ) ( ) ( )2
1, 0 1 0, 1 0, 00 0

0 1

, , , , d d , , , , , , ,

, , 0, , 0,

s
V s v v vv V s v v D v v

v v s
ε ε ελ λ τ τ λ τ λ

λ λ

+∞
′ ′= −

′ > >
∫ ∫    

             (55) 

and  

( ) ( ) ( ) ( ) ( )
2* * * 2 *

2, 0 1 2 0, 2 0, 1 0, 00 0 0 0

0 1 2

, , , , , d d , , , d d , , , , , , ,

, , 0, , , 0.

s
V s v v v v V s v v vv D v v D v v

v v s

τ
ε ε ε ελ λ λ τ τ λ τ τ τ λ τ λ

λ λ λ

+∞ +∞
′ ′ ′ ′ ′= − ⋅ −

′ > >
∫ ∫ ∫ ∫     (56) 

The formulae (46), (49) for *
1p , *

2p  are new. Similar formulae can be deduced for the higher order terms of 
the expansion, that is for the functions *

np , 3n ≥ . These formulae become more and more involved when n  
increases. 

Note that given > 0s  to approximate the integrals (55), (56) using a quadrature rule it is sufficient to  
evaluate the functions ( )0, , , ,V v vε τ λ ′  and ( )0, , , ,D v vε τ λ ′  on a grid of the set  

( ) ( ) [ ] [ ) [ ) [ ){ }, , , , , , 0, 0, 0, 0,v v v v sτ λ τ λ′ ′ ∈ × +∞ × +∞ × +∞ . This means that exploiting the “structure” of the  

integrands of (55), (56) ad hoc quadrature rules can be built to evaluate efficiently the integrals (55), (56). We 
do not consider the problem of building these quadrature rules here. 

3. The Series Expansion of the Option Prices 
To price European call and put options in the SABR model we use the no arbitrage pricing theory. Let us as- 
sume that the risk free interest rate is constant in time. This hypothesis guarantees that the forward prices/rates 
variable tx , > 0t , is a martingale under the risk-neutral measure (see [25] Proposition 3.1). That is in this case 
the risk neutral measure used to compute the option prices coincides with the “physical” measure used to de- 
scribe the dynamics of tx , tv , > 0t , defined implicitly by (1), (2), (3), (4), (5) with the absorbing barrier in 
zero imposed to the variable tx , > 0t . 

Let SC  and SP  be respectively the prices at time 0t =  of a European call and put option having maturity 
time > 0T  and strike price > 0E . Under the assumption of constant risk free interest rate the no arbitrage 
theory implies that:  

( ) ( ) ( )0 0 0 0 0 00 0
, , , e d d 0, , , , , , , , , 0,

+∞ +∞−
+

= − >∫ ∫       

rT
S SC x v E T x x E vp x v T x v x v E T            (57) 

( ) ( ) ( )0 0 0 0 0 00 0
, , , e d d 0, , , , , , , , , 0,

+∞ +∞−
+

= − >∫ ∫       

rT
S SP x v E T x E x vp x v T x v x v E T             (58) 

where ( ) ( )max ,0
+

⋅ = ⋅  and r  is the risk free interest rate. 
Using the change of variable (6) and formula (11) the prices SC  and SP  defined by (57) and (58) can be 

rewritten as follows:  
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( )
( )

( ) ( )2 * *
0 0 0 02 0 0

0 0

e, , , d d , , , , ,
2

, , , 0,

rT

SC x v E T E vp T v v

v E T

ν
ν ξ ξ ξ ξ

ν

ξ

−
+∞ +∞

+
= −

>

∫ ∫ 

    





                 (59) 

( )
( )

( ) ( )* 2 *
0 0 0 02 0 0

0 0

e, , , d d , , , , ,
2

, , , 0,

rT

SP x v E T E vp T v v

v E T

ν
ν ξ ξ ξ ξ

ν

ξ

−
+∞ +∞

+
= −

>

∫ ∫ 

    





                 (60) 

where ( )2* 2E Eνν= . 
In analogy with the analysis of Section 2.1, let us deduce the first three terms of the expansion in powers of 

ρ  of SC  and SP . We begin considering the expansion in powers of ρ  of SP . Substituting (18) into 
Equation (60) and integrating term by term the resulting series we obtain the following formula:  

( )
( )

( )*
0 0 , 0 02

0

0 0

e, , , , , , ,
2

, , , 0,

rT
n

S n S
n

P x v E T P v E T

x v E T

ν ρ ξ
ν

− +∞

=

=

>

∑ 

  

 

                      (61) 

where  

( ) ( ) ( )* * 2 *
, 0 0 0 00 0

*
0 0

, , , d d , , , , ,

, , , 0, 0,1,

n S nP v E T E vp T v v

v E T n

νξ ξ ξ ξ ξ

ξ

+∞ +∞

+
= −

> =

∫ ∫ 

   






                   (62) 

Let us recall the following formulae (see [21] pag. 484, formulae 11.3.20, 11.3.21, pag. 486 formula 11.4.17):  

( ) ( ) ( )10
d , 0,Re 0,

x
y y J y x J x xν ν

ν ν ν′ ′
′ ′− ′= > >∫                       (63) 

( )
( )

( ) ( )10

1d , 0,Re 0.
2 1

x
y y J y x J x xν ν

ν νν ν
ν

′ ′− −
′ ′+ ′

′= − > >
′Γ +∫                 (64) 

Substituting (34), (35) in (62) and using formulae (63), (64) when 0n =  we have:  

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
**

*
0, 0 0 0 00

* 2 *
0, 0 0 0 0, 010 0 0

*
0 0

, , , d

d d , , , d , , , ,

, , , 0,

S

E

P v E T J

J
E vV T v v J B E W T v

v E T

ν
ν

νν ν
ε ν ν εν

ξ ξ λλ λξ

λξ
ξ ξ λ ξ λ λξ λ λ

ξ

ξ

+∞

+∞ +∞

−

= ⋅

 
− = 

 
>

∫

∫ ∫ ∫

  



 

   





  (65) 

where ( ) ( )1 2** *E E
ν

= , and the functions Bν  and 0,W ε  are given by: 

( ) ( ) ( ) ( ) ( ) ( )
* 1 1 1* * ** ** ** ** *

1 11, , , 0,
2
EB E E E J E E J E E

ν ν ν

ν ν νν

λλ λ λ λ
ν

− − +

− +−= − + >
Γ

         (66) 

and  

( ) ( )0, 0 0, 0 00
, , d , , , , , 0, 0.W T v vV T v v T vε ελ λ λ

+∞
= > >∫                          (67) 

Substituting (46), (52) in (62) when 1n =  we have:  

( ) ( )*
1, 0 0 0 1 1 1 00

, , , dSP v E T Jν
νξ εξ λ λ λ ξ

+∞
= ⋅∫  

  

( ) ( ) ( )0 1 * *
0 0 1, 0 0 1 0 00

0

,
d , , , , , , , , > 0,

Q
B E W T v v E Tν
ν ε

λ λ
λ λ λ λ ξ

λ
+∞

∫ 

                    (68) 
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where 1,W ε  is given by:  

( ) ( )1, 0 0 1 1, 0 1 0 0 0 10
, , , d , , , , , , 0, , 0.W T v vV T v v T vε ελ λ λ λ λ λ

+∞
= > >∫                        (69) 

Finally substituting (46), (53) in (62) when 2n =  we have:  

( ) ( ) ( ) ( ) ( )
( )

0 1* 2 *
2, 0 0 0 2 2 2 0 1 1 2 0 00 0 0

0
*

2, 0 0 1 2 0 0

,
, , , d d , d ,

, , , , , , , , > 0,

S

Q
P v E T J Q B E

W T v v E T

νν
ν ν ν

ε

λ λ
ξ ε ξ λ λ λ ξ λ λ λ λ λ

λ

λ λ λ ξ

+∞ +∞ +∞
= ⋅

⋅

∫ ∫ ∫  





 

