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which implies that damage growth will happen when 
0f , where history parameter satisfies eq ~ . 

2.2. Definition of Equivalent Strain 

Shape and size of the loading surface depends on the 
definition of equivalent strain eq~ , which maps the 
strain tensor into a scalar value by weighting its compo- 
nents considering their different effects on cracking. In 
this paper, a strain based modified von Mises definition 
which is able to differentiate between tensile and com- 
pressive strains. This differentiation is needed in order to 
predict the behavior of quasi-brittle materials such as 
concrete and brick. This definition reads as follows [5]: 

 
 

 
   

1

2

2
1 22 2
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
 

 



         (4) 

where 1I , is the first invariant of strain tensor and 2J , 
is the second invariant of deviatoric strain tensor. Pa- 
rameter k  controls the sensitivity of the equivalent 
strain to tension and compression which is usually set to 
the ratio of compressive strength of material to its tensile 
strength. In this equation, Poisson’s ratio has been repre- 
sented by  . 

2.3. Damage Evolution Law for Quasi-Brittle 
Material 

Fracture in quasi-brittle material is not a result of growth 
of one dominant defect but a collective process of dam- 
age growth and nucleation in its microstructure. Quasi- 
brittle materials like concrete, brick and mortar, demon- 
strate a gradual loss of strength, instead of a sudden loss 
of deformation resistance like brittle fracture. 

Several scalar damage evolution laws have been de- 
veloped in the literature [6,7]. In engineering material 
softening is nonlinear which has a relatively steep stress 
drop when cracking starts and a moderate decrease af- 
terwards. In this work, an exponential softening law for 
concrete has been used in the form of 

    iei 



  11           (5) 

Due to crack bridging the experimentally obtained 
load displacement data has a long tail. Using this expres- 
sion when  , stress approaches   iE1  which 
can represent this long tail. Parameter   controls the 
damage growth rate which depends on the tensile frac- 
ture energy of the material. When   is higher，model 
will show a faster crack growth and a more brittle re- 
sponse. This type of damage evolution law was used for 
both constituents. 

3. Non-Local Model for Strain Softening 
Material 

Damage growth is highly dependent on the microstruc- 
ture of the material. In quasi-brittle material such as con- 
crete, brick and mortar, cracks are bridged by aggregates. 
Therefore, the fracture process is directly related to the 
aggregates size and distribution. However, in classical 
damage mechanics models the scale of microstructure 
has not been included. This unrealistic shortcoming of 
classical damage models results in the damage localisa- 
tion [8]. To overcome this localisation problem in simu- 
lation of strain softening material, we can introduce 
non-locality to the constitutive relation so that the growth 
of damage variable depends on the average deformation 
of the material in a certain region. Addition of this non- 
local concept to the damage model will result in a smooth 
damage growth depending on the length scale [9]. 

3.1. Gradient Enhanced Non-Local Model 

Non-local strain can be introduced as the solution of the 
following partial differential equation 

eqeqeq c  ~2              (6) 

This means that the damage field variable should de- 
pend on a non-local equivalent strain eq , instead of 
local equivalent strain eq~ . Gradient parameter c , is a 
constant related to the squared of the internal length pa- 
rameter. eq , can now be implicitly calculated in terms 
of eq~ , using a 0C -continues finite element domain. To 
solve this Helmholtz partial deferential equation a natural 
boundary condition has been considered as proposed in 
[9]. 

0.  neq                     (7) 

in which n , is the unit normal to boundary  . 

3.2. The Transient-Gradient Damage Model 

Using a constant parameter c , in the gradient model 
leads to an increase of damage growth in and outside the 
localisation zone. This issue can be resolved by consid- 
ering a transient value instead of a constant for the gra- 
dient parameter [10]. This modification transforms Equa- 
tion (6) as follows 

eqeqeq  ~2               (8) 

in which  , represents the transient gradient parameter 
and is defined as follows 
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In order to solve this new partial differential equation, 
an extra set of continuity equation needs to be added to 
the original gradient enhanced model. To avoid adding 
this extra continuity equation, Equation (9) can be di- 
vided by 0 , which leads to the diffusion equation [11] 






 eq

eq
eq

~
2               (10) 

which requires the same number of continuity equations 
as the original gradient enhanced model. The transient 
gradient parameter needs to be slightly changed to avoid 
division by zero into [11] 
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in which 0c , is considered to be an arbitrary positive 
value so that non-local interaction is prevented at the 
beginning of the analysis. 

4. Computational Homogenisation 

To derive an enhanced constitutive material model for a 
complex composite like masonry computational homog-
enisation can be used so that we can derive the global 
behaviour of the masonry from its constituents such as 
concrete block and mortar. Uniform loading and periodic 
geometry for masonry has been assumed and thus, ho- 
mogenisation theory for periodic media which was 
adopted in [12,13] seems suitable to use. Computations 
have been performed on a single representative volume 
element (RVE) which contains the information of the 
entire mesostructure. A boundary value problem has 
been solved on the RVE using finite element method. 
Based on homogenisation theory for periodic media, 
strains should be compatible and the stresses should be 
anti-periodic on two opposite sides of the RVE. This will 
ensure that two neighbouring RVEs fit together. 

4.1. Strain-Periodic Displacement Field 

The strain-periodic displacement field has the form 

)(.)( xwxxu


               (11) 

where  , is the macroscopic strain tensor, x


, is the 
position vector and )(xw


, is a mesoscopic displacement 

fluctuation field which distinguishes the real meso- 
structural displacement field from the linear x


. , field 

[13]. The fluctuation field is assumed to be periodic. The 
volume average of the mesoscopic strain field resulting 
from equation (11) is given by 

   
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which shows the volume average of mesoscopic strain 
field is equal to macroscopic strain  . By using the 
Hill-Mandel work equivalence the total macro-stress can 
be determined as 








RVE

dm

RVE

 1
            (13) 

in which  , and m , represent macro and meso stress, 
respectively. 

4.2. Mesoscopic Representative Volume Element  
(RVE) 

In order to minimize the computational cost at the 
mesoscopic scale and also capture all possible failure 
mechanisms, the RVE should be chosen carefully. It is 
important to note that if the average behaviour remains 
unique any periodic RVE predicts equivalent results, i.e. 
in an infinitesimal strain setting and before localisation 
happens. For masonry, due to periodicity of the initial 
mesostructure, the RVE is chosen as the smallest peri- 
odic element. Based on the assumption that arrangement 
of the constituent materials is the main cause of average 
stiffness degradation, the initial and damage induced 
anisotropy will be captured correctly using this RVE 
[13]. 

4.3. RVE’s Boundary Conditions 

Periodic boundary conditions have been applied on three 
controlling nodes (see Figure 1) of the RVE as indicated 
in [13] and justified in [12]. 

The periodicity conditions for edges can then be for- 
mulated in terms of the controlling nodes as 
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Figure 1. Controlling nodes and periodicity conditions on a 
typical masonry RVE. 
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Figure 5. Evolution of damage in the RVE for compression 
parallel to bed joint. 
 
evolution of damage under two loading cases has been 
investigated. The overall RVE behaviour using the tran- 
sient gradient model indicates that calibration of the tran- 
sient parameter under different loading conditions needs 
to be investigated. 
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