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Abstract 
An iteration method similar to the thin-wing-expansion method for the compressible flow has 
been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first 
step of which is Oseen’s approximation, the boundary layer past a flat plate is studied. As pro-
ceeding from the first approximation to the second and third approximations, it is realized that 
our solution approaches to a well known Howarth’s bench mark one gradually. Hence, it is con-
cluded that the usefulness of the present method has been confirmed. 
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1. Introduction 
For an analytical treatment of the boundary layer flow past a flat plate, one must solve the Navier-Stokes equa-
tion under suitable boundary conditions. But unfortunately, it accompanies a great difficulty to obtain such an 
analytical solution. Thus, as it is well known, one has proceeded to classify the flow according to whether the 
Reynolds number is small or large: if the Reynolds number is small, the linearization of Oseen or Stokes type is 
often employed. Whereas if the Reynolds number is large, the inertia force dominates and so the viscosity is 
neglected except in the boundary layer [1]-[8]. At high Reynolds number, however, the usefulness of the pro-
posed iteration method [9] is not obvious. 

The main purpose of the present paper is to apply the iteration method to the flow past a flat plate at high 
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Reynolds number. Even though no exact solution of Navier-Stokes equation for a flat plate at high Reynolds 
number has been known, boundary layer solution for the flow past a semi-infinite flat plate by Howarth [4] must 
be a very good approximation to the exact solution. We, therefore, have solved the boundary layer equation, by 
using the present proposed iteration method. 

2. Formulation of Problem 
Consider the steady viscous flow past a semi-infinite flat plate at zero incidence placed in the uniform flow ve-
locity, U∞. As is shown in Figure 1, we shall take the Cartesian coordinates, x and y, where x-axis is parallel to 
the flat plate, and the leading edge of the plate is origin of the co-ordinate. The velocity at the potential flow re-
gion is assumed to be constant, and thus, d d 0p x = , where p is the pressure. It is well known that the boundary 
layer equations [10] are expressed by 

2 2u u x u y u yν ν∂ ∂ + ∂ ∂ = ∂ ∂ ,                             (2.1) 

0u x u y∂ ∂ + ∂ ∂ = ,                                  (2.2) 

0, at 0u v y= = = ,                                  (2.3) 

, atu U y∞= = ∞ ,                                  (2.4) 

where u and ν  denote the x- and y-components of the velocity, respectively, and ν the kinematic viscosity of 
fluid.  

We shall assume that the velocity components ( ),u ν  may be expanded into the ε-power series such that 
2 3

1 2 3u U u u uε ε ε∞= + + + + ,                             (2.5) 
2 3

1 2 3ν εν ε ν ε ν= + + + ,                               (2.6) 

where ε is a small parameter that may be considered as the ratio of the boundary layer thickness to the flat plate 
length. Substituting (2.5) and (2.6) into (2.1)-(2.4), and rearranging the terms of the same order in ε, we have 

2 2
1 1 0U u x u yν∞ ∂ ∂ − ∂ ∂ = ,                              (2.7) 

( )12 2 2
1 , for 2n

n n k n k k n kkU u x u y u u x u y nν ν−
∞ − −=
∂ ∂ − ∂ ∂ = − ∂ ∂ + ∂ ∂ ≥∑ ,                (2.8) 

0, for 1n nu x y nν∂ ∂ + ∂ ∂ = ≥ ,                            (2.9) 

1 1, 0, at 0u U yε ν∞= − = = ,                            (2.10) 

( )0, for 2 at 0n nu n yν= = ≥ = ,                           (2.11) 

( )0, for 1 atnu n y= ≥ = ∞ .                             (2.12) 

Equation (2.7) is a modified Oseen’s equation, which is regarded as the first approximation of the boundary 
layer equation, being obtained by simplifying the Navier-Stokes equation at high Reynolds number. 

 

 
Figure 1. The boundary layer along a flat plate.                                   



K. Kusukawa et al. 
 

 
37 

3. The First Approximation 
Let’s proceed to the first approximation. Introducing the Laplace transform, ū1, of u1 with respect to x, which is 
defined by 

( ) ( )1 10
, , e dxū y u x y xλλ

∞ −= ∫ ,                            (3.1) 

together with (2.7), we can obtain the equation governing 1ū  in the following form 
2 2

1 1 0ū y U ūλ ν∞∂ ∂ − = ,                              (3.2) 

where λ is the parameter of the Laplace transformation. The general solution of (3.2) satisfying (2.10) and (2.12), 
can be easily be expressed such as 

( )1 exp
Uū U y

v
λ

ελ ∞
∞

  = − ⋅ −     
.                               (3.3) 

By performing the inverse Laplace transformation of 1ū , we get 

( )1 2 1u U ε η∞= ⋅ Φ −   ,                                  (3.4) 

where ( )ηΦ  is the Error function, which is defined as follows, 

( ) ( )2
0

2 exp dt t
η

ηΦ = π ⋅ −∫ ,                               (3.5) 

with ( ) 1 2
y U xη ν∞=    . Using (3.4) together with (2.9) and (2.10), we have 

( ) ( )1 2 2
1 1 π 1 exp 4U xν ε ν η∞

 = ⋅ − −     .                           (3.6) 

These results of (3.4) and (3.6) may be obtainable by the same technique, to be used in the second and the 
third approximations in Sections 4 and 5. 