     (70) 

where 2,W ε  is given by:  

( ) ( )2, 0 0 1 2 2, 0 1 2 0 0 0 1 20
, , , , d , , , , , , , 0, , , 0.W T v vV T v v T vε ελ λ λ λ λ λ λ λ λ

+∞
= > >∫              (71) 

Let us deduce the expansion in powers of ρ  of the European call option price SC  corresponding to the 
expansion (61) of the European put option price SP . Substituting (18) in (59) and integrating term by term the 
resulting series we obtain the following formula:  

( )
( )

( )*
0 0 , 0 02

0

0 0

e, , , , , , ,
2

, , , 0,

rT
n

S n S
n

C x v E T C v E T

v E T

ν ρ ξ
ν

ξ

− +∞

=

=

>

∑ 

  





                    (72) 

where  

( ) ( ) ( )2 * *
, 0 0 0 00 0

0 0

, , , d d , , , , ,

, , , 0, 0,1, 2,

n S nC x v E T E vp T v v

v E T n

νξ ξ ξ ξ

ξ

+∞ +∞

+
= −

> =

∫ ∫ 

    






             (73) 

It is easy to see that:  

( ) ( )
( )

( ) ( )2 * *
0 0 0 0 0 02 0 0

0 0

e, , , , , , d d , , , , ,
2

, , , 0.

rT

S SC x v E T P x v E T v E p T v v

x v E T

ν
ν ξ ξ ξ ξ

ν

−
+∞ +∞

− = −

>

∫ ∫ 

      

 

    (74) 

Relation (74) is the analogous in the SABR model context of the well known put-call parity relation of 
mathematical finance. Substituting the expansions (18), (61), (72) in (74) and imposing (74) order by order in 
powers of ρ  we obtain the following formulae:  

( ) ( )
( ) ( ) ( ) ( )

* *
, 0 0 , 0 0

2 * * *
0 0 1, 0 0 0, 0 00 0

*
0 0

, , , , , ,

d d , , , , , , , , ,

, , , 0, 0,1, ,

n S n S

n n n

C v E T P v E T

v E p T v v S T v E S T v

v E T n

ν

ξ ξ

ξ ξ ξ ξ ξ ξ

ξ

+∞ +∞

−

= − = −

> =

∫ ∫

 

 

  

  






        (75) 

where the functions 0,nS , 1,nS , 0,1,n =  , are given by:  

( ) ( )*
0, 0 0 0 00 0

0 0

, , d d , , , , ,

, , 0, 0,1, ,

n nS T v v p T v v

T v n

ξ ξ ξ ξ

ξ

+∞ +∞
=

> =

∫ ∫ 

 






                   (76) 

( ) ( )2 *
1, 0 0 0 00 0

0 0

, , d d , , , , ,

, , 0, 0,1, .

n nS T v v p T v v

T v n

νξ ξξ ξ ξ

ξ

+∞ +∞
=

> =

∫ ∫ 

 






                      (77) 

Formula (75) is simply the “put-call parity” relation (74) written order by order in powers of ρ . 
From formulae (34), (35), (36), [24] formula (19) pag. 19, formula (34) pag. 179, and [26] formula (2.32) we 

have:  
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( ) ( )
( )( )

( )( )
2 2 2 2
0 0 02 2

0,0 0 0 0 0 0 0, 2 20 0
0 0

0 0

2 cosh
, , 2 d , d ,

2 cosh

, , 0,

v v vv u
S T v v v u T u v

v v vv u

T v

ν

ν ν
ε

ε ξ
ξ ξ ε

ξ

−

+∞ +∞ + + +
= Θ ⋅

+ +

>

∫ ∫


 

 

  

 





  (78) 

where 0,εΘ  is given by (37). 
From formulae (34), (35), (36), [24] formula (18) pag. 197, formula (28) pag. 146, formula 37 pag. 92, and 

[26] formula (2.32) we have:  

( ) 2
1,0 0 0 0 0 0, , , , , 0.S T v T vνξ ξ ξ= >  

                              (79) 

Substituting formulae (46), (49) in formulae (76) and (77) it follows that the functions 0,nS  and 1,nS , 
1, 2,n =  , satisfy the following recursive relation:  

( ) ( ) ( )
2

, 12 *
, 0 0 0 0 00 0 0

0 0

, , d d d , , , , , , ,

, , 0, 0,1, 1, 2, .

T j n
j n

S
S T v vv p T v v v

v
T v j n

ξ ε τ ξ τ ξ ξ τ ξ
ξ

ξ

+∞ +∞ −∂
= ⋅ −

∂ ∂

> = =

∫ ∫ ∫    

     










        (80) 

Substituting (79) in (80) when 1j =  we have:  

( )1, 0 0 0 0, , 0, , , 0, 1, 2, .nS T v T v nξ ξ= > = 

 
                         (81) 

Formulae (79), (80) and (81) imply that:  

( ) ( )2 * 2
0 0 0 0 00 0

d d , , , , , , , 0, 1,1 .v p T v v T vν νξξ ξ ξ ξ ξ ρ
+∞ +∞

= > ∈ −∫ ∫      

                     (82) 

From (78), (80), (81), (65), (68), (70) and (75) it is possible to obtain formulae for ,n SC , 0,1, 2n = , 
analogous to the formulae (65), (68), (70) obtained for ,n SP , 0,1, 2n = . For the terms ,n SP , ,n SC , 3n ≥ , 
expressions analogous to the ones obtained for the terms with 0,1, 2n = , can be deduced. These formulae 
become more and more involved when n  increases and are omitted for simplicity. 

4. The the Forward Prices/Rates Moment Formulae 
Let us consider the moments of the forward prices/rates variable tx , > 0t . Let ( )0 0, , , , ,m s x v ε ρ ν  , s , 0x , 

0 > 0v , > 0ε , ( )1,1ρ ∈ − , [ )1 2,ν ∈ +∞  be the m -th order moment of the forward prices/rates variable tx , 
> 0t , 1, 2,m =  , that is: 

( ) ( )
( ) [ )

0 0 0 00 0

0 0

, , , , , d d 0, , , , , ,

, , 0, 0, 1,1 , 1 2, , 1, 2, .

m
m Ss x v v xx p x v t x v

s x v m

ε ρ ν

ε ρ ν

+∞ +∞
=

> > ∈ − ∈ +∞ =

∫ ∫   

 



                  (83) 

From (11) and (18) we have:  

( )
( )

( )

( ) [ )

0 0 , 0 02
0

1
0

0 0 0

1, , , , , , , ,
2

, , , 0, 0, 1,1 , 1 2, , 1, 2, ,
1

n
m m nm

n
s x v S s v

x
s x v m

ν

β

ε ρ ν ρ ξ
ν

ξ ε ρ ν
β

+∞

=

−

=

= > > ∈ − ∈ +∞ =
−

∑ 

  





 




            (84) 

where  

( ) ( ) ( )2 *
, 0 0 0 00 0

1
0

0 0 0

, , d d , , , , ,

, , , 0, 1, 2, , 0,1, .
1

m

m n nS s v v p s v v

x
s x v m n

ν

β

ξ ξ ξ ξ ξ

ξ
β

+∞ +∞

−

=

= > = =
−

∫ ∫ 

 





 
 

                         (85) 

Recall that in Section 3 we have already considered the functions 0,nS  and 1,nS , 0,1, ,n =   and that these 
functions have been expressed with the formulae (78), (79), (80), (81). 

