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Abstract

In this paper, a fractional multi-point boundary value problem is considered. By using the fixed
point index theory and Krein-Rutman theorem, some results on existence are obtained.
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1. Introduction

Fractional differential equations have been of great interest recently. This is due to the intensive development of
the theory of fractional calculus itself as well as its applications. Apart from diverse areas of mathematics, frac-
tional differential equations arise in rheology, dynamical processes in self similar and porous structures, elec-
trical networks, visco-elasticity, chemical physics, and many other branches of science. For details, see
[11-[7].

It should be noted that most of papers and books on fractional calculus are devoted to the solvability of linear
initial fractional differential equations on terms of special functions. Recently, there are some papers dealing
with the existence and multiplicity of solution to the nonlinear fractional differential equations boundary value
problems, see [8]-[14].

Zhao [11] investigated the existence and uniqueness of positive solutions for a local boundary value problem
of fractional differential equation.

{ DZu(t)+ f(t,u(t))=0 0<t<1
u'(0) - Au(g) =0,u'@) +yu(y) =0

where o« isareal numberwith 1<a<2,0<4,7<10<&<y<1, Dy, isthe Caputo’s derivative.
Inspired by above work, we will consider the fractional boundary value problem
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Du(t)+ f(t,u(t)) =0 O<t<1

m-3 1
U'(O)—ﬁu(é)=0,U'(1)+Z,7iu(f7i)=0 .

where « is areal number with 1< <2,0<<10<y,<1i=12,---,m-3, 0<&<ny <n,<---<1,.53<1,
Dy, isthe Caputo’s derivative.

m-3 m-3
Let A=p(1+ z7i77i)+ Z?’i (1-ps).
i=1 i=1
Now we list some conditions for convenience.

(HY) (-2 > AL+ Y 7,1 -1) >0

(H2) f:[0,]xR* —» R* satisfied Carathéodory condition,that is f(,u) is measurable for each fixed
ueR" and f(t,) is continuous for a.e. te[0,1]. For any r>0, there existed ®(t)e L'[0,1] such that
f(t,u) <d(t), where uel0,r];ae te[0,]].

(H3) VI>0,3L>0,|f(t,u)|<L where ue[0,1];ae. te[0,1].

2. Preliminary

For the convenience of readers, we provide some background material in this section. {\bf Definition 2.1[7] The
Riemann-Liouville fractional of order « for function y is defined as

L

Ig,y(t) = @

[,E=9"y(s)ds

Definition 2.2 [7] The Caputo’s derivative for function y is defined as

B 1 t M (s
DO+ y(t) = I y gz—n
I'(hn—a)?° (t-s)

Lemma 2.1 [14] Let « > 0, then the fractional differential equation Dg,u(t) =0

has solutions u(t) = ¢, +Ct +C,t° +---+¢,t" ¢ eR,i=12,---,n,n=[a]+1

Lemma 2.2 [14] Let « >0, then forsome ¢, €R,i=12,---,n,n=[a]+1

Lemma 2.3 (Krein-Rutman) [15] Let K be a reproducing cone in a real Banach space X and let
L: X — X beacompact linear operator with L(K) < K. r(L) is the spectral radius of L If r(L)>0, then
there exists ¢, € K\{0} suchthat Lg, =r(L)¢g,.

Lemma 2.4 [16] Let X is a Banach space, P be aconein X and Q(P) be a bounded open subset in
P

Suppose that A:Q(P) — P is a completely continuous operator. Then the following results hold:

(1) If there exists u, € P\{0} such that u= Au+Au,,VuedQ(P),A>0 then the fixed point index
i(A,Q(P),P)=0.

2 If 0eQ(P) and Au = Au,Vu e 0Q(P),A =1, then the fixed point index (A Q(P),P)=1.

Take X =C[0,1] with norm |x(t)|=max|x(t)], Y =L[0,1] withnorm |x(t)], = jl|x(t)|dt .

te[0,1] 0

K={ue X |u(t)>0,t €[0,1]} Obviously K isa reproducing cone of X.