4. The Second Approximation 
The equation of continuity (2.9) for n = 2 can be automatically satisfied by introducing the following stream 
function, 

( ) ( )1 2
2 2xU fψ ν η∞= ,                                 (4.1) 

where ( )2f η  depends on η only. The relevant velocity components are then given, respectively, by 

( )2 2 2u y U fψ η∞ ′= ∂ ∂ = , 

( ) ( ) ( )1 2
2 2 2 21 2x U x f fν ψ ν η η η∞ ′= −∂ ∂ = ⋅ −   ,                    (4.2) 

where ( )2f η′  means the differentiation of ( )2f η  with respect to η. 

( ) ( )2 22  u x U x fη η∞ ′′∂ ∂ = − ⋅ , 

( ) ( )1 22
2 2u y U U x fν η∞ ∞ ′′∂ ∂ = ⋅   , 

( ) ( )2
2 2u y U x fν η∞ ′′′∂ ∂ = ⋅ .                               (4.3) 

Substituting (4.2) and (4.3) into (2.8) for n = 2, and using (3.4) and (3.6), we get 

( ) ( ) ( ) 2
2 22 f f Gη η η η ε′′′ ′′+ = ,                            (4.4) 

where  

( ) ( ) ( ) ( ){ }2 1 2 2exp 4 π 1 2 2 π 1 exp 4G η η η η η = − ⋅ −Φ + ⋅ − −     .             (4.5) 
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Referring (4.2), the boundary conditions (2.11) and (2.12) for n = 2 can be expressed as follows, 

( ) ( )2 2 0, at 0f fη η η′= = = ,                             (4.6) 

( )2lim 0.fη η→∞ ′′ =                                  (4.7) 

The solution of (4.4) satisfying the conditions (4.6) and (4.7) is obtainable as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 1 2 2 1 2
2

1 2 1 2 1 2 2 1 2

1 2 2 6 π exp 4 2 1 2 π 2 4 π 2

4 2 π π 4 π 1 1 π exp 4 2 π 4 π 1 π 1 ,

f η ε η η η η η η η

η η η

= ⋅ − Φ − ⋅ − Φ + − ⋅Φ − ⋅Φ
+ Φ + − − + + − 

 (4.8) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 1 2 2
2

1 2 2 1 2 2

1 2 2 π exp 4 2 1 2 π 2

4 π exp 4 π 2 π exp 2 1 .

f η ε η η η η η

η η η

′ = ⋅ −Φ + ⋅ − Φ + − Φ
− + − + − + 

            (4.9) 

It may be worth noting here that in the approximation of each order we can introduce the reduced stream 
function ( )kf η  in such a way, 

( ) , with 1,2,k ku U f kη∞ ′= =                             (4.10) 

On the other hand, the original Equations (2.1) and (2.2) suggest that the velocity component u can be ex-
pressed by 

( )u U f η∞ ′= ,                                   (4.11) 

where ( )f η  is no more than the Blasius’s reduced stream function. Recalling (2.5), we have 

( ) ( ) ( )2
1 2f f fη η ε η ε η= + + + .                          (4.12) 

5. The Third Approximation 
Adopting the similar procedure to Section 4, the equation for ( )3f η  and the relevant boundary conditions have 
been reduced to 

( ) ( ) ( ) 3
3 32 f f Hη η η η ε′′′ ′′+ = ,                            (5.1) 

( ) ( )3 3 0, at 0f fη η η′= = = ,                            (5.2) 

( )3lim 0fη η→∞ ′ = ,                                (5.3) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 2 2 2 2 2

1 2 3 2 1 2 1 2 2

3 2 2 1 2 2 1 2 2

3 2 2 3 1 2 2 2 2

4 1 π exp 4 2 1 π 4 exp 4 2

1 π 2 3 2π 2 π 1 π exp 4 2

2 π exp 4 2 1 π 3 π 4 π 2 exp 2

π exp 3 4 4π 3 2π 2 π 4 π exp 4 ,

H η η η η η η η η

η η η η η η

η η η η η

η η η η η

= + ⋅ − Φ + ⋅ + − Φ

− ⋅ + − + − − Φ

− ⋅ − Φ − ⋅ + − + −

 + ⋅ − ⋅ + + + − − 

     (5.4) 

and 

( )3 3u U f η∞ ′= , 

( ) ( ) ( )1 2
3 3 31 2 U x f fν ν η η η∞ ′= ⋅ −   .                         (5.5) 