From Equations (19), (20), (21), (22), (23), (24) we obtain the following problems: 
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for the functions ,0mS , 1, 2,m =  , we have:  

( )2 22 2 2 2
,0 ,0 ,0 ,0

2 2

2 1
,

2 2 2
, , 0, 1, 2, ,

m m m mS S S Sv v v
s v

s v m

νε
ξ ξξ

ξ

∂ ∂ ∂ ∂−
= + −

∂ ∂∂ ∂
> = 

                      (86) 

( ) 2
,0 0, , , , , 0, 1, 2,m

mS v v mνξ ξ ξ= > =                              (87) 

( ),0 ,0, 0, 0, , 1, 2, ,mS s v s v m= > =                               (88) 

for the functions ,m nS , 1, 2,n =  , 1, 2,m =  , we have:  

( )2 2 22 2 2 2
, , , , , 12

2 2

2 1
,

2 2 2
, , 0, 1, 2, , 1, 2, ,

m n m n m n m n m nS S S S Sv v v v
s vv

s v n m

νε ε
ξ ξ ξξ

ξ

−∂ ∂ ∂ ∂ ∂−
= + − +

∂ ∂ ∂ ∂∂ ∂
> = = 

               (89) 

( ), 0, , 0, , 0, 1, 2, , 1, 2, ,m nS v v n mξ ξ= > = =                         (90) 

( ), , 0, 0, , 0, 1, 2, , 1, 2, .m nS s v s v n m= > = =                          (91) 

It is easy to see that:  
( ) 2

1,0 , , , , , 0,S s v s vνξ ξ ξ= ≥                                 (92) 

is the solution of problem (86), (87), (88) when 1m = . Substituting (92) in the Equation (89) we obtain:  

( )1, , , 0, , , 0, 1, 2, .nS s v s v nξ ξ= ≥ =                              (93) 

Substituting formulae (92), (93) in (84) when 1m =  we have:  

( ) ( ) [ )1 0 0 0 0 0, , , , , , , , 0, 0, 1,1 , 1 2, .s x v x s x vε ρ ν ε ρ ν= > > ∈ − ∈ +∞                   (94) 

Recall that ( ) ( ) ( )1 21 1 2x x νβξ β ν−= − = . We seek ,0mS , 2,3,m =  , solution of problem (86), (87), (88), 
in the following form:  

( ) ( )
*

*2
,0 , ,0

0
, , , , , , 0, 2,3, ,

n
m j n

m j m
j

S s v R s v v s mνξ ξ ξ ξ−

=

= > = …∑                   (95) 

where for 2,3,m =  , the index ( )* *n n m=  is an integer such that the function ,0mS  expressed as a function 
of x  is zero when 0x = . It is easy to see that if ( )* *n n m= , 2,3,m =  , satisfies the inequality:  

( )*2 0, 2,3, ,m n mν − > =                               (96) 

the function ,0mS , 2,3,m =  , given by (95) is zero when 0x = . The largest integer ( )*n m , 2,3,m =  , 
that satisfies (96) is:  

( ) ( )* * 2 1 1, 2,3, ,n n m m mν= = − + =                           (97) 

where [ ]⋅  denotes the integer part of ⋅ . 
Moreover from (87) it follows that: 

( ) ( )* *
*

, ,0 , ,0
0, 1, 0, 0, 0, 1, 2, , , 2,3, .

n m n j m
R v R v v j n m

−
= = > = =                 (98) 

Substituting (95) into equation (86) and equating the coefficients of the powers of ξ  of the same degree we 
obtain the following initial value problems: 
for the functions * , ,0n j m

R
−

, *0,1, ,j n=  , 2,3,m =   we have:  

* *
22 2

, ,0 , ,0
2 , , 0, 2,3, ,

2
n m n m

R Rv v s m
s v

ε∂ ∂
= > =

∂ ∂
                        (99) 

( )* , ,0
0, 1, 0, 2,3, ,

n m
R v v m= > =                           (100) 
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( )
* * *

22 2
1, ,0 1, ,0 , ,02

2 2 , , 0,
2

2,3, ,

n m n m n m
R R Rv m v v s

s vv
m

ε ερ ν− −
∂ ∂ ∂

= + >
∂ ∂∂
= 

               (101) 

( )* 1, ,0
0, 0, 0, 2,3, ,

n m
R v v m

−
= > =                         (102) 

and  

( )( )
* *

*

22 2 2
, ,0 , ,0

2 2, ,0

*

2 2 2 2 2 ,
2 2

, 0, 2,3, , 2,3, , ,

n j m n j m
n j m

R Rv v m j m j R
s v

v s m j n

ε ν ν ν− −

− +

∂ ∂
= + − + − − +

∂ ∂
> = = 

         (103) 

( )*
*

, ,0
0, 0, 0, 2,3, , 2,3, , .

n j m
R v v m j n

−
= > = =                     (104) 

The solutions of the problems (99), (100) and (104), (102) are respectively:  

( )* , ,0
, 1, , 0, 2,3, ,

n m
R s v v s m= > =                           (105) 

( )* 1, ,0
, 0, , 0, 2,3, ,

n m
R s v v s m

−
= > =                         (106) 

and the solutions of the problems (103), (104) are:  

( ) ( ) ( )( ) ( )( ) ( )* *
2

, ,0 2, ,00 0

*

1, 2 2 2 1 2 d d , , , ,
2

, 0, 2,3, , 2,3, , ,

s

n j m n j m
R s v m j m j v s v v v R v

v s m j n

ν ν τ τ τ
+∞

− − +
′ ′ ′ ′= − + − − + ⋅ Ψ −

> = =

∫ ∫
 

 (107) 

where the function:  

( )
( ) ( )( )22

2
ln ln8

2
2

e, , e ,
2π

v vs
svs v v

v v s

ε
ε

ε

′−− −
′Ψ =

′ ′
, , > 0,v v s′                     (108) 

is the solution of the following problem:  
2 2 2

2 , , 0,
2
v v s

s v
ε∂Ψ ∂ Ψ

= >
∂ ∂

                               (109) 

( ) ( )0, , , , 0.v v v v v vδ′ ′ ′Ψ = − >                              (110) 

For later convenience note that an elementary computation gives:  

( )( ) ( )222 2 1 88
0

d , , e e ,

, 0, 0,1, .

q s qq sv s v v v v

v s q

εε+∞ −−′ ′ ′Ψ =

> =
∫



                     (111) 

Using equations (105), (106), (107) we obtain the following formulae:  

( ) ( ) ( )( ) ( )( ) ( )* *
2

, ,0 2, ,00 0

*

1, 2 2 2 1 2 d d , , , ,
2

, 0, 2, 4, , 2 2 , 2,3, ,

s

n j m n j m
R s v m j m j v s v v v R v

v s j n m

ν ν τ τ τ
+∞

− − +
′ ′ ′ ′= − + − − + ⋅ Ψ −

 > = = 

∫ ∫
 

  (112) 

and  

( )*
*

, ,0
, 0, , 0, 2,3, , 1,3, , 2 2 1.

n j m
R s v v s m j n

−
 = > = = +                      (113) 

Formula (112) reduces to (92) when 1=m . In fact from (112) when 1m =  and 2j =  we have  
( )* 2,1,0

, 0
n

R s v
−

=  and this last formula implies that ( )* ,1,0
, 0

n j
R s v

−
= , v , > 0s , *3, 4, ,j n=  . 

Using formulae (111), (105), (106) and (112) we have:  
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( ) ( ) ( ) ( )( ) ( )*
2

22 , ,0

*

, 2 1 1 1 , ,

, 0, 1, 2, , 2 , 2,3, ,

j
jn j m

R s v m j m j v f s

v s j n m

ν ν ε
−

= − + − − −

 > = =  

                 (114) 

( )*
*

2 1, ,0
, 0, , 0, 1, 2, , 2 , 2,3, ,

n j m
R s v v s j n m

− −
 = > = =                     (115) 

where the functions 2 jf , *0,1, , 2j n =   , can be computed by recursion. In fact we have:  

( )0 , 1, 0, 0,f s sε ε= > >                                    (116) 

( ) ( )2

2 2

1, e 1 , 0, 0,sf s sεε ε
ε

= − > >                                (117) 

( )
2 2

2
5 6

6
4 4

1 1 e e, e , > 0, > 0,
30 5 6

s s
sf s s

ε ε
εε ε

ε

− − 
= − +  

 
                      (118) 

and recursively:  

( ) ( )( )
( ) ( ) ( )( )2 22 22 2 2 2 2 2

2 2 10

*

, e d , e ,

0, 0, 3, 4, , 2 .

j j s j js
j jf s f

s j n

ε ε τ
ε τ τ ε

ε

− − −

−=

 > > =  

∫


                 (119) 

Note that given (118) the integral on the right hand side of (119) that defines recursively 2 jf ,  
*3, 4, , 2j n =   , is an elementary integral. However it is easy to see that this integration becomes cumber- 

some when j  increases. In this case symbolic integration software tools can be used to compute the integral of 
(119). 

