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Abstract 
In this paper, the complex variable function method is used to obtain the hypersingular integral 
equations for the interaction between straight and curved cracks problem in plane elasticity. The 
curved length coordinate method and suitable quadrature rule are used to solve the integrals for 
the unknown function, which are later used to evaluate the stress intensity factor, SIF. Three types 
of stress modes are presented for the numerical results. 
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1. Introduction 
In order to predict the safety and stability of components, many researchers paid attention to the crack geometry. 
Several types of integral equations have been developed to formulate the single crack problem such as singular 
integral equation [1], Fredholm integral equation [2], hypersingular integral equation [3] and interaction integral 
equation [4]. Formulation for the multiple cracks problem are also obtained in terms of singular integral equa- 
tion [5], Fredholm integral equation [6] and hypersingular integral equation [7] for various set of cracks posi- 
tions. 

These integral equations can be solved numerically using the polynomial approximation of the dislocation 
distribution. This approach was achieved by taken the crack opening displacement (COD) as the unknown and 
the resultant forces as the right term in the equations [8]. 

In this paper, the formulation for the interaction between straight and curved cracks in term of hypersingular 
integral equations is obtained using the complex potential method. Then, the cracks are mapped into a straight 
line using the curved length coordinate method. In order to solve the equations numerically, the quadrature rules 
are applied with M + 1 collocation points. The obtained unknown coefficients will later be used in calculating 
the SIF. In this paper, we consider three types of loading modes: Mode I, Mode II and Mode III for the numeri- 
cal computations. 
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2. Complex Variable Function Method 
Let ( )Φ '( )z zφ=  and ( )Ψ '( )z zψ=  be two complex potentials. Then the stress ( , , )x y zσ σ σ , the resultant 
function ( , )X Y  and the displacement ( , )u v  are related to ( )Φ z  and ( )Ψ z  as [9] 

( )4ReΦx y zσ σ+ =                                     (1) 

( ) ( )'2 2 Φ Ψy x xyi z z zσ σ σ  − + = +                              (2) 

( ) ( ) ( )'f Y iX z z z z cφ φ ψ= − + = + + +                           (3) 

( ) ( ) ( ) ( )'2G u iv K z z z zφ φ ψ+ = − +                            (4) 

where G is shear modulus of elasticity, 3K v= −  for plane strain, (3 ) / (1 )K v v= − +  for plane stress and v  is 
Poisson’s ratio and z x iy= + . The derivative in a specified direction (DISD) is defined as 

{ } ( ) ( ) ( ) ( )( ), , Φ Φ Φ Ψdz d dzJ z z Y iX z z z z z N iT
dz dz dz

  ′= − + = + + + = + 
 

             (5) 

where J denotes the normal and tangential tractions along the segment ,z z dt+ . Note that the value of J not only 
depends on the position of point z, but also on the direction of the segment /dz dz  [3]. 

Let the complex potentials ( )zφ  and ( )zψ  be 

( ) ( )1 ,
2 L

g t dt
z

t z
φ

π
=

−∫  

( ) ( ) ( ) ( )
( )2

1
2 L L L

g t dt g t dt g t dt
z

t z t z t z

t
ψ

π

 
= + − 

− − −  
∫ ∫ ∫  

where L  denotes the crack configuration and substitute into (4). By letting z  approaches 0t
+  and 0t

− , which 
are located on the upper and lower sides of the crack faces (see Figure 1), then using the Plemelj equations [3], 
and rewriting 0t  as t, the following result is obtained [3] 

( ) ( )( ) ( ) ( ) ( )2 1 ,   G u t iv t i k g t t L+ = +                           (6) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )u t iv t u t iv t u t iv t
+ −

+ = + − +  

denotes the crack opening displacement (COD) for the curved crack. It is well known that the COD possesses 
the following properties: 

( ) ( )1/2
at the crack tip , 1, 2

jB jg t O t t B j = − =  
                       (7) 

3. Hypersingular Integral Equation 
The hypersingular integral equation for a curved crack problem is obtained by placing two point dislocations at 
point z t=  and z t dt= + . It is given by [3] 
 

 
Figure 1. A crack configuration.            
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( )
( )

( ) ( ) ( ) ( ) ( ) ( )1 0 2 0 0 0 02
0

1 1 1. . , , ,
2 2L L L

g t dt
h p K t t g t dt K t t g t dt N t iT t t L

t tπ π π
+ + = + ∈

−
∫ ∫ ∫           (8) 

where 

( )
( )