The solution of (5.1) under the boundary conditions (5.2) and (5.3) is expressed by 
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( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3 2 1 2 2 2
3

1 2 2 2 1 2 2

2 1 2 3 2 1 2 2

2 2 3 2

1 2 3 2 1 2

1/2 1 21 2

1 2 2 8π exp 4 2

27 4π 9 4π exp 4 2 π 1 π 2

4π π 6 π 15 2π exp 4 2

2π exp 2 2 2 π 3 4π 3 π 1 2 2

1 π 4 π 5 2 3 4π 3 2

1 4 2 π 2 2 2 π 5 4 π

f η ε η η η η η

η η η η η

η η η η

η η η η η

η η η

η η η

= ⋅Φ + ⋅ − Φ

 + − − Φ + − + Φ 
 − + − + − Φ 

+ − Φ + + − + Φ

+ ⋅ − Φ − ⋅ Φ

− ⋅ ⋅Φ Φ + ⋅ − Φ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )}

1 2

2 1 2 5 2 3 2 3 2 3 2 1 2 2

1 2 2 3 2 2

1 2 2 3 2

1 2 1 2
0 1

2

8π π 4 π 3 2π 6 π 9 4π exp 4

1 π 2 2 π exp 2 1 π exp 3 4

2 π 1 1 π 2 π 2 π 3 4π 9 2π 9 8

3 2π 3 π 11 9 2 4π ,

η η η

η η η

η

η η

 + + + + − + − 

− ⋅ + − − ⋅ − ⋅

 + ⋅ − − ⋅ + − + 

+ ⋅ − Θ + ⋅ ⋅Θ

        (5.6) 

with 

( ) ( ) ( )2
0 0

exp 2 2 d
η

η η η ηΘ = − Φ∫ ,                          (5.7) 

( ) ( ) ( )2 1 2
1 0

exp 4 2 d
η

η η η ηΘ = − Φ∫ ,                         (5.8) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )

3 3 3 1 2 2 1 2 2 2
3

3 1 2 2 1 2 3 2 2

2 2 2 3 2

3 2 1 2 3 2 2 1 2 3 2 2

3 1 2

1 1 2 2 16π exp 4 7 8π exp 4 1 π 1 2

8π 2π 5 4π π 1 π exp 4 2

4π 3 π exp 2 2 2 π 3 4π 3 π 1 2 2

3 4π 3 2 2 π exp 4 2 4π exp 3 4

16π

f η ε η η η η η η

η η η η η η

η η η η

η η η η η

η

 ′ = ⋅Φ − ⋅ − + ⋅ − − + Φ 

 + + + − + − Φ 
   − + − Φ + + − + Φ   

− Φ ⋅ + ⋅ − Φ − ⋅ − ⋅

− ( ) ( ) ( )
( ) ( ) ( ) ( )}

2 1 2 2 2

2 3 2 2 2

2π 3 8π 4 π 4 π exp 4

4π π 2 π 2 π exp 2 2 π 1 1 π .

η η η

η η η

 + + − + − 

 + + + − − + ⋅ −    

 (5.9) 

6. Conclusions 
Substituting (3.4), (4.9), (5.9) into (2.5), we obtain the x-component of the velocity. The second and the third 
approximations for the velocity component have been plotted concurrently in Figure 2. With increasing the de-
gree of the approximation, the solution gradually approach to Howarth’s bench mark result. This clearly con-
firms the usefulness of the present proposed iteration method to solve the flow past the flat plate. 

Introducing dimensionless drag coefficient for the plate wetted on both sides, by the definition [10], 

( ) 1 24 0f xC f R′′= ,                                 (6.1) 

where Rx denotes U x ν∞ , we obtain a formula with (3.4), (4.9), (4.12), and (5.9) as follows, 
1 21.42f xC R= .                                  (6.2) 

It is found that the Formula (6.2) provides the greater value than that obtained by Blasius’ one [2] slightly, but 
it is certain that this difference diminishes if we adopt the more higher order approximation. 

Application of the present iteration method to the flow past a plate having flat, but finite thickness at moderate 
Reynolds number is left behind for the future study, for no analytical solution of Navier-Stokes equation on this 
problem exists. In such a case, the parameter ε, the ratio of the boundary layer thickness to the plate length, is  
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Figure 2. Velocity distribution in the boundary layer along a 
flat plate.                                              

 
not always considered to be infinitesimally small, so that much more vigorous mathematical treatment is re-
quired to get the solution. 
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