From (84), (95), (105), (106), (112) we obtain the following formula: 

( )
( )

( )

( ) [ ) ( ) ( )(

[ )

* 2
20

0 0 0 22
0

0 0

, , , ,0, 2 , 1 1 1 ,
2

, , 0, 0, 1 2, , 2,3, .

n mm j
j

m jj
j

x
s x v v f s m j m j

x v s m

ν

ε ν ε ν ν
ν

ε ν

 −  

=

= ⋅ − + − − − 

> > ∈ +∞ =

∑


  

 



      (120) 

Note that in the moment formulae (120) we have 0ρ = . Let us deduce the moment formulae for ( )1,1ρ ∈ − .  

We define the real variable 
1

1
xz v v

β ρ ρξ
β ε ε

−

= − = −
−

, , , > 0x vξ , and we express the moment  

( ), , , , ,m s x v ε ρ ν , 2,3,m =  , using the variables z∈ , > 0v  instead of the variables , > 0x v  used up  

to now. For 2,3,m =   let ( ), , , , ,c
m s z v ε ρ ν , z∈ , , > 0v s , > 0ε , ( )1,1ρ ∈ − , [ )1 2,ν ∈ +∞  be the  

moments m  written using the variables s , z , v , ε , ρ . From (12) it follows that the functions c
m , 

2,3,m =  , satisfy the following equation:  

( ) ( )

( ) [ )

2 22 2 2 2
2

2 2

2 1
1 ,

2 2 2

, , 0, 0, 1,1 , 1 2, , 2,3, ,

c c c c
m m m mv v v

s zz v z v

z v v s m

νερ
ρ
ε

ρ ε ρ ν
ε

−∂ ∂ ∂ ∂
= − + −

∂ ∂∂ ∂  + 
 

> − > > ∈ − ∈ +∞ = 

   

             (121) 

with initial condition:  

( )

( ) [ )

2

0, , , , , , ,

0, 0, 1,1 , 1 2, , 2,3, ,

m
c
m z v z v z v

v m

νρ ρε ρ ν
ε ε

ε ρ ν

 = + > − 
 

> > ∈ − ∈ +∞ = 


                    (122) 

and boundary condition:  
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( ) [ )

,, , , , , 0, , 0, 0,

1,1 , 1 2, , 2,3, .

c
m s v v v s

m

ρ ν ε ρ ν ε
ε

ρ ν

 − = > > 
 

∈ − ∈ +∞ = 


                     (123) 

The boundary condition (123) translates to the functions c
m , 2,3,m =  , the condition imposed to the 

variable tx , > 0t , prescribing the absorbing barrier in zero. Note that we do not consider the case 1m =  
because in (94) we have already shown that ( )1 , , , , ,s x v xε ρ ν = , , , > 0s x v , > 0ε , ( )1,1ρ ∈ − , 

[ )1 2,ν ∈ +∞ . 
We seek the solution of problem (121), (122), (123) in the following form:  

( ) ( )

( ) [ )

**2
*
,

0
, , , , , , ,

, , 0, 0, 1,1 , 1 2, , 2,3, ,

m j nn
c
m j m

j
s z v z v R s v z v

z v v s m

νρ ρε ρ ν
ε ε

ρ ε ρ ν
ε

−

=

   = + +   
   

> − > > ∈ − ∈ +∞ =

∑




             (124) 

where in (124) as already imposed in (97) in the study of the case 0ρ =  we have  
( ) ( )* * 2 1 1n n m m ν= = − +   , 2,3,m =  . 

It is easy to see that from (122) it follows that the functions *
,j mR , *0,1, ,j n=  , 2,3,m =  , satisfy the 

initial conditions:  

( )*
*

,
0, 1, 0, 2,3, ,

n m
R v v m= > =                           (125) 

( )* *
, 0, 0, > 0, 0,1,2, , 1, 2,3, .j mR v v j n m= = − =                   (126) 

Substituting (124) in equation (121) and equating the coefficients of the powers of z vρ
ε

 + 
 

 of the same  

degree we deduce that the functions *
,j mR , *0,1, ,j n=  , 2,3,m =  , satisfy the following initial value pro- 

blems:  

* *
* 2 *2 2

, ,
2 , , 0, 2,3, ,

2
n m n m

R Rv v s m
s v

ε∂ ∂
= > =

∂ ∂
                      (127) 

( )*
*

,
0, 1, 0, 2,3, ,

n m
R v v m= > =                           (128) 

( )
* * *

* 2 * *2 2
1, 1, ,2

2 2 , , 0, 2,3, ,
2

n m n m n m
R R Rv m v v s m

s vv
ε ερ ν− −

∂ ∂ ∂
= + > =

∂ ∂∂
            (129) 

( )*
*

1,
0, 0, 0, 2,3, ,

n m
R v v m

−
= > =                           (130) 

and  

( ) ( )( )
* * *

*

* 2 * *2 2 2
, , 1,2 *

2 2,

*

2 1 2 2 2 2 2 ,
2 2

, 0, 2,3, , , 2,3, ,

n j m n j m n j m
n j m

R R Rv vm j v m j m j R
s vv

v s j n m

ε ερ ν ν ν ν− − − +

− +

∂ ∂ ∂
= + − + + − + − − +

∂ ∂∂
> = = 

 (131) 

( )*
* *

,
0, 0, 0, 2,3, , , 2,3, .

n j m
R v v j n m

−
= > = =                        (132) 

Using (108) and (111) it is easy to see that the functions *
*

,n m
R , *

*
1,n m

R
−

, *
*

2,n m
R

−
, *

*
3,n m

R
−

, 2,3,m =  , are  

given by:  

( )*
*

,
, 1, , 0, 2,3, ,

n m
R s v v s m= > =                             (133) 

( )*
*

1,
, 0, , 0, 2,3, ,

n m
R s v v s m

−
= > =                           (134) 
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( ) ( )( )
2

*
* 2

22,

1 e 1, 2 2 2 , , 0, 2,3, ,
2

s

n m
R s v m m v v s m

ε

ν ν ν
ε−

 −
= − > =  

 
              (135) 

( ) ( )
2 2 2

*

3 3 2 3
* 2

33,

e e e 1, 8 1 ( 1) ,
2 3

, 0, 2,3, .

s s s

n m

vR s v m m m

v s m

ε ε ε

ρ ν ν
ε−

    − −
 = − − ⋅ −           

> = 

           (136) 

Note that when 1m =  we have ( )*
*

2,1
, 0

n
R s v

−
= , v , > 0s , and that due to the recursive relation (131) this 

implies that ( )*
*

,1
, 0

n j
R s v

−
= , v , > 0s , *3, 4, ,j n=  . 