0
1 0 2 2

000

1 1, ,
( )

dt dtK t t
dt dtt tt t

−
= +

−−
 

( )
( )

( )00 0
2 0 2 3

0 000

21,
( )

t tdt dtdt dtK t t
dt dt dt dtt tt t

− −
= + − 

−−  
 

and ( )g t  is the dislocation distribution along the curved. In Equation (8), the first integral with h.p. denotes the 
hypersingular integral and should be defined in the sense of Hadamart finite part integral. It easy to see that for a 
straight crack, Equation (8) is reduced to 

( )
( )

( ) ( )0 0 02
0

1 . . ,
L

g t dt
h p N t iT t t L

t tπ
= + ∈

−
∫                            (9) 

and it can be solved analytically. Now consider the interaction between straight and curved cracks problem (see 
Figure 2). 

For the crack-1, if the point dislocation is placed at point 10z t=  and 10dz dt=  and 1 1( )g t  is the dislocation 
doublet distribution along crack-1 , and the traction is applied on the 10t  then the hypersingular integral equa- 
tion for crack-1  is 

( )
( )

( ) ( )
1

1 1 1
11 10 11 102

1 10

1 . .
L

g t dt
h p N t iT t

t tπ
= +

−
∫                          (10) 

where ( ) ( )11 10 11 10N t iT t+  denotes the traction influence on crack-1 caused by dislocation doublet distribution, 
1 1( )g t , on crack-1. The influence from the dislocation doublet distribution on crack-2 gives 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2 2
1 2 10 2 2 2 2 2 10 2 2 2 12 10 12 102

2 10

1 1 1, ,
2 2L L L

g t dt
K t t g t dt K t t g t dt N t iT t

t tπ π π
+ + = +

−
∫ ∫ ∫         (11) 

where ( ) ( )12 10 12 10N t iT t+  denotes the traction influence on crack-1  caused by dislocation doublet distribution, 
2 2( )g t , on crack-2 and 

( )
( )

10 2
1 2 10 2 2

10 22 102 10

1 1, ,
( )

dt dtK t t
dt dtt tt t

−
= +

−−
 

 

 
Figure 2. Straight and curved cracks in plane 
elasticity with configurations on a real axis-s. 
Cracks with length 2a (straight) and 2b (curved) 
are known as crack-1 and crack-2 respectively.     
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( )
( )

( )
( )

2 1010 102 2
2 2 10 2 3

2 10 10 22 10 2 10

21, .
t tdt dtdt dtK t t

dt dt dt dtt t t t

− −
= + − 

− − 
 

Note that since 2 10 0t t− ≠ , all three integrals in (11) are regular and that ( )1 1g t  and ( )2 2g t  satisfy (7). 
By superposition of the dislocation doublet distribution, ( )1 1g t  along the crack-1 and dislocation doublet dis- 
tribution, ( )2 2g t  along the crack-2, we obtained the following hypersingular integral equation for crack-1 

( )
( )

( )
( )

( ) ( ) ( ) ( )( ) ( ) ( )
1 2 2

1 1 1 2 2 2
1 2 10 2 2 2 2 10 2 2 2 1 10 1 102 2

1 10 2 10

1 1 1. . , ,
2L L L

g t dt g t dt
h p K t t g t K t t g t dt N t iT t

t t t tπ π π

 
+ + + = + 

− −   
∫ ∫ ∫  (12) 

where 

( ) ( ) ( ) ( ) ( ) ( )( )1 10 1 10 11 10 12 10 11 10 12 10N t iT t N t N t i T t iT t+ = + + +  

is the traction applied at point 10t  of crack-1, which is derived from the boundary condition. The first integrals 
represents the effect on crack-1 caused by the dislocation on the crack-1 itself, whereas the second three inte- 
grals represent the effect of the dislocations on crack-2. 