Lemma25If yeC[0,1],1<a <2, then the unique solution of

Dju(t)+y()=0 O<t<l
WO~ U =0 D+ 7ur) =0

is u(t) = J':G(t,s)y(s)ds, where
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L ﬁ[1+27i(77i 0
—ﬁ(t— ) AT(@) (§-9)
1-p5+pt A-BE+ )R a1
+m(l S) T()IZ; (77| S) SSf,SSt
p+S 7 1]
Zi— (E—s)" ™+ 1-B5+pt (1—s)*2
(@) AF( 1)
4 Aﬂri+)ﬂt)§7.(77. ) S<Et<s
1 w1 1= BE+ Bt a-
Gts)=! I(a )( ey Y
A A@i+)ﬂt);7.(ﬂ. s)" §<s<p,s<t
1-B5+pt Q-8+ BY) R a
m(l ) T().ZL‘ 7 (13, —9) g<s<m,t<s
a l 1 ﬂ‘f"‘ﬂt a-2
—m( -s) AF( ) 1-s)
%(Jr)ﬂt)]z;yj(m —g)* 7., <s<n,s<t
1-pS+pt a2 Q-8+ BY) R a-1
AL (x _1)( s) —AF( ) 12;7,(77, s) Mg SS<m,t<s

Proof: The equation DZu(t)+ y(t)=0 has a unique solution
w0 =5l j (t—s)“"y(s)ds+c +cpt
where ¢,.c, eR. By u'(0)—ﬁu(§)=o,u'(1)+2yiu(ni)=o,we have
=—[ﬁ(1+27.77.)|0+y(§)+(1 PENE Y@M+ (1 ﬁé)Zm y(7)]
e, = ST YO+ B3 15 ¥(0) - B 715 ¥(E)

[1+n§7i(77i )

i e, 1= B+
0= ] L[ esyty(s)ds + o f(e: "ty e TLE -
W4 Aﬂf(;)ﬂt)z 17 -9 y(s)ds

The proof is complete.

5)**y(s)ds

Lemma 2.6 If (H1) hold, then there exist a constant M such that 0<G(t,s) <M (1-s)*?,t,s€[0,1]

Proof: Obviously G(t,s) >0,
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S -]

i a1 1= fS+ Pt (1 Q-5+ YR a1
max G(t,s) < AT@) (&-9) AF( )( —s)** AT (@) IZ;,%(T?. s)
ﬂ[1+n§yiﬂi]
i-1 _g)2 4 1-p5+p (1 ﬁ‘f"‘ﬁ) a-2
e T N e YT A gy, -
P+ S ) +@-D0-pe+ )+ S @-pE )
- AT(2) a=s)
/5'(1+Z7.77.)+(06 DA- ﬂ§+ﬂ)+27.(1 BE+B)
Let M = i=1 AT (@) .The proof is completed.

Define an operator A:K — K and a linear operator T : X — X as follows:

Au(t) = [ G(t,5) f (s,u(s))ds

Tu(t) = [ G(t, s)u(s)ds
Then the fixed point ue K\{0} of A is the positive solutions of (1)

3. Main Results

In order to obtain our main results, we firstly present and prove some lemmas.

Lemma 3.1 If (H1)-(H3) hold, then A:K — K and T:X — X are completely continuous.

Proof: According to the Lebesgue Dominated Convergence Theorem and Lemma 2.6, we have A:K — K
is uniformly bounded and equicontinuous. It follows from Ascoli-Arzela theorem that A: K — K is com-
pletely continuous.

By the same method, we can getthat T : X — X is completely continuous also.

Lemma3.2 If (H1)-(H2) hold, then r(T)>0 (r isthe spectral radius of T)

Proof: Take u(t) =1

Tu(t) = [ G(t, s)u(s)ds

S -]

_ a-1 i-1 U oya-l 1- ﬂ§+ﬂt a-2
- Ta )j(t s)*ds+ AT} jo(g s)* s+ j( —s)“2ds
LA-BE YR o
AT Z o g =5y ds
1 +ﬁ[1+iZ:l:7i(77i _t)]£+1—ﬂcf+ﬂt 1 +(l—ﬂ§+ﬂ'[) = s
- I'a) a ATl (@) a Al(a-1) a-1 ATl'() a

1 1-BE  (1-B&) ™
r(a+1)+AF(0!) Ar(a+1)§7'77' e

T2(t) =T(Tu@®) =TA) > 12, T u() > 1"

1 1
"> 1) = lim|T" " =150

n—ow

TI‘I

The proof is completed.
By Lemma 2.3, we can get there exists ¢, € K\{0} suchthat T, =r(T)ep,

()
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Define f, =liminf inf M,fwzlimsup sup f(t’u), where E c[0,1], with m(E)=0 (m(E) is
u-0 tef0INE Yy uso  tef0INE U
the lebesgue measure of E and the same as follows).
1

Set K, ={ueK|||u||<p},,u=ﬁ.