Finally substituting (133), (134), (135), (136) in (131) we have:  

( ) ( )*
* *

,,
, , , , , , 0, 3, 4, , , 1, 2, ,j

j mn j m
R s v v b s v s j n mε ρ ν

−
= > = =                 (137) 

where the functions ,j mb , *0,1, ,j n=  , 1, 2,m =  , are defined by the following recursive relation:  

( ) ( )
[ )

0, , , , 1, 0, 0, 1,1 ,

1 2, , 1, 2, ,
mb s s

m

ε ρ ν ε ρ

ν

= > > ∈ −

∈ +∞ = 

                       (138) 

( ) ( )
[ )

1, , , , 0, 0, 0, 1,1 ,

1 2, , 1, 2, ,
mb s s

m

ε ρ ν ε ρ

ν

= > > ∈ −

∈ +∞ = 

                       (139) 

( ) ( )( )

( ) [ )

2

22,
1 e 1, , , 2 2 2 ,
2

0, 0, 1,1 , 1 2, , 1, 2, ,

s

mb s m m

s m

ε

ε ρ ν ν ν ν
ε

ε ρ ν

 −
= −   

 
> > ∈ − ∈ +∞ = 

                   (140) 

( ) ( ) ( )

( ) [ )

2 2 23 2 3
2

3, 3

1 e e e 1, , , 8 1 1 , 0, 0,
2 3

1,1 , 1 2, , 1, 2, ,

s s s

mb s m m m s

m

ε ε ε

ε ρ ν ρ ν ν ε
ε

ρ ν

    − −
 = − − ⋅ − > >           

∈ − ∈ +∞ = 

   (141) 

 

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) [ )

2 2 2 2

2 2 2 2

2 2
, 2,0

2 2
1,0

*

1, , , 2 2 2 1 2 e d , , , e
2

2 1 1 e d , , , e ,

0, 0, 1,1 , 1 2, , 4,5, , , 1, 2, .

sj j s j j
j m j m

sj j s j j
j m

b s m j m j b

m j j b

s j n m

ε ε τ

ε ε τ

ε ρ ν ν ν τ τ ε ρ ν

ρε ν τ τ ε ρ ν

ε ρ ν

− − −

−

− − −

−

= − + − − + ⋅

+ − + − ⋅

> > ∈ − ∈ +∞ = =

∫

∫
 

 (142) 

The integrals contained in (142) are elementary integrals that can be computed using formula (111). The 
computation of these integrals is cumbersome and can be done conveniently using symbolic integration software  
tools. Note that the functions ( ), , , ,j mb s ε ρ ν , > 0s , > 0ε , ( )1,1ρ ∈ − , [ )1 2,ν ∈ +∞ , 0,1,j =  ,  

1, 2,m =  , are polynomials in ρ . From (124) and (137) we have:  

( )
( )

( ) ( ) ( ) ( )( )

( ) [ ) ( ) ( )

*
* **

*

2
0 0 0 0 0,

0

* *
0 0

, , , , , , , , 2 ,

, , 0, 0, 1,1 , 1 2, , 2 1 1, 2,3, .

n m
j n j nm n j

m m n j
j

s x v x v b s x

x v s n n m m m

ν
ε ρ ν ε ρ ν ν

ε ρ ν ν

− −−
−

=

= ⋅

> > ∈ − ∈ +∞ = = − + =  

∑    

 



    (143) 

In particular when ν  is a positive integer formula (143) reduces to:  

( )
( )

( ) ( ) ( ) ( )( )

( ) [ )

*

*

2 1 1
2 1 12 1 2

0 0 0 0,
0

0 0

, , , , , , , , 2 ,

, , 0, 0, 1,1 , 1 2, , 2,3, .

m
j mjn j

m m n j
j

s x v v b s x

x v s m

ν
νν νε ρ ν ε ρ ν ν

ε ρ ν

− +
− − −− +−

−
=

= ⋅

> > ∈ − ∈ +∞ =

∑   

 



       (144) 

Formulae (94), (143), (144) are the moment formulae announced in the Introduction. These formulae are 
finite sums of elementary functions in particular are polynomials in ρ  and are easy to compute. They can be 
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used in many circumstances, for example in [5] [6] similar formulae have been used to study calibration 
problems for the normal and lognormal SABR models. 

5. Some Numerical Experiments 
In the numerical experiments presented in this Section we use the midpoint quadrature rule to approximate the 
integrals contained in the formulae deduced in Sections 2 and 3. Let us begin choosing the parameter values of 
the numerical quadratures done in the experiments. 

Let uN , Nλ  be positive integers and maxu , maxλ  be positive constants, let us define:  

( ) max1 2 1 , 1,2, , ,
2i u

u

u
u i i N

N
= − =                               (145) 

( ) max1 2 1 , 1,2, , .
2i i i N

N λ
λ

λ
λ = − =                              (146) 

The points iu , 1, 2, , ui N=  , and iλ , 1, 2, ,i Nλ=  , defined in (145), (146) are respectively the nodes of 
the midpoint quadrature rule with uN  and Nλ  nodes applied to the intervals [ ]max0,u , and [ ]max0,λ . Let us 
define the functions ε

Θ , ν  as follows:  

( ) ( )0,0
d , , 0,p u p u pε

ε
+∞

Θ = Θ >∫                              (147) 

( ) ( ) ( ) ( ) ( )2 22 4

0

1, , d e e , , , 0,
2 2

ppp J J I p
p p

ξ ξλ
ν ν ν ν

ξξξ ξ λλ ξλ ξ λ ξ ξ
′+∞ − +− ′ ′ ′ ′= = > 

 
∫            (148) 

where ( )Iν ⋅  is the first kind modified Bessel function of order ν . We have ( ) 0pε
Θ = , > 0p , > 0ε , and 

we choose: 0.5ip p i= = , 1, 2, ,10i =  , ˆ 1ξ ξ= = , ( ), 0.05 2 1f j jξ ξ′ = = − , 1, 2, ,100j =  . We evaluate  

the functions ( )ipε
Θ  and ( ),

ˆ, ,i f jpν ξ ξ , 1, 2, ,10i =  , ˆ 1ξ = , 1, 2, ,100j =  , approximating (147), (148)  

using the midpoint quadrature rule in the interval [ ]max0,u  in the integral in the u  variable (i.e. (147)) and in  
the interval [ ]max0,λ  in the integral in the λ  variable (i.e. (148)). We denote these approximations of 

( )ipε
Θ ,  

( ),
ˆ, ,i f jpν ξ ξ  respectively with ( ),a

ipε
Θ  and ( ),

ˆ, ,a
i f jpν ξ ξ , 1, 2, ,10i =  , ˆ 1ξ = , 1, 2, ,100j =  . The  

number of nodes uN , Nλ  and the constants maxu , maxλ  of the numerical quadrature are chosen in order to  
guarantee that ( ),a

ipε
Θ  and ( ),

ˆ, ,a
i f jpν ξ ξ , 1, 2, ,10i =  , ˆ 1ξ = , 1, 2, ,100j =  , have at least six correct  

significant digits. 
Table 1 shows the quantity:  

( ) ( )
10

,

1
,a

i i
i

E p pε ε ε
Θ Θ Θ

=

= −∑                                   (149) 

as a function of ε . The values of Eε
Θ  for 0.2,0.4,0.6ε = , have been computed choosing max 6πu =  and 

100,500,1000uN =  (see Table 1). Recall that for > 0ε  we have ( ) 0ipε
Θ = , 1, 2, ,10i =  , this makes 

easy to deduce from the value of Eε
Θ  shown in Table 1 the number of correct significant digits of the  

approximation ( )ipε
Θ  of ( )ipε

Θ , 1, 2, ,10i =  . 
 