Similarly, the hypersingular integral equation for crack-2 is 

( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
2 2 2 1

2 2 2 1 1 1
1 2 20 2 2 2 2 2 20 2 2 2 2 20 2 202 2

2 20 1 20

1 1 1 1. . , ,
2 2L L L L

g t dt g t dt
h p K t t g t dt K t t g t dt N t iT t

t t t tπ π π π
+ + + = +

− −
∫ ∫ ∫ ∫  

(13) 
where 

( ) ( ) ( ) ( ) ( ) ( )( )2 20 2 20 21 20 22 20 21 20 22 20N t iT t N t N t i T t iT t+ = + + +  

is the traction applied at point 20t  of crack-2 and 

( )
( )

20 2
1 2 20 2 2

20 22 202 20

1 1, ,
( )

dt dtK t t
dt dtt tt t

−
= +

−−
 

( )
( )

( )
( )

2 2020 202 2
2 2 20 2 3

2 20 20 22 20 2 20

21, .
t tdt dtdt dtK t t

dt dt dt dtt t t t

− −
= + − 

− − 
 

The first three integrals in (13) represent the effect on crack-2 caused by the dislocation on crack-2 itself, and 
the fourth integral represents the effect of the dislocation on crack-1. Equations (12) and (13) are to be solved 
for ( )1 1g t  and ( )2 2 .g t  It is obvious that if the two cracks are far apart, the last three integrals in Equation (12) 
and the fourth integral in Equation (13) vanish. Then the solutions for Equations (12) and (13) approach the so- 
lution for a single crack problem, and a closed form solution is available [10]. 

By mapping the two cracks configurations on a real axis s with an interval 2a and 2b respectively, the map-
ping functions 1 1( )t s  and 2 2( )t s  are expressed as 

( ) ( )1 1 1

2 2
1 1 1 1 1| ( )t t sg t a s H s= = −                                (14) 

( ) ( )2 2 2

2 2
2 2 2 2 2| ( )t t sg t b s H s= = −                              (15) 

where 1 1 11 1 12 1( ) ( )  ( )H s H s i H s= +  and 2 2 21 2 22 2( ) ( )  ( )H s H s i H s= + . 
In solving the integral equations, we used the following integration rules [11], for the hypersingular and regu- 

lar integrals, respectively, 

( )
( )

( ) ( ) ( )
2 2

0 02
10

1 ,
Ma

j ja
j

a s G s
ds W s G s s a

s sπ

+

−
=

−
= <

−
∑∫                      (16) 

( ) ( ) ( ) ( )12 2 2 2
01

1 1 , ,
2

a M
j jja

a s G s ds a s G s s a
Mπ

+

=−
− = − <

+ ∑∫                (17) 
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where G(s) is a given regular function, M ∈ , 

0 a cos , 1, 2,3, , 1,
2j j

js s j M
M
π = = = … + + 

 

and 

( ) ( ) 0
0

0

2 1 ,
2

M
n

j j n
n

s
W s n V U

M a=

 = − +  +  
∑  

where 

( )1
sin sin .

2 2
n
j

n jjV
M M

ππ +  =   + +   
 

Here ( )nU t  is a Chebyshev polynomial of the second kind, defined by 

( ) ( 1)sin , cos .
sinn
nU t tθ θ

θ
+ = = 

 
 

1( )H s  and 2 ( )H s  can be evaluated using 

( )1 1
0

,
M

n n
n

sH s c U s a
a=

 = ≤ 
 

∑                              (18) 

and 

( )2 2
0

,
M

n n
n

sH s c U s b
b=

 = ≤ 
 

∑                                  (19) 

where 

( )
1

1 1 1
1

2 ,
2

M
n

n j
j

c V H s
M

+

=

=
+ ∑                                   (20) 

( )
1

2 2 2
1

2
2

M
n

n j
j

c V H s
M

+

=

=
+ ∑                                  (21) 

and ( )1 1H s  and ( )2 2H s  are defined from (14) and (15) respectively. 

4. Numerical Results 
The stress intensity factor (SIF) of inner and outer cracks can be calculated respectively 

( ) ( )'
  1 2 12 lim

j jj Aj
A AA t t

K K iK t t g tπ
→

= − = −                         (22) 

and 

( ) ( )'
  1 2 22 lim

j jj B j
B BB t t

K K iK t t g tπ
→

= − = −                        (23) 

where ( )'
1g t  and ( )'

2g t  can be obtained by using Equations (12) and (13) simultaneously. 
As the two cracks are far apart, the formulations in Equations (12) and (13) become an equation for a straight 

and a curved crack respectively. For the straight crack with length 2a, we obtain K 1.000 πa=  which is simi- 
lar to the exact solution K aπ= . Whereas, for the curved crack, we compare the result of the curved crack 
with the exact solution using the remote traction 1x yσ σ∞ ∞= = , given by [9] 

( ) ( )1/2 1/2

1 2
2 2

cos sin
2 2,

1 sin 1 sin
2 2

a aa a
K K

a a

π π   
   
   = =

   + +   
   

                        (24) 
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The numerical results are tabulated in Table 1. It can be seen that maximum error is not more than 1.0% and 
the results show very good agreement. 