Lemma 3.3 Suppose u < f, <o, then there exists p, >0 such thatfor pe (0, p,],
if u=AuvuedK, then i(AK,  K)=0.
Proof: It follows from u < f, thatthere exists ¢>0 and p, >0 suchthatfora.e. te[0,1],0<u< p,

ft,u)>(u+e) 2
For 0<p<p,,assume u# Au,VuedK, ByLemma 2.4,we need only to prove that

u#Au+4g, vuedK ,1>0

where ¢, € K\{0}, T, =r(T)e,.
Otherwise, there exists u, € oK ,, 4, >0 such that

U, = AU, + 4,0, ®)

Then u, > Au,, U, = 4,0,, by (2), we can get that
A, = [ G(t,5) f (5, (8))ds = (u+ £)Tu, @)

Considering u, = A,p,, we get Au, = (u+&)A,T @, > Ay, -

This together with (3) means that u, > 24,¢,, by (4) we get Au, = 24,¢,.S0 U, =340, .

Repeating this process, we get that U, > niyg, , so we have ||u || n4, @] = o0,n — 0. This is a contradic-
tion.

It follows from Lemma 2.4 that i(A,K ,K) =0, p (0, p,]. The proof is completed.

Lemma 3.4 Suppose 0< f_ < u,then there exists r, >0 suchthat i(A K,,K)=1, foreach r>r,

Proof: Let ¢>0 satisfy f_ < u—e&,then thereexists r, >0 such that

f(t,u)<(u—¢g)u,foru>r,aete[0,1]

By (H3),there existed ®(t) € L'[0,1] suchthat f(t,u) <d(t), where ue[0,r];ae. te[0,1].
Thus, forall ueR* ae. te[0,1]

f(t,u) < (u—&)u+ D) )

Since yzi, (L—T)‘1 exists. Let C:Hle(t,s)cD(s)ds‘,ro: (L—T)’li
r(m) u-e¢ 0 u-¢€

Take r>r,, we will show Au = Au,foreach uedK,,A>1.
Otherwise, there exist u, 0K, 4, =1, such that Au, =A4,u,, This together with (5), implies

H—&

Uy < AUy = Auy < (u—&)Tu, +C Then (ﬁ—T)uo(t) < . S0 we get %—(ﬁ—ﬂuo(t) eK. It

follows from (L—T)’1=Z(,u—g)”“T" and T(K)c K, we get u,(t) <( ! -T)* ¢ . Therefore,
H—E& ry H—E& H—E&

we have |up[ <1, <r. This is a contradiction.

By Lemma 2.4 (2), we get i(A K,,K)=1 foreach r>r,. The proofis completed.

Theorem 3.1 Suppose u < fy <o and 0< f_ < u then (1) has at least one positive solution.

Proof: It follows from 0< f_ < x and Lemma 3.4 there exists r>0 suchthat i(A K, ,K)=1.

By u< f, <o and Lemma 3.3, we can get there exists 0< p<r such that either there exists ue oK
with u=Auori(A K, K)=0. In the second case, A has a fixed point ueK with p<|u|<r by the

properties of index. The proof is completed.




L. N. Zhou, W. H. Jiang

4. Example

Let’s consider the following boundary value problem
3
DZu(t)+ f(t,u(t))=0 0<t<1
u'(O)—lu(l)—O u’(1)+lu(§)—0 ©
5 4" 5 4"

Ju+it, te [0,1] is a irrational number

where f(t,u) = ) .
0, t €[0,1] is a rational number

Corresponding to the problem (1), we have that « = g &= %,77 = %,ﬂ = %,}/ :% . Let
E ={t|t €[0,1] is a rational number}, then m(E)=0. Obviously, (H1)-(H3) are satisfied. By simple calcula-
tion, we get f, =oo, f, =0. By Theorem 3.1, we get that (6) has at least one solution. This problem can be not

solved by the theorem in [11].
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