Table 1. Eε

Θ  versus ε  and uN .                                                                         

ε  ( )100uE Nε
Θ =  ( )500uE Nε

Θ =  ( )1000uE Nε
Θ =  

0.2 24.70 10−⋅  53.99 10−⋅  172.06 10−⋅  

0.4 47.10 10−⋅  172.48 10−⋅  173.26 10−⋅  

0.6 64.70 10−⋅  173.56 10−⋅  172.81 10−⋅  
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Let us consider the quantity defined in (148) when 1 2,3 2,2ν = , we have ( ),
ˆ, , > 0i f jpν ξ ξ , 1, 2, ,10i =  ,  

ˆ 1ξ = , 1, 2, ,100j =  , moreover the numerical evaluation of (148) shows that the maximum value of  
( ),

ˆ, ,i f jpν ξ ξ , 1, 2, ,10i =  , ˆ 1ξ = , 1, 2, ,100j =  , is approximately equal to 35 10−⋅ . 
Table 2 shows the quantity:  

( ) ( )
( )

10 100 , ,

1 1 ,

ˆ ˆ, , , ,1 ,
ˆ1000 , ,

a
i f j i f j

i j i f j

p p
E

p

ν νν

ν

ξ ξ ξ ξ

ξ ξ= =

−
= ∑∑

 


                     (150) 

for 1 3, , 2
2 2

ν = , and has been computed choosing max 10λ = , 1000Nλ =  in the numerical quadratures. 

In the experiments discussed in the rest of this Section we choose max 6πu = , 500uN = , max 10λ = , 
1000Nλ = . We present three experiments. The first experiment investigates how the total probability of the 

SABR model depends from the time s t t′= −  when 0t =  and from the parameters β  and ρ . The second 
experiment investigates the convergence of the series expansion in powers of ρ  of the European put option 
price and verifies numerically one of the moment formulae deduced in Section 4. The third experiment 
introduces a calibration procedure for the SABR model based on the formulae of the option prices deduced in 
Section 3 and studies a time series of real data. 

In the first experiment we begin assuming 0ρ = . Integrating formula (39) with respect to the variables ξ ′ , 
v′  in the domain [ ) [ )0, 0,+∞ × +∞  and choosing 0t = , 0ξ ξ=  , 0v v=   we have the following expression 
for the total probability of the SABR model:  

( ) ( )
( )

( ) ( )( )

*
,0, 0 0 0 0 00 0

0,2 2
0 0 0 0 02 20 0

0 0 0

, , d d , , , ,

,14 d d , , , 0,
2 , , , ,

Mp s v v p s v v

s u
v v u v v s

v u v v u v v

β

εν ν

ξ ξ ξ ξ

ε ξ ξ
η η ε ξ

+∞ +∞

+∞ +∞

′ ′ ′ ′=

Θ
′= ⋅ >

′ ′ ′ +

∫ ∫

∫ ∫

 

 

 

  



 

     (151) 

where s t t′= − , 0t = , and  
( ) ( )2 2

0 0 0 0, , 2 cosh , , > 0, 0.u v v v v v v u v v uη ′ ′ ′ ′= + + ≥                      (152) 

In the asset price models where the probability is conserved during the time evolution the quantity analogous 
to ,0,Mp β  is identically equal to one. However in the SABR model considered here due to the absorbing barrier 
in zero imposed to the variable tξ , > 0t , the probability is not conserved during the time evolution. In fact the 
loss of total probability is monotonically increasing in time and depends from 0ξ , 0v . In particular, given 0v , 
the loss of probability increases when 0ξ  goes to zero. Furthermore formula (151) and the relation 

( )( )1 2 1ν β= −  imply that the loss of total probability increases when β  goes to one. 
Figure 1 shows ,0,Mp β  as a function of ( )0 0,vξ  , when ( ) [ ] [ ]0 0, 0, 2 0,1vξ ∈ ×

  for  

0.1,0.5,0.9, 1 year,5 years,10 yearssβ = =  and 0.6ε = . In particular Figure 1 shows that the loss of total 
probability in the SABR model with 0ρ =  and the absorbing barrier in zero imposed to the variable tξ , 

> 0t , when β  is close to one is negligible only for very small time values. 
Let us consider now the total probability of the SABR model in the case 0ρ ≠  and denote with  

( ), , 0 0, ,Mp s vρ β ξ   the total probability of the SABR model as a function of ( )1,1ρ ∈ − , ( )0,1β ∈ , s , 0ξ ,  

0 > 0v . To compute the total probability , ,Mp ρ β  when 0ρ ≠  we compute the integral that gives , ,Mp ρ β   
with the Monte Carlo method. This is done integrating numerically the stochastic differential equations (7), (8) 
with the initial conditions (9), (10). Due to the absorbing barrier in zero imposed to the variable tξ , > 0t , the 
numerical computation of a trajectory of (7), (8), (9), (10) is stopped when the variable tξ , > 0t , hits zero. 
The numerical integration of (7), (8), (9), (10) is repeated the number of times needed to build the Monte Carlo 
sample necessary to approximate the integral that gives the total probability. 

The loss of probability is measured using the quantity Lρ  defined as follows:  

( )( )
10

, , 0, 0
1

1 1 1, , ,
10 M i

i
L p x vρ ρ β

=

= −∑                             (153) 
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Table 2. Eν  versus ν .                                                                                  

ν  ( ) ( )2 1 2β ν ν= −  Eν  

1
2

 0 111.79 10−⋅  

3
2

 2
3

 124.96 10−⋅  

2  3
4

 122.26 10−⋅  

 

 
                   Figure 1. Loss of probability.                                        
 
where 0, 0.5 0.1ix i= + , 1, 2, ,10i =  , 0 0.25v = . Table 3 shows Lρ  as a function of ρ  when 0.5β = , 

0.6ε = , 1 yeart = . 
The previous analysis shows that in practical circumstances the use for large time values of the SABR model 

with the absorbing barrier can lead to erroneous judgements. To address this point several authors have sug- 
gested the idea of adding to the probability density function studied in Section 2 some extra terms supported in 

0ξ =  to restore probability conservation. In [3] [7] [15] the large time asymptotic properties of the SABR mo- 
del and of several models related to the SABR model are studied and the idea of restoring probability conser- 
vation adding a term supported in 0ξ =  is investigated. 

The second experiment studies the behaviour of the series expansion of the price at time 0t =  of a European 
put option having time to maturity half a year ( )0.5 yearsT =  and strike price 1E =  when the values of the 
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Table 3. Loss of total probability as a function of ρ  when 0.5β = , 0.6ε = , 1 years = , 0 0.25v = .                  

ρ  Lρ  

−0.9 0.0552 

−0.5 0.0427 

−0.25 0.0341 

0 0.0256 

0.25 0.0165 

0.5 0.008 

0.9 9.8 10-5 

 
forward prices/rates variable are generated integrating numerically the model (7), (8) with 0.8ε = , 0 0.25v = ,  

0.2,0.6β = , 0.25, 0.025,0ρ = − −  and 0 0, 0.5 0.1i iξ ξ= = +  , 1, 2, ,10i =  . 
We use the first three terms of the series expansion in powers of ρ  of the European put option price SP  

that have been derived in Section 3. We denote the approximate option prices obtained in this way with  

( ) ( )* *
, 0 0 , 0 00, , , , , ,ie n

i S n SnP v E T P v E Tξ ρ ξ
=

= ∑ 

  , 0,1, 2i = , where ,n SP , 0,1, 2n =  are given in (62). We  

compare the prices ( )*
, 0 0, , ,e

i SP v E Tξ  , 0,1, 2i = , with the price ,MCP ρ  computed evaluating (60) using the  

Monte Carlo method. The trajectories of the SABR model used to sample the variables Tξ , Tv  in the Monte  
Carlo computation of the option prices are obtained integrating numerically the stochastic differential equations 
(7), (8) with the conditions (9), (10) using the explicit Euler method with variable step-size. Note that due to the 
absorbing barrier in zero imposed to the forward prices/rates variable the computation of a simulated trajectory 
of the SABR model is stopped when the variable tξ , > 0t , hits zero. 