4.1. Example 1: Mode I 
Consider the traction applied is 1x y pσ σ∞ ∞= =  and the calculated results for SIF at the crack tips 1 2 1, ,A A B  
and 2B  are respectively expressed as 

( ) 1/ , , 1, 2
j jiA iAK F b a p a i jπ= =  

( ) 1/ , , 1, 2
j jiB iBK F b a p a i jπ= =  

Figure 3 shows the nondimensional SIF for a curved crack when 0.8,0.9,1.0c
a
= . It is found that the real  

 
Table 1. The SIF for single curved crack: A comparison be- 
tween exact and numerical results.                        

σ  
11AK  

11AK (exact) 
12 AK  

12 AK (exact) 

0 0.9972 0.9956 0.0435 0.0413 

10 0.9887 0.9840 0.0865 0.0777 

20 0.9748 0.9677 0.1283 0.1091 

30 0.9560 0.9493 0.1686 0.1584 

40 0.9326 0.9308 0.2068 0.2046 

50 0.9053 0.9133 0.2426 0.2420 

60 0.8746 0.8966 0.2758 0.2560 

70 0.8413 0.8788 0.3062 0.3058 

80 0.8059 0.8240 0.3338 0.3411 

90 0.7690 0.7786 0.3806 0.3798 

 

 
Figure 3. Nondimensional SIF when θ is changing.                     
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parts of SIF at the left crack tip 1B  is equal to its right crack tip ( )1 22 1 1B BB F F= , whereas the imaginary parts 
give opposite sign ( )2 12 2B BF F= − . The effect of the distance between both cracks is also studied and the result 
is shown in Figure 4. The nondimensional SIF for the straight crack is decreased at the same rate when 010θ <  
whereas increased with different rates when 010θ >  and the SIF becomes higher as the two cracks are close 
together. 

4.2. Example 2: Mode II 
The traction applied for this mode is 2x y pσ σ∞ ∞= =  and the calculated results for SIF at the crack tips 

1 2 1, ,A A B  and 2B  are respectively expressed as 

( ) 2/ , , 1, 2
j jiA iAK F b a p a i jπ= =  

( ) 2/ , , 1, 2
j jiB iBK F b a p a i jπ= =  

Figure 5 shows the nondimensional SIF for a curved crack when 0.8,0.9,1.0c
a
=  and the effect of the dis-  

tance between both cracks is shown in Figure 6. The nondimensional SIF for the straight crack is decreased 
with different rates at the considered domain. As the two cracks are close together, the nondimensional SIF at 
the crack tip is higher. 

4.3. Example 3: Mode III 
Consider the traction applied is x y qσ σ∞ ∞= =  and the calculated results for SIF at the crack tips 1 2 1, ,A A B  and 

2B  are respectively expressed as 

( )/ , , 1, 2
j jiA iAK F b a q a i jπ= =  

( )/ , , 1, 2
j jiB iBK F b a q a i jπ= =  

Figure 7 shows the nondimensional SIF for a curved crack when 0.8,0.9,1.0c
a
= . It is found that the imagi-  

 

 
Figure 4. Nondimensional SIF when θ is changing.                                   
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Figure 5. Nondimensional SIF when θ is changing.                          

 

 
Figure 6. Nondimensional SIF when θ is changing.                                   

 
nary parts of SIF at the left crack tip 1B  is equal to its right crack tip 

1 22 2 2( )B BB F F= , whereas the real parts 
give opposite sign 

2 11 1( )B BF F= − . The effect of the distance between both cracks is shown in Figure 8. For 
015θ <  the nondimensional SIF is decreased at the same rate but later increased at the different rates. 

5. Conclusion 
In this paper, the different types of loading modes have been applied to the interaction between straight and 
curved cracks problem in plane elasticity. As the result, we obtained different results of nondimensional SIF due 
to the different loading modes. We also observed that the SIF increases as both cracks become closer. For a  
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Figure 7. Nondimensional SIF when θ is changing.                      

 

 
Figure 8. Nondimensional SIF when θ is changing.                            

 
symmetry shape crack problem, the real parts of SIF for the left side of the crack is equal to its right side while 
the imaginary parts give the opposite sign. 
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