We choose the size MCN  of the Monte Carlo sample using formula (82) as a test case. That is we compute  
the integral in (82) using the Monte Carlo method and we denote with ( )1,0 0 0, ,aS T vξ  , 0 0, , > 0T vξ  , the result  

obtained in this way. Note that for > 0ε , ( )1,1ρ ∈ − , [ )1 2,ν ∈ +∞ , the quantity ( )1,0 0 0, ,aS T vξ  ,  

0 0, , > 0T vξ  , approximates ( ) 2
1,0 0 0 0, ,S T v νξ ξ= 

 , T , 0ξ , 0 > 0v , (see (79)). Let us define the quantity:  

( ) ( )
( )

1,0 0 0 1,0 0 0

1,0 0 0

, , , ,
,

, ,

a
MC
S

S T v S T v
E

S T v

ξ ξ

ξ

−
=

 

 





0 0, , > 0.T vξ                          (154) 

Table 4 shows the sample size MCN  that makes MC
SE  smaller than 310−  when 0 0, 0.5 0.1i iξ ξ= = +  ,  

1, 2, ,10i =  , 0 0.25v = , 0.5T = , 0.6ε =  0.1β = , 0.6 , 0.9 , and 0.25ρ = − , 0.025− , 0 . In particular 
Table 4 shows that the accuracy of the Monte Carlo computation depends strongly from the values of the 
parameters β  and ρ . This is due to the loss of total probability that takes place during the time evolution and 
to the fact that this loss is particularly severe when β  is close to one and/or ρ  is close to minus one. As 
suggested in Table 4 to compute the price SP  at time 0t =  of the previously specified option we choose the 
Monte Carlo sample size 400000MCN = . This choice guarantees that the Monte Carlo approximations of the 
option prices obtained in the experiment have at least three correct significant digits when the option prices 
considered are greater than 2105 −⋅  and at least two correct significant digits when the option prices considered 
are smaller than 2105 −⋅ . The evaluation of one of the European put option prices considered above using a 
Centrino Intel Core Duo CPU T6400 processor and the Monte Carlo method with a sample of size 

400000MCN =  takes about 500 seconds while the evaluation of formula (61) with the same processor using the 
midpoint quadrature rule (with the previously chosen values of the numerical integration parameters) takes 44 
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Table 4. Monte Carlo sample size MCN  required to have 310MC
SE −≤ .                                             

β  ρ  
MCN  

0.1 0 100000 
0.1 −0.025 200000 
0.1 −0.25 400000 
0.6 0.0 200000 
0.6 −0.025 200000 
0.6 −0.25 1600000 
0.9 0 400000 
0.9 −0.025 400000 
0.9 −0.25 1600000 

 
seconds to produce the approximate price of the put option obtained summing the first three order terms of the 
series expansion (61), 18 seconds to produce the price obtained summing the first two order terms and 10 se- 
conds to produce the price obtained using only the zero-th order term. Note that when 0ρ ≠  to get two or 
three correct significant digits in the put option price studied it is necessary to use the first two order terms or the 
first three order terms of the series expansion (61) depending from the value of ρ . 

Let us define the relative errors:  

, ,
,

,

, 0,1, 2.
e

i S MC
i

MC

P P
e i

P
ρ

ρ
ρ

−
= =                           (155) 

Figure 2 shows 0,e ρ , 1,e ρ , 2,e ρ  for 0.6ε = , 0.25ρ = − , 0.025−  and 0.6β = . Note that in order to 
guarantee that the Monte Carlo method gives at least three correct significant digits of the option prices 
considered we use a Monte Carlo sample size 200000MCN =  when 0.025ρ = −  and 1600000MCN =  when 

0.25ρ = − . Figure 2 shows that the first two order terms of the expansion in powers of ρ  of the European put 
price (i.e. the approximate price e

SP1, ) already gives a satisfactory approximation of the put price when 
0.025ρ = −  and 0.25ρ = − . More specifically the experiment shows that the mean relative errors (157) 

obtained using the zero-th order term, the first two order terms and the first three order terms of the expansion 
are respectively 0.043, 0.0319, 0.0317 when 0.025ρ = −  and 0.131, 0.0406, 0.0296 when 0.25ρ = − . Figure 2 
shows that the first few terms of the expansion in powers of ρ  of the put price provide high quality ap- 
proximations when the put option is in the money or at the money (i.e. the forward prices/rates variable is 
smaller than or equal to the strike price E  ( 1E =  in the experiment)). In fact, in this case we have that the 
mean relative errors are 0.046, 0.0032, 0.0031 when 0.025ρ = −  and 0.0267, 0.0055, 0.0033 when 0.25ρ = − . 
Note that when 0.025ρ = −  the effect of the second order term on the computed put option price is negligible. 

Finally let us turn our attention to one of the moment formulae deduced in Section 4. Table 5 shows the mean  
relative error ( )

2 0, , , , ,ME s vβ ε ρ ν  between the theoretical second order moment ( )2 0 0, , , , ,s x v ε ρ ν  ,  

0 0, , > 0s x v  , > 0ε , ( )1,1ρ ∈ − , [ )1 2,ν ∈ +∞  of the forward prices/rates variable tx , > 0t , and the  

simulated moment, ( )2 0 0, , , , ,MC s x v ε ρ ν   obtained using the Monte Carlo method with a sample size  

400000MCN =  when 0.5s = , 0.6ε = , 0 0.25v = , 0 0,ˆ ix x= , 1, 2, ,10i =  , where ( )22
0,ˆ 2i ix ννξ ν=  where  

1.5 0.2i iξ = + , 1, 2, ,10i =  , ( )( )1 2 1ν β= − , 0,0.5,0.6β = , that is:  

( )
( ) ( )

( )2

2 0, 0 2 0, 0
0

1 2 0, 0

, , , , , , , , , ,1, , , , , .
, , , , ,

MCn i i
M

i i

s x v s x v
E s v

n s x v

ε ρ ν ε ρ ν
β ε ρ ν

ε ρ ν=

−
= ∑

   



 

 


         (156) 

Table 5 confirms the validity of the moment formula deduced in Section 4 
In the third experiment we use the SABR model to interpret real data. This is done first calibrating the SABR 

model using a time series of real data and then using the calibrated model to forecast option prices. Let 5R  be 
the five dimensional real Euclidean space, we introduce the vector ( ) 5

0, , , ,r vε β ρΘ = ∈
  of the unknowns of 

the calibration problem and the set 5⊂   of the feasible points of the calibration problem defined as 
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Figure 2. Relative errors 0,e ρ , 1,e ρ , 2,e ρ , *
,
e

i i Sp P= , 0,1,2i = , 0.025ρ = − , 

0.25ρ = − , 0.6β = , ( )( )1 2 1ν β= − , maturity 0.5 yearsT = , 1E = , 

0 0.25v = , 0.8ε = .                                                
 
Table 5. Comparison between simulated and theoretical second order moments.                                      

( ) ( )2 1 2β ν ν= −  ρ  ( )
2 0 0, , , , ,ME s x v ε ρ ν   

0 −0.5 46.48 10−⋅  
0.5 −0.5 31.34 10−⋅  
0.6 −0.5 32.19 10−⋅  
0 0 41.92 10−⋅  

0.5 0 43.59 10−⋅  
0.6 0 44.65 10−⋅  
0 0.5 41.24 10−⋅  

0.5 0.5 48.31 10−⋅  
0.6 0.5 32.36 10−⋅  

 
follows:  

( ){ }5
0 0, , , , , 0, 0,0 1, 0, 1 1 .r v r vε β ρ ε β ρ= Θ = ∈ ≥ > < < > − < < 

            (157) 

The inequalities contained in (159) that define   are the natural constraints implied by the meaning of the 
component of Θ  in the model equations. Recall that since in the financial markets 0v  cannot be observed it 
must be regarded as a parameter to estimate in the calibration procedure and that, for simplicity, also the risk 
free interest rate r  is regarded as an unknown of the calibration problem. We use as data of the calibration pro- 
blem studied a set of option prices observed at a given time and we formulate the calibration problem as a non- 
linear constrained least squares problem. 

Let Pn , Cn  be positive integers, 0t ≥  be the observation time and tx


  be the forward prices/rates  
observed at time t t=  . The quantities ( ), ,, ,t

C i C itC x T E



 , 1, 2, , Ci n=  , ( ), ,, ,t
P i P itP x T E



 , 1, 2, , Pi n=  , are  

respectively the observed prices at time tt ~=  of the European call options having maturity time ,C iT  and  
strike price ,C iE , 1, 2, , Ci n=  , and of the European put options having maturity time ,P iT  and strike price 

,P iE , 1, 2, , Pi n=  . We assume ,< C it T , 1, 2, , Ci n=  , and ,< P it T , 1, 2, , Pi n=  . In this experiment to  
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emphasize the dependence of the option prices from the parameters contained in the vector Θ  we change the 
notation used to represent the European call and put option prices obtained using the perturbative expansion in  
powers of ρ  introduced in Section 3. In fact we denote with ( ),

, ,, ,t
C i C itC x T EΘ



 , 1, 2, , Ci n=  ,  

( ),
, ,, ,t

P i P itP x T EΘ


 , 1, 2, , Pi n=  , the prices as a function of MΘ∈  of the European call and put options  

obtained using the first two terms of the expansion in powers of ρ  of Section 3 with the discount factors  
associated to the maturity times , ,C i C iT tτ = −  , 1, 2, , Ci n=  , or , ,P i P iT tτ = −  , 1, 2, , Pi n=  , and we choose  

0 tx x=


  . We use only the first two terms in the power series expansion to evaluate the prices considered because 
the prices involved in this experiment are of the order of magnitude of cents of USD . For prices of this order of 
magnitude the approximate prices obtained with the first two terms of the series expansion have two correct sig- 
nificant digits. 

The calibration problem for the SABR model is formulated as follows:  

( ) ,min tF
Θ∈

Θ



                                    (158) 

where the objective function )(~ ΘtF  is given by:  

( ) ( ) ( )
( )

( ) ( )
( )

2 2, ,
, , , , , , , ,

1 1, , , ,

, , , , , , , ,
,

, , , ,

0, .

t t t tn nC PC i C i C i C i P i P i P i P it t t t
t t t

i iC i C i P i P it t

C x T E C x T E P x T E P x T E
F

C x T E P x T E

t

Θ Θ

= =

   − −
Θ = +   

      
≥ Θ∈

∑ ∑
   

   



 

 

   

 

 

  (159) 

Problem (160) is the a nonlinear constrained least squares problem. This problem is solved numerically using 
a variable metric steepest descent method. Details about the numerical solution of problem (160) can be found in 
[27]. 

The data used in the calibration experiment are the daily values of the futures price on the EUR/USD currency 
exchange rate having maturity September 16th , 2011, and the daily prices of the corresponding European call  
and put options with expiry date September 9th , 2011 and strike prices ( ), , 1.375 0.005 1C i P i iE E E i= = = + − ,  

1, 2, ,18i =  . The strike prices iE , 1, 2, ,18i =  , are expressed in USD. The futures price on the EUR/USD 
currency exchange rate and the European call and put option prices are observed in the time period that goes 
from September 27th , 2010, to December 20th , 2010. The observations are daily observations and the values 
observed are the closing prices of the day at the New York Stock Exchange. Figure 3 shows the futures price of 
the EUR/USD currency exchange rate (ticker YTU1 Curncy) (solid line) and the EUR/USD currency's exchange 
rate (dashed line) as a function of time. Figure 4 and Figure 5 show respectively the prices (in USD) of the cor- 
responding European call and put options with maturity time September 9th , 2011 and the previously defined 
strike prices iE , 1, 2, ,18i =  , as a function of time. 

Specifically we choose 1 September 27th,2010t = , and 1 next trading day after the day , 1, 2, ,59j jt t j+ = = 

 ,  
with these choices we have 60 December 20th,t =  2010 . We calibrate the SABR model solving problem (160) 
every (trading) day during the period that goes from 1 September 27th,t =  2010  to 60 December 20th,t =  
2010  using the prices of the European call and put options shown in Figure 4 and Figure 5 when jt t=  , 

1, 2, ,60j =  , 18C Pn n= =  and using the values of the forward prices/rates variables shown in Figure 3. 
Figure 6 shows the risk neutral parameters obtained using the calibration procedure described above. Recall 

that the maturity time of the options considered is September 9th , 2011 and that the time to maturity shown in 
the abscissa of Figure 6, Figure 7 is the maturity time (i.e. September 9th , 2011) minus the current time ex- 
pressed in (trading) days. The parameter values resulting from the calibration are shown in Figure 6 and are ap- 
proximately constants as functions of the time to maturity. 

Next we use the values of the parameters shown in Figure 6 to forecast option prices one day ahead. That is 
we use the parameter values obtained calibrating the model with the data of jt t=   to compute the option prices 
at 1jt t +=  , obtained using 

1jt tx x
+

=
 

  , 1, 2, ,59j =  . The forecast option prices are obtained evaluating the 
European call and put option prices with the first two order terms of the expansions (72) and (61). Of course 
formulae (72) and (61) after being truncated must be adapted to the specific features of the data studied. Figure 7 
shows the observed and the forecast values of the European call and put option prices for five different values of 
the strike prices: 3E  (Figure 7(a)), 5E  (Figure 7(b)), 7E  (Figure 7(c)), 9E  (Figure 7(d)), 11E  (Figure 7(e) 
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Figure 3. YTU1 (solid line) and EUR/USD currency’s exchange rate (dashed 
line) versus time.                                                  

 

 
Figure 4. Call option prices on YTU1 with strike price ( )1.375 0.005 1iE i= + − , 

1,2, ,18i =  , and expiry date September  9th,2011T =  versus time.         
 

 
Figure 5. Put option prices on YTU1 with strike price ( )1.375 0.005 1iE i= + − , 

1,2, ,18i = 

, and expiry date September  9th,2011T =  versus time.          
 
). In Figure 7 the option prices expressed in USD are plotted on the vertical axis that is marked with V , and the 
horizontal axis shows the time to maturity expressed in days. The time unit of the horizontal axis is the same as 
that of Figure 6. The average relative errors over the time interval September 27th, 2010, December 17th, 2010 
on the forecast values of the European call and put option prices when compared with the corresponding prices 
observed in the financial market are respectively 7 % and 5 %. These percentages reduce to 4% and 3% in the 
case of at the money options. Note that in this experiment we have used only one calibrated SABR model to 
forecast both call and put prices. More accurate results can be obtained calibrating the SABR model twice using 
respectively only put prices and only call prices to forecast respectively put and call prices. The two calibrated 
models give respectively better forecasts of put and call option prices than the forecasts obtained with the model 
calibrated using both call and put prices. We conclude that the third experiment shows that the SABR model 
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Figure 6. Parameter values estimated in the period September 27th, 2010, Decem- 
ber 17th, 2010, versus time to maturity expressed in days. The unit of measure 
of ε , 0v  is years 1/2−  and the unit of *r  is years 1− . The parameters β , 

ρ  and *µ  are dimensionless.                                       
 

 
Figure 7. Observed and one day ahead forecast call and put option prices (in 
USD) for five different strike prices: ((a) ,3 ,3 3 1.3850C PE E E= = = , (b)       

,5 ,5 5 1.3950C PE E E= = = , (c) ,7 ,7 7 1.4050C PE E E= = = , (d)               

,9 ,9 9 1.4150C PE E E= = = , (e) ,11 ,11 11 1.4250C PE E E= = = ) versus time to ma- 
turity expressed in days.                                             

 
interprets satisfactorily the data studied since the values of the parameters resulting from the calibration are 
stable (Figure 6) and the forecast option prices are accurate (Figure 7). 

The website: http://www.econ.univpm.it/recchioni/finance/w18 contains auxiliary material including anima- 

http://www.econ.univpm.it/recchioni/finance/w18
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tions, an interactive application and an app that helps the understanding of the paper. 
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